Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline

Search Results (1,087)

Search Parameters:
Keywords = W alloys

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 2764 KiB  
Article
AlxCoCrFeNi High-Entropy Alloys Enable Simultaneous Electrical and Mechanical Robustness at Thermoelectric Interfaces
by Xiaoxia Zou, Wangjie Zhou, Xinxin Li, Yuzeng Gao, Jingyi Yu, Linglu Zeng, Guangteng Yang, Li Liu, Wei Ren and Yan Sun
Materials 2025, 18(15), 3688; https://doi.org/10.3390/ma18153688 - 6 Aug 2025
Abstract
The interface between high-performance thermoelectric materials and electrodes critically governs the conversion efficiency and long-term reliability of thermoelectric generators under high-temperature operation. Here, we propose AlxCoCrFeNi high-entropy alloys (HEA) as barrier layers to bond Cu-W electrodes with p-type skutterudite (p-SKD) thermoelectric [...] Read more.
The interface between high-performance thermoelectric materials and electrodes critically governs the conversion efficiency and long-term reliability of thermoelectric generators under high-temperature operation. Here, we propose AlxCoCrFeNi high-entropy alloys (HEA) as barrier layers to bond Cu-W electrodes with p-type skutterudite (p-SKD) thermoelectric materials. The HEA/p-SKD interface exhibited excellent chemical bonding with a stable and controllable reaction layer, forming a dense, defect-free (Fe,Ni,Co,Cr)Sb phase (thickness of ~2.5 μm) at the skutterudites side. The interfacial resistivity achieved a low value of 0.26 μΩ·cm2 and remained at 7.15 μΩ·cm2 after aging at 773 K for 16 days. Moreover, the interface demonstrated remarkable mechanical stability, with an initial shear strength of 88 MPa. After long-term aging for 16 days at 773 K, the shear strength retained 74 MPa (only 16% degradation), ranking among the highest reported for thermoelectric materials/metal joints. Remarkably, the joint maintained a shear strength of 29 MPa even after 100 continuous thermal cycles (623–773 K), highlighting its outstanding thermo-mechanical stability. These results validate the AlxCoCrFeNi high-entropy alloys as an ideal interfacial material for thermoelectric generators, enabling simultaneous optimization of electrical and mechanical performance in harsh environments. Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Figure 1

14 pages, 5840 KiB  
Article
Paint Removal Performance and Sub-Surface Microstructural Evolution of Ti6Al4V Alloy Using Different Process Parameters of Continuous Laser Cleaning
by Haoye Zeng, Biwen Li, Liangbin Hu, Yun Zhang, Ruiqing Li, Chaochao Zhou and Pinghu Chen
Coatings 2025, 15(8), 916; https://doi.org/10.3390/coatings15080916 (registering DOI) - 6 Aug 2025
Abstract
Laser cleaning technology has been increasingly applied in the removal of damaged protective coatings from aircraft components due to its environmental friendliness and high efficiency. Appropriate laser cleaning process parameters improve cleaning efficiency while preventing substrate damage. In this study, a Gaussian continuous-wave [...] Read more.
Laser cleaning technology has been increasingly applied in the removal of damaged protective coatings from aircraft components due to its environmental friendliness and high efficiency. Appropriate laser cleaning process parameters improve cleaning efficiency while preventing substrate damage. In this study, a Gaussian continuous-wave laser was used to remove the 120 μm coating on the surface of Ti6Al4V alloy. The influence of laser power (100 W to 200 W) and scanning speed (520 mm/min to 610 mm/min) on the paint removal effect was explored based on paint removal rate, surface roughness, microstructural evolution, and the hardness’ change in the direction of heat transfer. The results reveal that optimal paint removal parameters are achieved at a laser power of 100 W with a scanning speed of 550 mm/min. The surface roughness of the sample after paint removal (55 nm) is similar to that of the original substrate (56 nm). Through EBSD analysis, the influence of laser thermal accumulation on the microstructure of the substrate is relatively small. The average hardness of the cross-section after cleaning was 347 HV, which was only 3.41% higher than that of the original substrate. This confirms that parameter-controlled laser cleaning can effectively remove ~120 μm thick paint layers without inflicting damage on the substrate. Full article
Show Figures

