Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (21)

Search Parameters:
Keywords = Volta basin

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 10313 KiB  
Article
From Data Scarcity to Solutions: Hydrological and Water Management Modeling in a Highly Managed River Basin
by Hagen Koch, Gnibga Issoufou Yangouliba and Stefan Liersch
Water 2025, 17(6), 823; https://doi.org/10.3390/w17060823 - 13 Mar 2025
Viewed by 784
Abstract
In many river basins worldwide, decision-making depends on limited data and information. Yet, decisions, like the planning of a new multi-purpose dam, must be taken relying on available data. The incorporation of socio-economic developments, climate or land use changes into this process remains [...] Read more.
In many river basins worldwide, decision-making depends on limited data and information. Yet, decisions, like the planning of a new multi-purpose dam, must be taken relying on available data. The incorporation of socio-economic developments, climate or land use changes into this process remains a separate concern. Undoubtedly, authorities worldwide possess undisclosed data, which complicates scientific efforts. This study aims to address the challenges of developing a hydrological and water management model for the data-scarce and extensively managed Volta River Basin in West Africa. To overcome the limitations posed by sparse easily accessible observational data, a time- and resource-demanding data integration approach was applied using a diverse array of data sources covering various time periods, including manually digitized analog records from hydrological yearbooks, graphics, and other multilingual sources. This approach has been shown to enhance the spatio-temporal availability of data, thereby allowing for the optimization of model parameters to simulate the increasing impact of human intervention on river discharge. The incorporation of comprehensive data has enhanced the robustness of the model, where complex hydrological processes and water management dynamics are captured with greater accuracy. This would not have been possible if only the easily accessible data had been used. Full article
(This article belongs to the Section Water Resources Management, Policy and Governance)
Show Figures

Figure 1

12 pages, 1771 KiB  
Communication
Molecular Identification and Characterization of Five Ganoderma Species from the Lower Volta River Basin of Ghana Based on Nuclear Ribosomal DNA (nrDNA) Sequences
by Gideon Adotey, Raphael N. Alolga, Abraham Quarcoo, Paul Yerenkyi, Phyllis Otu, Abraham K. Anang, Laud K. N. Okine, Winfred S. K. Gbewonyo, John C. Holliday and Vincent C. Lombardi
J. Fungi 2024, 10(1), 6; https://doi.org/10.3390/jof10010006 - 21 Dec 2023
Cited by 3 | Viewed by 2324
Abstract
Ganoderma is a genus of biomedical fungus that is used in the development of numerous health products throughout the world. The Lower Volta River Basin of Ghana is an undulating land surface covered by extensive vegetation and water bodies and is rich in [...] Read more.
Ganoderma is a genus of biomedical fungus that is used in the development of numerous health products throughout the world. The Lower Volta River Basin of Ghana is an undulating land surface covered by extensive vegetation and water bodies and is rich in polypore mushrooms resembling various members of the Ganoderma genus. Despite the extensive biopharmaceutical benefits of Ganoderma spp., the isolates from the Lower Volta River Basin have not been properly characterized, thus limiting their use in the development of biotechnological products. In this study, Ganoderma spp. collected from the Lower Volta River Basin were genetically analyzed using the nuclear ribosomal sequences, the internal transcribed spacer 2 (ITS 2), the complete internal transcribed spacer (ITS), and the nuclear large subunit (nLSU). Blastn search and sequence analysis revealed that the sample we coded as Ganoderma LVRB-2 belongs to G. mbrekobenum, whereas Ganoderma LVRB-1, Ganoderma LVRB-14, and Ganoderma LVRB-16 belong to the species G. enigmaticum. Our analysis further demonstrates that Ganoderma LVRB-17 belongs to the species G. resinaceum. Thus, the five samples collected in the present study were positioned in three different distinct groups, namely G. mbrekobenum, G. enigmaticum, and G. resinaceum. The current data may serve as reference points for future studies. Full article
Show Figures

