High Strength and Fracture Resistance of Reduced-Activity W-Ta-Ti-V-Zr High-Entropy Alloy for Fusion Energy Applications
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Correction Statement
References
- Bolt, H.; Barabash, V.; Federici, G.; Linke, J.; Loarte, A.; Roth, J.; Sato, K. Plasma facing and high heat flux materials Plasma facing and high heat flux materials-needs for ITER and beyond. J. Nucl. Mater. 2002, 307, 43–52. [Google Scholar] [CrossRef]
- Nygren, R.E.; Rognlien, T.D.; Rensink, M.E.; Smolentsev, S.S.; Youssef, M.Z.; Sawan, M.E.; Merrill, B.J.; Eberle, C.; Fogarty, P.J.; Nelson, B.E.; et al. A fusion reactor design with a liquid first wall and divertor. Fusion Eng. Des. 2004, 72, 181–221. [Google Scholar] [CrossRef]
- Rieth, M.; Dudarev, S.L.; De Vicente, S.G.; Aktaa, J.; Ahlgren, T.; Antusch, S.; Armstrong, D.E.J.; Balden, M.; Baluc, N.; Barthe, M.F.; et al. Recent progress in research on tungsten materials for nuclear fusion applications in Europe. J. Nucl. Mater. 2013, 432, 482–500. [Google Scholar] [CrossRef]
- Gludovatz, B.; Wurster, S.; Weingartner, T.; Hoffmann, A.; Pippan, R. Influence of impurities on the fracture behaviour of tungsten. Philos. Mag. 2011, 91, 3006–3020. [Google Scholar] [CrossRef]
- Hu, X.; Koyanagi, T.; Fukuda, M.; Kumar, N.A.P.K.; Snead, L.L.; Wirth, B.D.; Katoh, Y. Irradiation hardening of pure tungsten exposed to neutron irradiation. J. Nucl. Mater. 2016, 480, 235–243. [Google Scholar] [CrossRef]
- Miracle, D.B.; Senkov, O.N. A critical review of high entropy alloys and related concepts. Acta Mater. 2017, 122, 448–511. [Google Scholar] [CrossRef]
- Senkov, O.N.; Miracle, D.B.; Chaput, K.J.; Couzinie, J.P. Development and exploration of refractory high entropy alloys—A review. J. Mater. Res. 2018, 33, 3092–3128. [Google Scholar] [CrossRef]
- Chen, S.; Qi, C.; Liu, J.; Zhang, J.; Wu, Y. Recent Advances in W-Containing Refractory High-Entropy Alloys—An Overview. Entropy 2022, 24, 1553. [Google Scholar] [CrossRef] [PubMed]
- Hatler, C.; Robin, I.; Kim, H.; Curtis, N.; Sun, B.; Aydogan, E.; Fensin, S.; Couet, A.; Martinez, E.; Thoma, D.J.; et al. The path towards plasma facing components: A review of state-of-the-art in W-based refractory high-entropy alloys. Curr. Opin. Solid State Mater. Sci. 2025, 34, 101201. [Google Scholar] [CrossRef]
- Ayyagari, A.; Salloom, R.; Muskeri, S.; Mukherjee, S. Low activation high entropy alloys for next generation nuclear applications. Materialia 2018, 4, 99–103. [Google Scholar] [CrossRef]
- Peterson, D.T.; Hull, A.B.; Loomis, B.A. Hydrogen embrittlement considerations In niobium-base alloys for application in the ITER divertor. J. Nucl. Mater. 1992, 191–194, 430–432. [Google Scholar] [CrossRef]
- Shi, Y.; Yang, B.; Liaw, P.K. Corrosion-resistant high-entropy alloys: A review. Metals 2017, 7, 43. [Google Scholar] [CrossRef]
- Watanabe, K.; Hishinuma, A.; Hiraoka, Y.; Fujii, T. Neutron irradiation embrittlement of polycrystalline and single crystalline molybdenum. J. Nucl. Mater. 1998, 258, 848–852. [Google Scholar] [CrossRef]
- Zinkle, S.J.; Snead, L.L. Designing radiation resistance in materials for fusion energy. Annu. Rev. Mater. Res. 2014, 44, 241–267. [Google Scholar] [CrossRef]