Figure 1

21 pages, 3744 KiB  
Article
A First-Principles Modeling of the Elastic Properties and Generalized Stacking Fault Energy of Ir-W Solid Solution Alloys
by Pengwei Shi, Jianbo Ma, Fenggang Bian and Guolu Li
Materials 2025, 18(15), 3629; https://doi.org/10.3390/ma18153629 - 1 Aug 2025
Viewed by 283
Abstract
Iridium, with its excellent high-temperature chemical inertness, is a preferred cladding material for radioisotope batteries. However, its inherent room-temperature brittleness severely restricts its application. In this research, pure Ir and six Ir-W solid solutions (Ir31W1 to Ir26W6 [...] Read more.
Iridium, with its excellent high-temperature chemical inertness, is a preferred cladding material for radioisotope batteries. However, its inherent room-temperature brittleness severely restricts its application. In this research, pure Ir and six Ir-W solid solutions (Ir31W1 to Ir26W6) were modeled. The effects of W on the elastic properties, generalized stacking fault energy, and bonding properties of Ir solid solution alloys were investigated by first-principles simulation, aiming to find a way to overcome the intrinsic brittleness of Ir. With the W concentration increasing from 0 to 18.75 at %, the calculated Cauchy pressure (C12C44) increases from −22 to 5 GPa, Pugh’s ratio (B/G) increases from 1.60 to 1.72, the intrinsic stacking fault energy reduces from 337.80 to 21.16 mJ/m2, and the unstable stacking fault energy reduces from 636.90 to 547.39 mJ/m2. According to these results, it is predicted that the addition of W improves the toughness of iridium alloys. The alloying of W weakens the covalency properties of the Ir-Ir bond (the ICOHP value increases from −0.8512 to −0.7923 eV). These phenomena result in a decrease in the energy barrier for grain slip. Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Figure 1

22 pages, 3461 KiB  
Article
Evaluation of the Impact of the LPBF Manufacturing Conditions on Microstructure and Corrosion Behaviour in 3.5 wt.% NaCl of the WE43 Magnesium Alloy
by Jorge de la Pezuela, Sara Sánchez-Gil, Juan Pablo Fernández-Hernán, Alena Michalcova, Pilar Rodrigo, Maria Dolores López, Belén Torres and Joaquín Rams
Materials 2025, 18(15), 3613; https://doi.org/10.3390/ma18153613 - 31 Jul 2025
Viewed by 155
Abstract
This work expands the processing window of the laser powder bed fusion (LPBF) processing of WE43 magnesium alloy by evaluating laser powers and scanning speeds up to 400 W and 1200 mm/s, and their effect on densification, microstructure, and electrochemical performance. Relative density [...] Read more.
This work expands the processing window of the laser powder bed fusion (LPBF) processing of WE43 magnesium alloy by evaluating laser powers and scanning speeds up to 400 W and 1200 mm/s, and their effect on densification, microstructure, and electrochemical performance. Relative density of 99.9% was achieved for 300 W and 800 mm/s, showing that the use of high laser power is not a limitation for the manufacturing of Mg alloys, as has been usually considered. Microstructural characterisation revealed refined grains and the presence of RE-rich intermetallic particles, while microhardness increased with height due to thermal gradients. Electrochemical testing in 3.5 wt.% NaCl solution, a more aggressive media than those already used, indicated that the corrosion of samples with density values below 99% is conditioned by the porosity; however, above this value, in the WE43, the corrosion evolution is more related to the microstructure of the samples, according to electrochemical evaluation. This study demonstrates the viability of high-energy LPBF processing for WE43, offering optimised mechanical and corrosion properties for biomedical and structural applications. Full article
(This article belongs to the Special Issue Novel Materials for Additive Manufacturing)
Show Figures

