High Strength and Fracture Resistance of Reduced-Activity W-Ta-Ti-V-Zr High-Entropy Alloy for Fusion Energy Applications
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bolt, H.; Barabash, V.; Federici, G.; Linke, J.; Loarte, A.; Roth, J.; Sato, K. Plasma facing and high heat flux materials Plasma facing and high heat flux materials-needs for ITER and beyond. J. Nucl. Mater. 2002, 307, 43–52. [Google Scholar] [CrossRef]
- Nygren, R.E.; Rognlien, T.D.; Rensink, M.E.; Smolentsev, S.S.; Youssef, M.Z.; Sawan, M.E.; Merrill, B.J.; Eberle, C.; Fogarty, P.J.; Nelson, B.E.; et al. A fusion reactor design with a liquid first wall and divertor. Fusion Eng. Des. 2004, 72, 181–221. [Google Scholar] [CrossRef]
- Rieth, M.; Dudarev, S.L.; De Vicente, S.G.; Aktaa, J.; Ahlgren, T.; Antusch, S.; Armstrong, D.E.J.; Balden, M.; Baluc, N.; Barthe, M.F.; et al. Recent progress in research on tungsten materials for nuclear fusion applications in Europe. J. Nucl. Mater. 2013, 432, 482–500. [Google Scholar] [CrossRef]
- Gludovatz, B.; Wurster, S.; Weingartner, T.; Hoffmann, A.; Pippan, R. Influence of impurities on the fracture behaviour of tungsten. Philos. Mag. 2011, 91, 3006–3020. [Google Scholar] [CrossRef]
- Hu, X.; Koyanagi, T.; Fukuda, M.; Kumar, N.A.P.K.; Snead, L.L.; Wirth, B.D.; Katoh, Y. Irradiation hardening of pure tungsten exposed to neutron irradiation. J. Nucl. Mater. 2016, 480, 235–243. [Google Scholar] [CrossRef]
- Miracle, D.B.; Senkov, O.N. A critical review of high entropy alloys and related concepts. Acta Mater. 2017, 122, 448–511. [Google Scholar] [CrossRef]
- Senkov, O.N.; Miracle, D.B.; Chaput, K.J.; Couzinie, J.P. Development and exploration of refractory high entropy alloys—A review. J. Mater. Res. 2018, 33, 3092–3128. [Google Scholar] [CrossRef]
- Chen, S.; Qi, C.; Liu, J.; Zhang, J.; Wu, Y. Recent Advances in W-Containing Refractory High-Entropy Alloys—An Overview. Entropy 2022, 24, 1553. [Google Scholar] [CrossRef] [PubMed]
- Hatler, C.; Robin, I.; Kim, H.; Curtis, N.; Sun, B.; Aydogan, E.; Fensin, S.; Couet, A.; Martinez, E.; Thoma, D.J.; et al. The path towards plasma facing components: A review of state-of-the-art in W-based refractory high-entropy alloys. Curr. Opin. Solid State Mater. Sci. 2025, 34, 101201. [Google Scholar] [CrossRef]
- Ayyagari, A.; Salloom, R.; Muskeri, S.; Mukherjee, S. Low activation high entropy alloys for next generation nuclear applications. Materialia 2018, 4, 99–103. [Google Scholar] [CrossRef]
- Peterson, D.T.; Hull, A.B.; Loomis, B.A. Hydrogen embrittlement considerations In niobium-base alloys for application in the ITER divertor. J. Nucl. Mater. 1992, 191–194, 430–432. [Google Scholar] [CrossRef]
- Shi, Y.; Yang, B.; Liaw, P.K. Corrosion-resistant high-entropy alloys: A review. Metals 2017, 7, 43. [Google Scholar] [CrossRef]
- Watanabe, K.; Hishinuma, A.; Hiraoka, Y.; Fujii, T. Neutron irradiation embrittlement of polycrystalline and single crystalline molybdenum. J. Nucl. Mater. 1998, 258, 848–852. [Google Scholar] [CrossRef]
- Zinkle, S.J.; Snead, L.L. Designing radiation resistance in materials for fusion energy. Annu. Rev. Mater. Res. 2014, 44, 241–267. [Google Scholar] [CrossRef]
