Correlating the Characteristics and Catalytic Performance of Mn-Na-W-Ox/SiO2 for Oxidative Coupling of Methane
Abstract
:1. Introduction
Surface and Gas Reactions [−802.64 kJ·mol−1] | (R-1) |
Surface and Gas Reactions [−176.5 kJ·mol−1] | (R-2) |
Surface and Gas Reactions [−104.89 kJ·mol−1] | (R-3) |
Surface and Gas Reactions [−1323 kJ·mol−1] | (R-4) |
Gas Reaction [136.96 kJ·mol−1] | (R-5) |
2. Results and Discussion
2.1. Comparative Analysis of the Characteristics of the Three Synthesized Catalysts
2.2. Catalytic Activity and Functionality Analyses
2.2.1. Qualitative/Quantitative Measures for Catalytic Functionality and Activity Analyses
2.2.2. Catalyst Scale: The Local Reaction Intensity Established Due to Catalyst Characteristics
2.2.3. Reactor Scale: Bulk Reaction Intensity Dynamically Affected by Operation Parameters
2.3. Results of Catalysts Characterization
2.3.1. Carrier Gas Hot Extraction—CGHE
2.3.2. High-Temperature XRD Measurements
3. Materials and Methods: Synthesis and Characterization of Mn-Na-W/SiO2 Catalysts
- (1)
- characterize each synthesized Mn-Na-W-Ox/SiO2 catalyst and study structural characteristics, in particular, for the known properties of a selective catalyst. In this paper, the details of the synthesis and an overview of the ex situ characterization as well as the catalytic performance of the three synthesized Mn-Na-W-Ox/SiO2 catalysts (Cat1, Cat2, Cat3) are reported, along with a review of the current understanding of the general functionality of the Mn-Na-W-Ox/SiO2 catalyst.
- (2)
- analyze and explain the dynamic activation mechanism and catalytic behavior of the Mn-Na-W-Ox/SiO2 catalysts under reaction conditions. In this context, the solid-state chemistry of the transformation of metal-oxide phases, in particular, the manganese and tungsten oxides during the reaction, are analyzed and correlated with the selective and stable performance of the catalyst. The results were presented and discussed in Section 2, with a focus on studying the interactions of oxygen species with and within the catalytic structures under varying operating conditions, namely temperature and gas composition.
3.1. General Review of the Involved Material Characteristics for Mn-Na-W-Ox/SiO2 Catalyst
3.2. Catalyst Synthesis
3.2.1. Sol–Gel Catalyst Characteristics
3.2.2. Impregnating Non-Structured and Mesoporous Structured Silica-Supports
3.3. Characterization Techniques
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
Cat1 | Sol–gel made Mn-Na-W-Ox/SiO2 catalyst |
Cat2 | Wetness-Impregnated Mn-Na-W-Ox/SiO2 catalyst over non-structured silica |
Cat3 | Wetness-Impregnated Mn-Na-W-Ox/SiO2 catalyst over structured SBA-15 |
CGHE | Carrier Gas Hot Extraction |
C2 | C2H4+C2H6 |
EDX | Energy-Dispersive X-Ray Spectroscopy |
FIB-SEM | Focused Ion Beam Scanning Electron Microscope |
HT-XRD | High-Temperature X-Ray Diffraction |
ICP | Inductively Coupled Plasma |
OCM | Oxidative Coupling of Methane |
References
- Keller, G.; Bhasin, M. Synthesis of ethylene via oxidative coupling of methane: I. Determination of active catalysts. J. Catal. 1982, 73, 9–19. [Google Scholar] [CrossRef]
- Mazheika, A.; Geske, M.; Müller, M.; Schunk, S.A.; Rosowski, F.; Kraehnert, R. Data-driven Design of Catalytic Materials in Methane Oxidation Based on a Site Isolation Concept. ACS Catal. 2024, 14, 12297–12309. [Google Scholar] [CrossRef]
- Zavyalova, U.; Holena, M.; Schlög, R.; Baerns, M. Statistical analysis of past catalytic data on oxidative methane coupling for new insight into the composition of high-performance catalysts. ChemCatChem 2011, 3, 1935–1947. [Google Scholar] [CrossRef]
- Godini, H.R.; Bhasin, M.M. Oxidative Coupling of Methane: A Review Study on the Catalytic Performance. Molecules 2024, 29, 4649. [Google Scholar] [CrossRef] [PubMed]
- Galadima, A.; Muraza, O. Revisiting the oxidative coupling of methane to ethylene in the golden period of shale gas: A review. J. Ind. Eng. Chem. 2016, 37, 1–13. [Google Scholar] [CrossRef]
- Natural Gas and the Environment—U.S. Energy Information Administration (EIA). Available online: https://www.eia.gov/energyexplained/natural-gas/natural-gas-and-the-environment.php (accessed on 12 March 2024).