Figure 1

19 pages, 4287 KiB  
Article
Tailoring Microstructure via Rolling to Achieve Concurrent High Strength and Thermal Conductivity in Mg-Zn-Nd-Zr Alloys
by Hailong Shi, Xiaohuan Zhang, Xin Li, Yining Zhang, Siqi Li, You Wang, Xiaojun Wang, Xiaoshi Hu, Xuejian Li, Chao Xu, Weimin Gan and Chao Ding
Materials 2025, 18(15), 3578; https://doi.org/10.3390/ma18153578 - 30 Jul 2025
Viewed by 170
Abstract
This study examined the comprehensive properties of Mg-Zn-Nd-Zr alloys in order to achieve both high strength and thermal conductivity simultaneously. The impact of rolling on the microstructure, mechanical properties, and thermal conductivity was analyzed for Mg-5Zn-xNd-0.4Zr alloys (x = 1, 2). The results [...] Read more.
This study examined the comprehensive properties of Mg-Zn-Nd-Zr alloys in order to achieve both high strength and thermal conductivity simultaneously. The impact of rolling on the microstructure, mechanical properties, and thermal conductivity was analyzed for Mg-5Zn-xNd-0.4Zr alloys (x = 1, 2). The results indicate that the addition of Nd promotes the formation of the W phase (Mg3Zn3RE2), which contributes to grain boundary strengthening and enhances the overall strength. Moreover, dynamic precipitation during the rolling process leads to the formation of nanoscale MgZn2 and Zn2Zr phases, significantly improving both the strength and thermal conductivity. After rolling, both the Mg-5Zn-1Nd-0.4Zr (ZNK510) and Mg-5Zn-2Nd-0.4Zr (ZNK520) alloys exhibited a notable enhancement in thermal conductivity, with ZNK520 demonstrating superior properties due to its higher Nd content. This study highlights that optimizing alloy composition and phase evolution through rolling can markedly enhance both the mechanical and thermal properties, offering a promising strategy for the development of high-performance magnesium alloys. Full article
Show Figures

Figure 1

12 pages, 3886 KiB  
Article
Effect of W Contents and Annealing Temperatures on the Microstructure and Mechanical Properties of CoFeNi Medium Entropy Alloys
by Yaqi Cui, Huan Ma, Li Yang, Yang Shao and Renguo Guan
Metals 2025, 15(8), 854; https://doi.org/10.3390/met15080854 - 30 Jul 2025
Viewed by 181
Abstract
In this work, the W element, with a larger atomic radius compared to Co, Fe, and Ni, was added to modify the microstructure and enhance the yield strength of CoFeNi medium entropy alloy (MEA). A detailed study was conducted to clarify the effects [...] Read more.
In this work, the W element, with a larger atomic radius compared to Co, Fe, and Ni, was added to modify the microstructure and enhance the yield strength of CoFeNi medium entropy alloy (MEA). A detailed study was conducted to clarify the effects of W additions and annealing temperatures on the microstructure evolution and mechanical properties of CoFeNiWx (x = 0, 0.1, and 0.3) MEAs. CoFeNiW0.1 retained a single FCC structure without the formation of precipitates in the FCC phase, indicating that W, with a larger atomic radius, can completely dissolve in CoFeNiW0.1. For CoFeNiW0.3 MEA, coarse particles with an average diameter of ~2 μm appeared after homogenizing. Nevertheless, when the alloy was annealed at 800 °C and 900 °C, fine particles formed, with the average diameters of approximately 144 nm and 225 nm, respectively. After annealing at 800 °C, the CoFeNiW0.3 with a partially recrystallized microstructure exhibited better comprehensive mechanical properties. Full article
Show Figures