- Sadeghilaridjani, M.; Muskeri, S.; Pole, M.; Mukherjee, S. High-temperature nano-indentation creep of reduced activity high entropy alloys based on 4-5-6 elemental palette. Entropy 2020, 22, 230. [Google Scholar] [CrossRef] [PubMed]
- Patel, K.; Mahajan, C.; Muskeri, S.; Mukherjee, S. Corrosion Behavior of Refractory High-Entropy Alloys in FLiNaK Molten Salts. Metals 2023, 13, 450. [Google Scholar] [CrossRef]
- Said, G. Study on ASTM E399 and ASTM E1921 standards. Fatigue Fract. Eng. Mater. Struct. 2006, 29, 606–614. [Google Scholar] [CrossRef]
- Wurmshuber, M.; Alfreider, M.; Wurster, S.; Burtscher, M.; Pippan, R.; Kiener, D. Small-scale fracture mechanical investigations on grain boundary doped ultrafine-grained tungsten. Acta Mater. 2023, 250, 118878. [Google Scholar] [CrossRef]
- Jha, S.; Muskeri, S.; Alla, S.S.; Mukherjee, S. Structural and stress state dependence of small-scale deformation in bulk metallic glass. J. Alloys Compd. 2023, 961, 170971. [Google Scholar] [CrossRef]
- Kong, B.S.; Shin, J.H.; Jang, C.; Kim, H.C. Measurement of fracture toughness of pure tungsten using a small-sized compact tension specimen. Materials 2020, 13, 244. [Google Scholar] [CrossRef] [PubMed]
- Rupp, D.; Weygand, S.M. Anisotropic fracture behaviour and brittle-to-ductile transition of polycrystalline tungsten. Philos. Mag. 2010, 90, 4055–4069. [Google Scholar] [CrossRef]
- Akono, A.T.; Ulm, F.J. Scratch test model for the determination of fracture toughness. Eng. Fract. Mech. 2011, 78, 334–342. [Google Scholar] [CrossRef]
- Estrada, K.A.; Verma, K.K.; Sharma, S.; Argibay, N.; Vasudevan, V.K.; Dahotre, N.B. Fracture toughness of additively manufactured tungsten-rhenium via surface scratch technique. Int. J. Refract. Metals Hard Mater. 2025, 132, 107290. [Google Scholar] [CrossRef]
- Clyne, T.W.; Campbell, J.E.; Burley, M.; Dean, J. Profilometry-Based Inverse Finite Element Method Indentation Plastometry. Adv. Eng. Mater. 2021, 23, 2100437. [Google Scholar] [CrossRef]
- Miller, J.R.; McKeown, P.J.; Qiu, H.; Clyne, T.W. Profilometry-Based Indentation Plastometry Testing of Tungsten at High Temperature. Adv. Eng. Mater. 2025, 27, 2500292. [Google Scholar] [CrossRef]
- Han, Z.D.; Luan, H.W.; Liu, X.; Chen, N.; Li, X.Y.; Shao, Y.; Yao, K.F. Microstructures and mechanical properties of TixNbMoTaW refractory high-entropy alloys. Mater. Sci. Eng. A 2018, 712, 380–385. [Google Scholar] [CrossRef]
- Senkov, O.N.; Woodward, C.F. Microstructure and properties of a refractory NbCrMo0.5Ta0.5TiZr alloy. Mater. Sci. Eng. A 2011, 529, 311–320. [Google Scholar] [CrossRef]
- George, E.P.; Curtin, W.A.; Tasan, C.C. High entropy alloys: A focused review of mechanical properties and deformation mechanisms. Acta Mater. 2020, 188, 435–474. [Google Scholar] [CrossRef]
- Zou, Y.; Ma, H.; Spolenak, R. Ultrastrong ductile and stable high-entropy alloys at small scales. Nat. Commun. 2015, 6, 7748. [Google Scholar] [CrossRef] [PubMed]
- Moschetti, M.; Xu, A.; Schuh, B.; Hohenwarter, A.; Couzinié, J.P.; Kruzic, J.J.; Bhattacharyya, D.; Gludovatz, B. On the Room-Temperature Mechanical Properties of an Ion-Irradiated TiZrNbHfTa Refractory High Entropy Alloy. Jom 2020, 72, 130–138. [Google Scholar] [CrossRef]