Figure 1

17 pages, 2737 KiB  
Article
Rainfall Projections from Coupled Model Intercomparison Project Phase 6 in the Volta River Basin: Implications on Achieving Sustainable Development
by Sam-Quarcoo Dotse, Isaac Larbi, Andrew Manoba Limantol, Peter Asare-Nuamah, Louis Kusi Frimpong, Abdul-Rauf Malimanga Alhassan, Solomon Sarpong, Emmanuel Angmor and Angela Kyerewaa Ayisi-Addo
Sustainability 2023, 15(2), 1472; https://doi.org/10.3390/su15021472 - 12 Jan 2023
Cited by 4 | Viewed by 2534
Abstract
Climate change has become a global issue, not only because it affects the intensity and frequency of rainfall but also because it impacts the economic development of regions whose economies heavily rely on rainfall, such as the West African region. Hence, the need [...] Read more.
Climate change has become a global issue, not only because it affects the intensity and frequency of rainfall but also because it impacts the economic development of regions whose economies heavily rely on rainfall, such as the West African region. Hence, the need for this study, which is aimed at understanding how rainfall may change in the future over the Sahel, Savannah, and coastal zones of the Volta River Basin (VRB). The trends and changes in rainfall between 2021–2050 and 1985–2014 under the Shared Socioeconomic Pathway (SSP2-4.5 and SSP5-8.5) scenarios were analyzed after evaluating the performance of three climate models from the Coupled Model Intercomparison Project Phase 6 (CMIP6) using Climate Hazards Group InfraRed Precipitation with Station data (CHIRPS) as observation. The results show, in general, a relatively high correlation and low spatial biases for rainfall (r > 0.91, −20% < Pbias < 20%) over the entire Volta Basin for the models’ ensemble mean. An increasing trend and projected increase in annual rainfall under the SSP2-4.5 scenario is 6.0% (Sahel), 7.3% (Savannah), and 2.6% (VRB), but a decrease of 1.1% in the coastal zone. Similarly, under SSP5-8.5, the annual rainfall is projected to increase by 32.5% (Sahel), +22.8% (Savannah), 23.0% (coastal), and 24.9% (VRB), with the increase being more pronounced under SSP5-8.5 compared to the SSP2-4.5 scenario. The findings of the study would be useful for planning and designing climate change adaptation measures to achieve sustainable development at the VRB. Full article
(This article belongs to the Special Issue Climate Change and Economic Development in Africa)
Show Figures

Figure 1

26 pages, 33093 KiB  
Article
Water Storage Variation and Its Possible Causes Detected by GRACE in the Volta River Basin
by Randal D. Djessou, Xiaoyun Wan, Shuang Yi, Richard F. Annan, Xiaoli Su and Sijia Wang
Remote Sens. 2022, 14(21), 5319; https://doi.org/10.3390/rs14215319 - 24 Oct 2022
Cited by 3 | Viewed by 2872
Abstract
This study applies Gravity Recovery and Climate Experiment (GRACE) data and the WaterGAP (Water Global Analysis and Prognosis) Global Hydrology Model (WGHM) to investigate the influence of the Bui reservoir operation on water storage variation within the Volta River Basin (VRB). Variation in [...] Read more.
This study applies Gravity Recovery and Climate Experiment (GRACE) data and the WaterGAP (Water Global Analysis and Prognosis) Global Hydrology Model (WGHM) to investigate the influence of the Bui reservoir operation on water storage variation within the Volta River Basin (VRB). Variation in groundwater storage anomalies (GWSA) was estimated by combining GRACE-derived terrestrial water storage anomalies (TWSA), radar altimetry records, imagery-derived reservoir (Lake Volta and Bui) surface water storage anomalies (SWSA), and Global Land Data Assimilation System (GLDAS)-simulated soil moisture storage anomalies (SMSA) from 2002 to 2016. Results showed that TWSA increased (1.30 ± 0.23 cm/year) and decreased (−0.82 ± 0.27 cm/year) during 2002–2011 and 2011–2016, respectively, within VRB, matching previous TWSA investigations in this area. It revealed that the multi-year averages of monthly GRACE-derived TWSA changes in 2011–2016 displayed an overall increasing trend, indicating storage increase in regional hydrology; while the Lake Volta water storage changes decreased. The GRACE-minus-WGHM residuals display an increasing trend in VRB water storage during the Bui reservoir impoundment during 2011–2016. The observed trend compares well with the estimated Bui reservoir SWSA, indicating that GRACE solutions can retrieve the true amplitude of large mass changes happening in a concentrated area, though Bui reservoir is much smaller than the resolution of GRACE global solutions. It also revealed that GWSA were almost stable from 2002 to 2006, before increasing and decreasing during 2006–2011 and 2012–2016 with rates of 2.67 ± 0.34 cm/year and −1.80 ± 0.32 cm/year, respectively. The observed trends in the GRACE-derived TWSA and GWSA changes are generally attributed to the hydro-meteorological conditions. This study shows that the effects of strong El-Niño Southern Oscillation events on the GWSA interannual variability within the VRB is short-term, with a lag of 6 months. This study specifically showed that the Bui reservoir operation significantly affects the TWSA changes and provides knowledge on groundwater storage changes within the VRB. Full article
(This article belongs to the Special Issue GRACE for Earth System Mass Change: Monitoring and Measurement)
Show Figures