- Sadeghilaridjani, M.; Muskeri, S.; Pole, M.; Mukherjee, S. High-temperature nano-indentation creep of reduced activity high entropy alloys based on 4-5-6 elemental palette. Entropy 2020, 22, 230. [Google Scholar] [CrossRef] [PubMed]
- Patel, K.; Mahajan, C.; Muskeri, S.; Mukherjee, S. Corrosion Behavior of Refractory High-Entropy Alloys in FLiNaK Molten Salts. Metals 2023, 13, 450. [Google Scholar] [CrossRef]
- Said, G. Study on ASTM E399 and ASTM E1921 standards. Fatigue Fract. Eng. Mater. Struct. 2006, 29, 606–614. [Google Scholar] [CrossRef]
- Wurmshuber, M.; Alfreider, M.; Wurster, S.; Burtscher, M.; Pippan, R.; Kiener, D. Small-scale fracture mechanical investigations on grain boundary doped ultrafine-grained tungsten. Acta Mater. 2023, 250, 118878. [Google Scholar] [CrossRef]
- Jha, S.; Muskeri, S.; Alla, S.S.; Mukherjee, S. Structural and stress state dependence of small-scale deformation in bulk metallic glass. J. Alloys Compd. 2023, 961, 170971. [Google Scholar] [CrossRef]
- Kong, B.S.; Shin, J.H.; Jang, C.; Kim, H.C. Measurement of fracture toughness of pure tungsten using a small-sized compact tension specimen. Materials 2020, 13, 244. [Google Scholar] [CrossRef] [PubMed]
- Rupp, D.; Weygand, S.M. Anisotropic fracture behaviour and brittle-to-ductile transition of polycrystalline tungsten. Philos. Mag. 2010, 90, 4055–4069. [Google Scholar] [CrossRef]
- Akono, A.T.; Ulm, F.J. Scratch test model for the determination of fracture toughness. Eng. Fract. Mech. 2011, 78, 334–342. [Google Scholar] [CrossRef]
- Estrada, K.A.; Verma, K.K.; Sharma, S.; Argibay, N.; Vasudevan, V.K.; Dahotre, N.B. Fracture toughness of additively manufactured tungsten-rhenium via surface scratch technique. Int. J. Refract. Metals Hard Mater. 2025, 132, 107290. [Google Scholar] [CrossRef]
- Clyne, T.W.; Campbell, J.E.; Burley, M.; Dean, J. Profilometry-Based Inverse Finite Element Method Indentation Plastometry. Adv. Eng. Mater. 2021, 23, 2100437. [Google Scholar] [CrossRef]
- Miller, J.R.; McKeown, P.J.; Qiu, H.; Clyne, T.W. Profilometry-Based Indentation Plastometry Testing of Tungsten at High Temperature. Adv. Eng. Mater. 2025, 27, 2500292. [Google Scholar] [CrossRef]
- Han, Z.D.; Luan, H.W.; Liu, X.; Chen, N.; Li, X.Y.; Shao, Y.; Yao, K.F. Microstructures and mechanical properties of TixNbMoTaW refractory high-entropy alloys. Mater. Sci. Eng. A 2018, 712, 380–385. [Google Scholar] [CrossRef]
- Senkov, O.N.; Woodward, C.F. Microstructure and properties of a refractory NbCrMo0.5Ta0.5TiZr alloy. Mater. Sci. Eng. A 2011, 529, 311–320. [Google Scholar] [CrossRef]
- George, E.P.; Curtin, W.A.; Tasan, C.C. High entropy alloys: A focused review of mechanical properties and deformation mechanisms. Acta Mater. 2020, 188, 435–474. [Google Scholar] [CrossRef]
- Zou, Y.; Ma, H.; Spolenak, R. Ultrastrong ductile and stable high-entropy alloys at small scales. Nat. Commun. 2015, 6, 7748. [Google Scholar] [CrossRef] [PubMed]
- Moschetti, M.; Xu, A.; Schuh, B.; Hohenwarter, A.; Couzinié, J.P.; Kruzic, J.J.; Bhattacharyya, D.; Gludovatz, B. On the Room-Temperature Mechanical Properties of an Ion-Irradiated TiZrNbHfTa Refractory High Entropy Alloy. Jom 2020, 72, 130–138. [Google Scholar] [CrossRef]