Figure 1

11 pages, 1053 KiB  
Communication
Understanding Room-Temperature Ductility of Bcc Refractory Alloys from Their Atomistic-Level Features
by Jiayi Yan and Cheng Fu
Metals 2025, 15(8), 851; https://doi.org/10.3390/met15080851 - 30 Jul 2025
Viewed by 189
Abstract
Many bcc refractory alloys show excellent high-temperature mechanical properties, while their fabricability can be limited by brittleness near room temperature. For the purpose of predicting ductile alloys, a number of ductility metrics based on atomic structures and crystal properties, ranging from mechanistic to [...] Read more.
Many bcc refractory alloys show excellent high-temperature mechanical properties, while their fabricability can be limited by brittleness near room temperature. For the purpose of predicting ductile alloys, a number of ductility metrics based on atomic structures and crystal properties, ranging from mechanistic to empirical, have been proposed. In this work, we propose an “average bond stiffness” as a new ductility metric that is also convenient to obtain from first-principles calculations, in addition to using the average magnitude of static displacements of atoms. The usefulness of average bond stiffness is validated by comparing first-principles calculation results to experimental data on the “rhenium effect” in Mo/W-base and V/Nb/Ta-base binary alloys. The average bond stiffness also correlates well with the room-temperature ductility of refractory high-entropy alloys, with a better performance than some ductility metrics previously reported. While in reality the ductility of an alloy can be influenced by many factors, from processing and microstructure, the average magnitude of static displacements and the average bond stiffness are atomistic-level features useful for design of alloy composition towards a desired level of ductility. Full article
Show Figures

Figure 1

14 pages, 3023 KiB  
Article
Tensile and Flexural Behavior of Metal–Polymer Friction Stir Buttstrap Composite Panels
by Arménio N. Correia, Daniel F. O. Braga, Ricardo Baptista and Virgínia Infante
Polymers 2025, 17(15), 2084; https://doi.org/10.3390/polym17152084 - 30 Jul 2025
Viewed by 284
Abstract
This study investigates the friction stir joining of AA6082-T6 aluminum alloy and Noryl GFN2 polymer in a buttstrap configuration, targeting the development of lightweight cylindrical-shaped structures where the polymer provides thermal, chemical, and electrical insulation, while the aluminum ensures mechanical integrity. A parametric [...] Read more.
This study investigates the friction stir joining of AA6082-T6 aluminum alloy and Noryl GFN2 polymer in a buttstrap configuration, targeting the development of lightweight cylindrical-shaped structures where the polymer provides thermal, chemical, and electrical insulation, while the aluminum ensures mechanical integrity. A parametric analysis was carried out to assess the ability to produce friction stir buttstrap composite panels in a single processing step and assess the resulting tensile and flexural behavior. To that end, travel and rotating speeds ranging from 2150 to 2250 rpm, and 100 to 140 mm/min, respectively, were employed while keeping plunge depth and the tilt angle constant. A total of nine composite joints were successfully produced and subsequently subjected to both tensile and four-point bending tests. The tensile and flexural strength results ranged from 80 to 139 MPa, and 39 to 47 MPa, respectively. Moreover, the microstructural examination revealed that all joints exhibited a defect within the joining region and its size and shape had a significant effect on tensile strength, whereas the flexural strength was less affected with more uniform results. The joining region was also characterized by a decrease in hardness, particularly in the pin-affected region on the aluminum end of the joint, exhibiting a W-shaped pattern. Contrarily, on the polymeric end of the joining region, no significant change in hardness was observed. Full article
Show Figures

Figure 1

19 pages, 6832 KiB  
Article
Study on the Optimization of Textured Coating Tool Parameters Under Thermal Assisted Process Conditions
by Xin Tong, Xiyue Wang, Xinyu Li and Baiyi Wang
Coatings 2025, 15(8), 876; https://doi.org/10.3390/coatings15080876 - 25 Jul 2025
Viewed by 296
Abstract
As manufacturing demands for challenging-to-machine metallic materials continue to evolve, the performance of cutting tools has emerged as a critical limiting factor. The synergistic application of micro-texture and coating in cutting tools can improve various properties. For the processing of existing micro-texture, because [...] Read more.
As manufacturing demands for challenging-to-machine metallic materials continue to evolve, the performance of cutting tools has emerged as a critical limiting factor. The synergistic application of micro-texture and coating in cutting tools can improve various properties. For the processing of existing micro-texture, because of the fast cooling and heating processing method of laser, there are defects such as remelted layer stacking and micro-cracks on the surface after processing. This study introduces a preheating-assisted technology aimed at optimizing the milling performance of textured coated tools. A milling test platform was established to evaluate the performance of these tools on titanium alloys under thermally assisted conditions. The face-centered cubic response surface methodology, as part of the central composite design (CCD) experimental framework, was employed to investigate the interaction effects of micro-texture preparation parameters and thermal assistance temperature on milling performance. The findings indicate a significant correlation between thermal assistance temperature and tool milling performance, suggesting that an appropriately selected thermal assistance temperature can enhance both the milling efficiency of the tool and the surface quality of the titanium alloy. Utilizing the response surface methodology, a multi-objective optimization of the textured coating tool-preparation process was conducted, resulting in the following optimized parameters: laser power of 45 W, scanning speed of 1576 mm/s, the number of scans was 7, micro-texture spacing of 130 μm, micro-texture diameter of 30 μm, and a heat-assisted temperature of 675.15 K. Finally, the experimental platform of optimization results is built, which proves that the optimization results are accurate and reliable, and provides theoretical basis and technical support for the preparation process of textured coating tools. It is of great significance to realize high-precision and high-quality machining of difficult-to-machine materials such as titanium alloy. Full article
(This article belongs to the Special Issue Cutting Performance of Coated Tools)
Show Figures