- World Bank Global Flaring Data. 2022. Available online: www.worldbank.org/en/programs/gasflaringreduction/global-flaring-data (accessed on 1 February 2025).
- Teixeira Penteado, A.; Lovato, G.; Pérez Ortiz, A.; Esche, E.; Domingues Rodrigues, J.A.; Godini, H.R.; Orjuela, A.; Gušča, J.; Repke, J.U. Economic Potential of Bio-Ethylene Production via Oxidative Coupling of Methane in Biogas from Anaerobic Digestion of Industrial Effluents. Processes 2021, 9, 1613. [Google Scholar] [CrossRef]
- Gambo, Y.; Jalil, A.A.; Triwahyono, S.; Abdulrasheed, A.A. Recent advances future prospect in catalysts for oxidativecoupling of methane to ethylene A review. J. Ind. Eng. Chem. 2018, 59, 218–229. [Google Scholar] [CrossRef]
- Ortiz-Bravo, C.A.; Chagas, C.A.; Toniolo, F.S. Oxidative coupling of methane (OCM): An overview of the challenges and opportunities for developing new technologies. J. Nat. Gas Sci. Eng. 2021, 96, 104254. [Google Scholar] [CrossRef]
- Matras, D.; Vamvakeros, A.; Jacques, S.D.; Grosjean, N.; Rollins, B.; Poulston, S.; Stenning, G.B.; Godini, H.R.; Drnec, J.; Cernik, R.J.; et al. Effect of thermal treatment on the stability of Na-Mn-W/SiO2 Catalyst for the Oxidative Coupling of Methane. Faraday Discuss. 2021, 229, 176–196. [Google Scholar] [CrossRef]
- Godini, H.R.; Fleischer, V.; Görke, O.; Jaso, S.; Schomäcker, R.; Wozny, G. Thermal-reaction analysis of Oxidative Coupling of Methane. Chem. Ing. Tech. 2014, 86, 1906–1915. [Google Scholar] [CrossRef]
- Weinberger, S.; Lakhapatri, S.; Radaelli, G.; Cizeron, J.; Pellizzari, R.; McCormick, J.; Sheridan, D.; Reid, C.; Freer, E.; Edwards, J.D.; et al. Reactors and Systems for Oxidative Coupling of Methane. U.S. Patent 10927056 B2, 22 February 2021. [Google Scholar]
- Kim, M.; Repke, J.U.; Schomäcker, R.; Khodadadi, A.A.; Wozny, G.; Görke, O.; Godini, H.R. Recognition of Oxidative Coupling of Methane Reactor Performance Patterns. Chem. Eng. Technol. 2022, 45, 694–708. [Google Scholar]
- Cantrell, R.D.; Ghenciu, A.; Campbell, K.D.; Minahan, D.M.A.; Bhasin, M.M.; Westwood, A.D.; Nielsen, K.A. Catalysts for the Oxidative Dehydrogenation of Hydrocarbons. U.S. Patent 6576803 B2, 10 June 2003. [Google Scholar]
- Stansch, Y.; Mleczko, L.; Baerns, M. Comprehensive Kinetics of Oxidative Coupling of Methane over the La2O3/CaO Catalyst. Ind. Eng. Chem. Res. 1997, 36, 2568–2579. [Google Scholar]
- Wang, D.J.; Rosynek, M.P.; Lunsford, J.H. Oxidative Coupling of Methane over Oxide Supported Sodium Manganese Catalysis. J. Catal. 1995, 155, 390–402. [Google Scholar] [CrossRef]
- Ji, S.; Xiao, T.; Li, S.; Chou, L.; Zhang, B.; Xu, C.; Hou, R.; York, A.P.E.; Green, M.L.H. Surface WO4 tetrahedron: The essence of the oxidative coupling of methane over M-W-Mn/SiO2 catalysts. J. Catal. 2003, 220, 47–56. [Google Scholar] [CrossRef]
- Malekzadeh, A. Structural features of Na2WO4–MOx/SiO2 catalysts in oxidative coupling of methane reaction. Catal. Commun. 2008, 9, 960–965. [Google Scholar]
- Godini, H.R.; Gili, A.; Görke, O.; Arndt, S.; Simon, U.; Thomas, A.; Schomäcker, R.; Wozny, G. Sol-gel method for synthesis of Mn-Na2WO4/SiO2 catalyst for methane oxidative coupling. Catal. Today 2014, 236, 12–22. [Google Scholar]