- Li, H.; Wurster, S.; Motz, C.; Romaner, L.; Ambrosch-Draxl, C.; Pippan, R. Dislocation-core symmetry and slip planes in tungsten alloys: Ab initio calculations and microcantilever bending experiments. Acta Mater. 2012, 60, 748–758. [Google Scholar] [CrossRef]
- Tarleton, E.; Roberts, S.G. Dislocation dynamic modelling of the brittle-ductile transition in tungsten. Philos. Mag. 2009, 89, 2759–2769. [Google Scholar] [CrossRef]
- Peter, G.; Joachim, R.; Alexander, H.; Hellmut, F.F. Controlling Factors for the Brittle-to-Ductile Transition in Tungsten Single Crystals. Am. Assoc. Adv. Sci. 1998, 5, 1293–1295. [Google Scholar] [CrossRef]
- Moschetti, M.; Burr, P.; Obbard, E.; Kruzic, J.J.; Hosemann, P.; Gludovatz, B. Design considerations for high entropy alloys in advanced nuclear applications. J. Nucl. Mater. 2022, 567, 153814. [Google Scholar] [CrossRef]
- Sheikh, S.; Shafeie, S.; Hu, Q.; Ahlström, J.; Persson, C.; Veselý, J.; Zýka, J.; Klement, U.; Guo, S. Alloy design for intrinsically ductile refractory high-entropy alloys. J. Appl. Phys. 2016, 120, 164902. [Google Scholar] [CrossRef]
- Zhang, C.; Wang, H.; Wang, X.; Tang, Y.T.; Yu, Q.; Zhu, C.; Xu, M.; Zhao, S.; Kou, R.; Wang, X.; et al. Strong and ductile refractory high-entropy alloys with super formability. Acta Mater. 2023, 245, 118602. [Google Scholar] [CrossRef]
- Ren, C.; Fang, Z.Z.; Koopman, M.; Butler, B.; Paramore, J.; Middlemas, S. Methods for improving ductility of tungsten—A review. Int. J. Refract. Metals Hard Mater. 2018, 75, 170–183. [Google Scholar] [CrossRef]
- Pickering, E.J.; Carruthers, A.W.; Barron, P.J.; Middleburgh, S.C.; Armstrong, D.E.J.; Gandy, A.S. High-entropy alloys for advanced nuclear applications. Entropy 2021, 23, 98. [Google Scholar] [CrossRef] [PubMed]
Sample | Force (N) | Speed (mm/s) | Track Width (µm) | Area (µm2) | Perimeter (µm) | Depth (µm) | Fracture Toughness (KC) (MPa√m) |
---|---|---|---|---|---|---|---|
WTaTiVZr | 100 | 0.01 | 198 | 2760 | 205 | 24 | 38 ± 1 |
Pure W | 100 | 0.01 | 360 | 15,840 | 395 | 74 | 25 ± 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alla, S.S.; Emad, B.K.; Mukherjee, S. High Strength and Fracture Resistance of Reduced-Activity W-Ta-Ti-V-Zr High-Entropy Alloy for Fusion Energy Applications. Entropy 2025, 27, 777. https://doi.org/10.3390/e27080777
Alla SS, Emad BK, Mukherjee S. High Strength and Fracture Resistance of Reduced-Activity W-Ta-Ti-V-Zr High-Entropy Alloy for Fusion Energy Applications. Entropy. 2025; 27(8):777. https://doi.org/10.3390/e27080777
Chicago/Turabian StyleAlla, Siva Shankar, Blake Kourosh Emad, and Sundeep Mukherjee. 2025. "High Strength and Fracture Resistance of Reduced-Activity W-Ta-Ti-V-Zr High-Entropy Alloy for Fusion Energy Applications" Entropy 27, no. 8: 777. https://doi.org/10.3390/e27080777
APA StyleAlla, S. S., Emad, B. K., & Mukherjee, S. (2025). High Strength and Fracture Resistance of Reduced-Activity W-Ta-Ti-V-Zr High-Entropy Alloy for Fusion Energy Applications. Entropy, 27(8), 777. https://doi.org/10.3390/e27080777