Figure 1

15 pages, 3563 KiB  
Article
Process Optimization on Trepanning Drilling in Titanium Alloy Using a Picosecond Laser via an Orthogonal Experiment
by Liang Wang, Yefei Rong, Long Xu, Changjian Wu and Kaibo Xia
Micromachines 2025, 16(8), 846; https://doi.org/10.3390/mi16080846 - 24 Jul 2025
Viewed by 206
Abstract
To optimize the laser drilling process and reduce the processing time, this study investigates picosecond laser trepan drilling on the titanium alloy TC4, analyzing the effects of laser parameters on micro-hole diameter, taper, and roundness. Four independent variables were selected: laser power, defocusing [...] Read more.
To optimize the laser drilling process and reduce the processing time, this study investigates picosecond laser trepan drilling on the titanium alloy TC4, analyzing the effects of laser parameters on micro-hole diameter, taper, and roundness. Four independent variables were selected: laser power, defocusing distance, scanning speed, and the number of scans. An L25 (56) orthogonal array was employed for experimental design. The mean response and range analyses evaluated parameter impacts on micro-hole quality, revealing the influence mechanisms of these variables at different levels. The results indicate the following: (1) the scanning speed and laser power significantly affect entrance and exit micro-hole diameters; (2) the defocusing distance substantially influences micro-hole taper; (3) the laser power most critically impacts inlet roundness; (4) the defocusing distance, scanning speed, and laser power directly correlate with outlet roundness; (5) the number of scans exhibits weaker relationships with inlet/outlet diameters, taper, and roundness. A comprehensive balance method applied to orthogonal test results for process optimization yielded the following optimal parameters: 90% laser power (30 W total), −0.2 mm defocus, a 27 mm/s scanning speed, and 15 scans. Full article
(This article belongs to the Special Issue Laser Micro/Nano Fabrication, Second Edition)
Show Figures

Figure 1

14 pages, 6297 KiB  
Article
Enhancing the Elevated-Temperature Mechanical Properties of Levitation Melted NbMoTaW Refractory High-Entropy Alloys via Si Addition
by Yunzi Liu, Xiaoxiao Li, Shuaidan Lu, Jialiang Zhou, Shangkun Wu, Shengfeng Lin and Long Wang
Materials 2025, 18(15), 3465; https://doi.org/10.3390/ma18153465 - 24 Jul 2025
Viewed by 205
Abstract
To enhance the mechanical properties of NbMoTaW refractory high-entropy alloys (RHEAs), Si was added at varying concentrations (x = 0, 0.25, and 0.5) via vacuum induction levitation melting (re-melted six times for homogeneity). The microstructure and mechanical properties of NbMoTaWSix ( [...] Read more.
To enhance the mechanical properties of NbMoTaW refractory high-entropy alloys (RHEAs), Si was added at varying concentrations (x = 0, 0.25, and 0.5) via vacuum induction levitation melting (re-melted six times for homogeneity). The microstructure and mechanical properties of NbMoTaWSix (x = 0, 0.25, and 0.5) RHEAs were characterized using scanning electron microscopy (SEM), universal testing, microhardness testing, and tribological equipment. Experimental results manifested that Si addition induces the formation of the (Nb,Ta)5Si3 phase, and the volume fraction of the silicide phase increases with higher Si content, which significantly improves the alloy’s strength and hardness but deteriorates its plasticity. Enhanced wear resistance with Si addition is attributed to improved hardness and oxidation resistance. Tribological tests confirm that Si3N4 counterfaces are optimal for evaluating RHEA wear mechanisms. This work can provide guidance for the fabrication of RHEAs with excellent performance. Full article
(This article belongs to the Special Issue High-Entropy Alloys: Synthesis, Characterization, and Applications)
Show Figures