- Sadjadi, S.; Jašo, S.; Godini, H.R.; Arndt, S.; Wollgarten, M.; Blume, R.; Görke, O.; Schomäcker, R.; Wozny, G.; Simon, U. Feasibility study of the Mn–Na2WO4/SiO2 catalytic system for the oxidative coupling of methane in a fluidized-bed reactor. Catal. Sci. Technol. 2015, 5, 942–952. [Google Scholar]
- Werny, M.J.; Wang, Y.; Girgsdies, F.; Schlögl, R.; Trunschke, A. Fluctuating Storage of the Active Phase in a Mn-Na2WO4/SiO2 Catalyst for the Oxidative Coupling of Methane. Angew. Chem. Int. Ed. 2020, 59, 14921–14926. [Google Scholar] [CrossRef]
- Ortiz-Bravo, C.A.; Figueroa, S.J.A.; Portela, R.; Chagas, C.A.; Bañares, M.A.; Souza Toniolo, F. Elucidating the structure of the W and Mn sites on the Mn-Na2WO4/SiO2 catalyst for the oxidative coupling of methane (OCM) at real reaction temperatures. J. Catal. 2022, 408, 423–435. [Google Scholar] [CrossRef]
- Fang, X.; Li, S.; Lin, J.; Gu, J.; Yan, J.D. Preparation and characterization of catalyst for oxidative coupling of methane. J. Mol. Catal. 1992, 8, 255–262. (In Chinese) [Google Scholar]
- Gu, S.; Kang, J.; Lee, T.; Shim, J.; Choi, J.W.; Suh, D.J.; Lee, H.; Yoo, C.; Baik, H.; Choi, J.; et al. Na2WO4/Mn supported on all-silica delaminated zeolite for the optimal oxidative coupling of methane via the effective stabilization of tetrahedral WO4: Elucidating effects of support precursors with different crystal structures, Al-addition, and morphologies. Chem. Eng. J. 2023, 457, 141057. [Google Scholar]
- Wang, J.; Chou, L.; Zhang, B.; Song, H.; Zhao, J.; Yang, J.; Li, S. Comparative study on oxidation of methane to ethane and ethylene over Na2WO4–Mn/SiO2 catalysts prepared by different methods. J. Mol. Catal. A Chem. 2006, 245, 272–277. [Google Scholar] [CrossRef]
- Yildiz, M.; Aksu, Y.; Simon, U.; Otremba, T.; Kailasam, K.; Göbel, C.; Girgsdies, F.; Görke, O.; Rosowski, F.; Thomas, A.; et al. Silica material variation for the MnxOy-Na2WO4/SiO2. Appl. Catal. A Gen. 2016, 525, 168–179. [Google Scholar] [CrossRef]
- Yildiz, M. Influences of Support Material Variation on Structure and Catalytic Performance of MnxOy-Na2WO4/SiO2 Catalyst for the Oxidative Coupling of Methane. Ph.D. Thesis, Technical University of Berlin, Berlin, Germany, 2014. [Google Scholar]
- Kim, M.; Arndt, S.; Yildiz, M.; Schomäcker, R.; Görke, O.; Repke, J.U.; Wozny, G.; Godini, H.R. Reaction Engineering of Oxidative Coupling of Methane: Experimental Observations and Analysis of the Impacts of Operating Parameters. Chem. Eng. Res. Des. 2021, 172, 84–98. [Google Scholar] [CrossRef]
- Takanabe, K.; Iglesia, E. Mechanistic Aspects and Reaction Pathways for Oxidative Coupling of Methane on Mn/Na2WO4/SiO2 Catalysts. J. Phys. Chem. C 2009, 113, 10131–10145. [Google Scholar] [CrossRef]
- Godini, H.R.; Gili, A.; Gorke, O.; Simon, U.; Hou, K.; Wozny, G. Performance analysis of a porous packed-bed membrane reactor for Oxidative Coupling of Methane: Structural and operational characteristics. Energy Fuels 2014, 28, 877–890. [Google Scholar] [CrossRef]