- Li, H.; Wurster, S.; Motz, C.; Romaner, L.; Ambrosch-Draxl, C.; Pippan, R. Dislocation-core symmetry and slip planes in tungsten alloys: Ab initio calculations and microcantilever bending experiments. Acta Mater. 2012, 60, 748–758. [Google Scholar] [CrossRef]
- Tarleton, E.; Roberts, S.G. Dislocation dynamic modelling of the brittle-ductile transition in tungsten. Philos. Mag. 2009, 89, 2759–2769. [Google Scholar] [CrossRef]
- Peter, G.; Joachim, R.; Alexander, H.; Hellmut, F.F. Controlling Factors for the Brittle-to-Ductile Transition in Tungsten Single Crystals. Am. Assoc. Adv. Sci. 1998, 5, 1293–1295. [Google Scholar] [CrossRef]
- Moschetti, M.; Burr, P.; Obbard, E.; Kruzic, J.J.; Hosemann, P.; Gludovatz, B. Design considerations for high entropy alloys in advanced nuclear applications. J. Nucl. Mater. 2022, 567, 153814. [Google Scholar] [CrossRef]
- Sheikh, S.; Shafeie, S.; Hu, Q.; Ahlström, J.; Persson, C.; Veselý, J.; Zýka, J.; Klement, U.; Guo, S. Alloy design for intrinsically ductile refractory high-entropy alloys. J. Appl. Phys. 2016, 120, 164902. [Google Scholar] [CrossRef]
- Zhang, C.; Wang, H.; Wang, X.; Tang, Y.T.; Yu, Q.; Zhu, C.; Xu, M.; Zhao, S.; Kou, R.; Wang, X.; et al. Strong and ductile refractory high-entropy alloys with super formability. Acta Mater. 2023, 245, 118602. [Google Scholar] [CrossRef]
- Ren, C.; Fang, Z.Z.; Koopman, M.; Butler, B.; Paramore, J.; Middlemas, S. Methods for improving ductility of tungsten—A review. Int. J. Refract. Metals Hard Mater. 2018, 75, 170–183. [Google Scholar] [CrossRef]
- Pickering, E.J.; Carruthers, A.W.; Barron, P.J.; Middleburgh, S.C.; Armstrong, D.E.J.; Gandy, A.S. High-entropy alloys for advanced nuclear applications. Entropy 2021, 23, 98. [Google Scholar] [CrossRef] [PubMed]
Sample | Force (N) | Speed (mm/s) | Track Width (µm) | Area (µm2) | Perimeter (µm) | Depth (µm) | Fracture Toughness (KC) (MPa√m) |
---|---|---|---|---|---|---|---|
WTaTiVZr | 100 | 0.01 | 198 | 2760 | 205 | 24 | 38 ± 1 |
Pure W | 100 | 0.01 | 360 | 15,840 | 395 | 74 | 25 ± 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alla, S.S.; Emad, B.K.; Mukherjee, S. High Strength and Fracture Resistance of Reduced-Activity W-Ta-Ti-V-Zr High-Entropy Alloy for Fusion Energy Applications. Entropy 2025, 27, 777. https://doi.org/10.3390/e27080777
Alla SS, Emad BK, Mukherjee S. High Strength and Fracture Resistance of Reduced-Activity W-Ta-Ti-V-Zr High-Entropy Alloy for Fusion Energy Applications. Entropy. 2025; 27(8):777. https://doi.org/10.3390/e27080777
Chicago/Turabian StyleAlla, Siva Shankar, Blake Kourosh Emad, and Sundeep Mukherjee. 2025. "High Strength and Fracture Resistance of Reduced-Activity W-Ta-Ti-V-Zr High-Entropy Alloy for Fusion Energy Applications" Entropy 27, no. 8: 777. https://doi.org/10.3390/e27080777
APA StyleAlla, S. S., Emad, B. K., & Mukherjee, S. (2025). High Strength and Fracture Resistance of Reduced-Activity W-Ta-Ti-V-Zr High-Entropy Alloy for Fusion Energy Applications. Entropy, 27(8), 777. https://doi.org/10.3390/e27080777