Graphical abstract

10 pages, 2135 KiB  
Article
High Strength and Fracture Resistance of Reduced-Activity W-Ta-Ti-V-Zr High-Entropy Alloy for Fusion Energy Applications
by Siva Shankar Alla, Blake Kourosh Emad and Sundeep Mukherjee
Entropy 2025, 27(8), 777; https://doi.org/10.3390/e27080777 - 23 Jul 2025
Viewed by 347
Abstract
Refractory high-entropy alloys (HEAs) are promising candidates for next-generation nuclear applications, particularly fusion reactors, due to their excellent high-temperature mechanical properties and irradiation resistance. Here, the microstructure and mechanical behavior were investigated for an equimolar WTaTiVZr HEA, designed from a palette of low-activation [...] Read more.
Refractory high-entropy alloys (HEAs) are promising candidates for next-generation nuclear applications, particularly fusion reactors, due to their excellent high-temperature mechanical properties and irradiation resistance. Here, the microstructure and mechanical behavior were investigated for an equimolar WTaTiVZr HEA, designed from a palette of low-activation elements. The as-cast alloy exhibited a dendritic microstructure composed of W-Ta rich dendrites and Zr-Ti-V rich inter-dendritic regions, both possessing a body-centered cubic (BCC) crystal structure. Room temperature bulk compression tests showed ultra-high strength of around 1.6 GPa and plastic strain ~6%, with fracture surfaces showing cleavage facets. The alloy also demonstrated excellent high-temperature strength of ~650 MPa at 500 °C. Scratch-based fracture toughness was ~38 MPa√m for the as-cast WTaTiVZr HEA compared to ~25 MPa√m for commercially used pure tungsten. This higher value of fracture toughness indicates superior damage tolerance relative to commercially used pure tungsten. These results highlight the alloy’s potential as a low-activation structural material for high-temperature plasma-facing components (PFCs) in fusion reactors. Full article
(This article belongs to the Special Issue Recent Advances in High Entropy Alloys)
Show Figures

Figure 1

13 pages, 1795 KiB  
Article
Machine Learning-Based Prediction of Time Required to Reach the Melting Temperature of Metals in Domestic Microwaves Using Dimensionless Modeling and XGBoost
by Juan José Moreno Labella, Milagrosa González Fernández de Castro, Víctor Saiz Sevilla, Miguel Panizo Laiz and Yolanda Martín Álvarez
Materials 2025, 18(14), 3400; https://doi.org/10.3390/ma18143400 - 20 Jul 2025
Viewed by 303
Abstract
A novel and cost-effective methodology is introduced for the precise prediction of the melting time of metals and alloys in a 700 W domestic microwave oven, using a hybrid SiC–graphite susceptor to ensure efficient heating without direct interaction with microwaves. The study includes [...] Read more.
A novel and cost-effective methodology is introduced for the precise prediction of the melting time of metals and alloys in a 700 W domestic microwave oven, using a hybrid SiC–graphite susceptor to ensure efficient heating without direct interaction with microwaves. The study includes experimental trials with multiple alloys (Sn–Bi, Zn, Zamak, and Al–Si, among others) and variable masses, whose results made it possible to construct a dimensionless model, trained with XGBoost on easily measurable thermophysical properties (specific heat, density, thermal conductivity, mass, and melting temperature). The model achieves high accuracy, with a relative error below 5%, and metrics of MAE = 4.8 s, RMSE = 6.1 s, and R2 = 0.9996. The generalization of the model to different microwave powers (600–1100 W) is also validated through analytical adjustment, without the need for additional experiments. The proposal is implemented as a Python application with a graphical interface, suitable for any academic or teaching laboratory, and its performance is compared with classical models. This approach effectively contributes to the democratization of thermal testing of metals in educational and research settings with limited resources, providing thermodynamic rigor and advanced artificial intelligence tools. Full article
(This article belongs to the Section Advanced Materials Characterization)
Show Figures