- Machin, I.; Pereira, P.; de Gouveia, V.; Rosa, F. Modeling of Catalytic Oxidative Coupling of Methane. ACS Prepr. Symp. 1992, 37, 173–178. [Google Scholar]
- AZanina, V.A.; Kondratenko, H.; Lund, J.; Li, J.; Chen, Y.; Li, G.; Jiang, E.V. Kondratenko, The Role of Adsorbed and Lattice Oxygen Species in Product Formation in the Oxidative Coupling of Methane over M2WO4/SiO2 (M = Na, K, Rb, Cs). ACS Catal. 2022, 12, 15361–15372. [Google Scholar] [CrossRef]
- Baerns, M.; Kondratenko, E.V. Handbook of Heterogeneous Catalysis; Wiley-VCH Verlag GmbH & Co. KGaA: Hoboken, NJ, USA, 2008. [Google Scholar]
- Wu, T.; Wei, Y.; Xiong, J.; Yang, Y.; Wang, Z.; Han, D.; Zhao, Z.; Liu, J. Ca and Sr co-doping induced oxygen vacancies in 3DOM La2−xSrxCe2−yCayO7−δ catalysts for boosting low-temperature oxidative coupling of methane. J. Energy Chem. 2024, 91, 331–344. [Google Scholar] [CrossRef]
- Zanina, A.; Kondratenko, V.A.; Makhmutov, D.; Lund, H.; Li, J.; Chen, J.; Li, Y.; Jiang, G.; Kondratenko, E.V. Elucidating the Role of Oxygen Species in Oxidative Coupling of Methane over Supported MnOx-Na2WO4-containing Catalysts. ChemCatChem 2023, 16, e202300885. [Google Scholar] [CrossRef]
- Ji, S.F.; Xiao, T.C.; Li, S.B.; Xu, C.Z.; Hou, R.L.; Coleman, K.S.; Green, M.L. The relationship between the structure and the performance of Na-W-Mn/SiO2 catalysts for the oxidative coupling of methane. Appl. Catal. A Gen. 2002, 225, 271–284. [Google Scholar]
- Kou, Y.; Zhang, B.; Niu, J.Z.; Li, S.B.; Wang, H.L.; Tanaka, T.; Yoshida, S. Amorphous Features of Working Catalysts: XAFS and XPS Characterization of Mn/Na2WO4/SiO2 as Used for the Oxidative Coupling of Methane. J. Catal. 1998, 173, 399–408. [Google Scholar]
- Nipan, G.D. Phase States of Na/W/Mn/SiO2 Composites at Temperatures of Catalytic Oxidative Coupling of Methane. Inorg. Mater. 2014, 50, 1012–1017. [Google Scholar] [CrossRef]
- Dedov, A.G.; Nipan, G.D.; Loktev, A.S.; Tyunyaev, A.A.; Ketsko, V.A.; Parkhomenko, K.V.; Moiseev, I.I. Oxidative coupling of methane: Influence of the phase composition of silica-based catalyst. Appl. Catal. A Gen. 2011, 406, 1–12. [Google Scholar]
- YGordienko, T.; Usmanov, V.; Bychkov, V.; Lomonosov, Z.; Fattakhova, Y.; Tulenin, D.; Shashkin, M. Sinev, Oxygen availability and catalytic performance of NaWMn/SiO2 mixed oxide and its components in oxidative coupling of methane. Catal. Today 2016, 278, 127–134. [Google Scholar]
- Pak, S.; Lunsford, J.H. Thermal effects during the oxidative coupling of methane over Mn/Na2WO4/SiO2 and Mn/Na2WO4/MgO catalysts. Appl. Catal. A Gen. 1998, 168, 131–137. [Google Scholar]
- Arndt, S.; Otremba, T.; Simon, U.; Yildiz, M.; Schubert, H.; Schomäcker, R. Mn–Na2WO4/SiO2 as catalyst for the oxidative coupling of methane. What is Really Known? Appl. Catal. A Gen. 2012, 425, 53–61. [Google Scholar]
- Tiyatha, W.; Chukeaw, T.; Sringam, S.; Witoon, T.; Chareonpanich, M.; Rupprechter, G.; Seubsai, A. Oxidative coupling of methane-comparisons of MnTiO3-Na2WO4 and MnOx-TiO2-Na2WO4 catalysts on different silica supports. Sci. Rep. 2022, 12, 2595. [Google Scholar] [CrossRef]
- Dey, S.; Kumar, V.P. The performance of highly active manganese oxide catalysts for ambient conditions carbon monoxide oxidation. Curr. Res. Green Sustain. Chem. 2020, 3, 100012. [Google Scholar] [CrossRef]
- Dardouri, R.; Gannouni, A.; Zina, M.S. Structural and Oxidative Properties of Manganese Incorporated Mesostructure Silica for Methane Oxidation. Adv. Mater. Sci. Eng. 2019, 2019, 6024876. [Google Scholar] [CrossRef]
- Palermo, A.; Holgado, J.; Lee, A.; Tikhov, M.; Lambert, R. Critical influence of the amorphous silica-to-cristobalite phase transition on the performance of Mn/Na2WO4/SiO2 catalysts for the oxidative coupling of methane. J. Catal. 1998, 177, 259–266. [Google Scholar]
- Yu, Y.; Movick, W.J.; Obata, K.; Yoshida, S.; Takanabe, K. Mn-Na2WO4/SiO2-tridymite with improved stability and selectivity for high-pressure oxidative coupling of methane. Chem. Eng. J. 2024, 500, 156938. [Google Scholar]
- Takanabe, K.; Khan, A.M.; Tang, Y.; Nguyen, L.; Ziani, A.; Jacobs, B.W.; Elbaz, A.M.; Sarathy, S.M.; Tao, F. Integrated In Situ Characterization of a Molten Salt Catalyst Surface: Evidence of Sodium Peroxide and Hydroxyl Radical Formation. Angew. Chem. Int. Ed. 2017, 56, 10403. [Google Scholar]
Catalyst | Silica Support | Synthesis | Manganese (wt.-%) | Sodium (wt.-%) | Tungsten (wt.-%) |
---|---|---|---|---|---|
Cat1 | Bulk Catalyst | Sol–Gel | 1.9 | 0.6 | 2.7 |
Cat2 | Non-structured | Wet-Impregnation | 1.6 | 0.7 | 3.0 |
Cat3 | SBA-15 | Wet-Impregnation | 1.7 | 0.6 | 2.7 |
Sample | Synthesis Method (Support) | Density g ∙ cm−3 | SBET (m2 ∙ g−1) a | Sexternal (m2 ∙ g−1) b | Smicropore (m2 ∙ g−1) c | Vmicropore (cm3 ∙ g−1) c | Vmesopore (cm3 ∙ g−1) d | Pore Size (nm) e |
---|---|---|---|---|---|---|---|---|
Cat1 | Sol–Gel (TEOS) | 1.22 | 1.7 | 1.7 | 0 | 0 | 0 | 3.42 |
Cat2 | Impregnation (Davisil 636) | 0.56 | 2.3 | 2.3 | 0 | 0 | 0.01 | 3.42 |
Cat3 | Impregnation (SBA-15) | 0.25 | 5.3 | 5.3 | 0 | 0 | 0.01 | 3.44 |
Davisil 636 | Amorphous (Davisil 636) | 0.70 | 477.1 | 477.1 | 0 | 0 | 0.84 | 7.68 |
SBA-15 | Structured (SBA-15) | 0.24 | 656.7 | 564.6 | 92.1 | 0.04 | 1.06 | 7.71 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Godini, H.R.; Berendts, S.; Kleba-Ehrhardt, R.; Shah, A.T.; Görke, O. Correlating the Characteristics and Catalytic Performance of Mn-Na-W-Ox/SiO2 for Oxidative Coupling of Methane. Inorganics 2025, 13, 106. https://doi.org/10.3390/inorganics13040106
Godini HR, Berendts S, Kleba-Ehrhardt R, Shah AT, Görke O. Correlating the Characteristics and Catalytic Performance of Mn-Na-W-Ox/SiO2 for Oxidative Coupling of Methane. Inorganics. 2025; 13(4):106. https://doi.org/10.3390/inorganics13040106
Chicago/Turabian StyleGodini, Hamid Reza, Stefan Berendts, Rafael Kleba-Ehrhardt, Asma Tufail Shah, and Oliver Görke. 2025. "Correlating the Characteristics and Catalytic Performance of Mn-Na-W-Ox/SiO2 for Oxidative Coupling of Methane" Inorganics 13, no. 4: 106. https://doi.org/10.3390/inorganics13040106
APA StyleGodini, H. R., Berendts, S., Kleba-Ehrhardt, R., Shah, A. T., & Görke, O. (2025). Correlating the Characteristics and Catalytic Performance of Mn-Na-W-Ox/SiO2 for Oxidative Coupling of Methane. Inorganics, 13(4), 106. https://doi.org/10.3390/inorganics13040106