Figure 1

14 pages, 3233 KiB  
Article
Influence of Printing Parameters on Microstructure and Mechanical Properties of EOS NickelAlloy HX Produced via Laser Powder Bed Fusion
by Piotr Maj, Konstanty Jonak, Rafał Molak, Ryszard Sitek and Jarosław Mizera
Appl. Sci. 2025, 15(14), 8011; https://doi.org/10.3390/app15148011 - 18 Jul 2025
Viewed by 290
Abstract
The research investigated the influence of laser powder bed fusion (LPBF) parameters for NickelAlloy HX, a nickel-based superalloy, to achieve high-density components with superior mechanical properties. A systematic approach was employed, involving printing 40 cylindrical specimens with varying energy densities (50–240 J/mm3 [...] Read more.
The research investigated the influence of laser powder bed fusion (LPBF) parameters for NickelAlloy HX, a nickel-based superalloy, to achieve high-density components with superior mechanical properties. A systematic approach was employed, involving printing 40 cylindrical specimens with varying energy densities (50–240 J/mm3) to evaluate porosity, hardness, and anisotropy. Results revealed that energy density significantly influences relative density, with optimal parameters identified at 111 J/mm3 (900 mm/s scan speed, 120 W laser power). Microstructural examination revealed columnar grains aligned with the build direction in as-printed samples. The findings highlight the trade-offs between density, hardness, and microstructure in the additive manufacturing of nickel-based superalloys, providing actionable insights for industrial applications requiring specific property profiles. Full article
(This article belongs to the Special Issue The Applications of Laser-Based Manufacturing for Material Science)
Show Figures

Figure 1

13 pages, 3050 KiB  
Article
Unveiling the Microstructure Evolution and Mechanical Strengthening Mechanisms in Mg–2Y–xZn Alloys
by Luyan Xu, Huanjian Xie, Kuan Chen, Ruizhi Feng, Donghui Zheng and Haoge Shou
Materials 2025, 18(14), 3303; https://doi.org/10.3390/ma18143303 - 14 Jul 2025
Viewed by 341
Abstract
This work systematically investigates the Zn-content-dependent phase evolution (1–12 at.%) and its correlation with mechanical properties in as-cast Mg–2Y–xZn alloys. A sequential phase transformation is observed with the Zn content increasing: the microstructure evolves from X-phase dominance (1–2 at.% Zn) through [...] Read more.
This work systematically investigates the Zn-content-dependent phase evolution (1–12 at.%) and its correlation with mechanical properties in as-cast Mg–2Y–xZn alloys. A sequential phase transformation is observed with the Zn content increasing: the microstructure evolves from X-phase dominance (1–2 at.% Zn) through W-phase formation (3–6 at.% Zn) to I-phase emergence (12 at.% Zn). Optimal mechanical performance is attained in the 2 at.% Zn-containing alloy, with measured tensile properties reaching 239 MPa UTS and 130 MPa YS, while maintaining an elongation of 12.62% prior to its gradual decline at higher Zn concentrations. Crystallographic analysis shows that the most significant strengthening effect of the X-phase originates from its coherent orientation relationship with the α-Mg matrix and the development of deformation-induced kink bands. Meanwhile, fine W-phase particles embedded within the X-phase further enhance alloy performance by suppressing X-phase deformation, revealing pronounced synergistic strengthening between the two phases. Notably, although both the I-phase and W-phase act as crack initiation sites during deformation, their coexistence triggers a competitive fracture mechanism: the I-phase preferentially fractures to preserve the structural integrity of the W-phase, effectively mitigating crack propagation. These dynamic interactions of second phases during plastic deformation—synergistic strengthening and competitive fracture—provide a novel strategy and insights for designing high-performance Mg–RE–Zn alloys. Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Figure 1

Back to TopTop