Graphical abstract

17 pages, 4547 KiB  
Article
Implications of Land Use/Land Cover Changes and Climate Change on Black Volta Basin Future Water Resources in Ghana
by Joachim Ayiiwe Abungba, Kwaku Amaning Adjei, Charles Gyamfi, Samuel Nii Odai, Santosh Murlidhar Pingale and Deepak Khare
Sustainability 2022, 14(19), 12383; https://doi.org/10.3390/su141912383 - 29 Sep 2022
Cited by 11 | Viewed by 3944
Abstract
The Black Volta River basin faces several challenges, which impede the sustainability of its water resources and biodiversity. Climate change coupled with land use/land cover (LULC) change patterns account for most of the observed hydrological changes in the basin. The aim of this [...] Read more.
The Black Volta River basin faces several challenges, which impede the sustainability of its water resources and biodiversity. Climate change coupled with land use/land cover (LULC) change patterns account for most of the observed hydrological changes in the basin. The aim of this study was to assess the impact of changes in the climate and LULC on water resources in the basin, and its effect on the livelihoods of downstream users, particularly regarding water allocations. The water evaluation and planning (WEAP) model was applied to the assessment of runoff and streamflow and the percentage future water demand under climate change scenarios (RCP 2.6 and RCP 8.5), as well as the effects of current and future changes on water supply systems. LULC data from 1990 to 2019 were processed to detect the changes in LULC patterns in the basin. The results showed that from 1990 and 2019, the land use classes of settlements/bare ground, open savannah woodland, croplands, and waterbodies increased by 339.5%, 77.4%, 24.4%, and 607%, respectively. Close savannah woodlands, wetlands, and grasslands all decreased by 97%, 99.8%, and 21.2%, respectively. Overall, there was a significant difference in LULC changes. Hence, measures needed to be put in place to curb the changes, as the observed changes posed a serious challenge to the basin’s water resources. The results from the WEAP simulations also indicated that in the future, changes in discharge would be visible in September with ranges between 0.72 × 106 m3 and 1.9 × 106 m3 for RCP 2.6, and 0.65 × 106 m3 and 2.5 × 106 m3 for RCP 8.5, per month. Although the median values illustrate an increase in water availability from river discharge compared with the reference scenario, the uncertainties in future changes largely exceeded the predicted increases. Annual variability of the mean annual flows is projected to decrease over the period in the Black Volta Basin. Therefore, the outcomes of this study will be useful for different stakeholders within the basin in water resources planning and the formulation of appropriate policies for improving land use planning. Full article
Show Figures

Figure 1

15 pages, 3133 KiB  
Article
The Accuracy of Precipitation Forecasts at Timescales of 1–15 Days in the Volta River Basin
by Mekonnen Gebremichael, Haowen Yue and Vahid Nourani
Remote Sens. 2022, 14(4), 937; https://doi.org/10.3390/rs14040937 - 15 Feb 2022
Cited by 5 | Viewed by 3045
Abstract
Medium-range (1–15 day) precipitation forecasts are increasingly available from global weather models. This study presents evaluation of the Global Forecast System (GFS) for the Volta river basin in West Africa. The evaluation was performed using two satellite-gauge merged products: NASA’s Integrated Multi-satellitE Retrievals [...] Read more.
Medium-range (1–15 day) precipitation forecasts are increasingly available from global weather models. This study presents evaluation of the Global Forecast System (GFS) for the Volta river basin in West Africa. The evaluation was performed using two satellite-gauge merged products: NASA’s Integrated Multi-satellitE Retrievals (IMERG) “Final Run” satellite-gauge merged rainfall observations, and the University of California Santa Barbara’s Climate Hazard’s group Infrared Precipitation with Stations (CHIRPS). The performance of GFS depends on the climate zone, with underestimation bias in the dry Sahel climate, overestimation bias in the wet Guinea Coastal climate, and relatively no bias in the moderately wet Savannah climate. Averaging rainfall over the watershed of the Akosombo dam (i.e., averaging across all three climate zones), the GFS forecast indicates low skill (Kling-Gupta Efficiency KGE = 0.42 to 0.48) for the daily, 1-day, lead GFS forecast, which deteriorates further as the lead time increases. A sharp decrease in KGE occurred between 6 to 10 days. Aggregating the forecasts over long timescales improves the accuracy of the GFS forecasts. On a 15-day accumulation timescale, GFS shows higher skills (KGE = 0.74 to 0.88). Full article
Show Figures

Figure 1

14 pages, 1393 KiB  
Article
Defining Management Units for Wild Nile Tilapia Oreochromis niloticus from Nine River Basins in Ghana
by Gifty Anane-Taabeah Attu, Emmanuel A. Frimpong and Eric M. Hallerman
Diversity 2022, 14(2), 73; https://doi.org/10.3390/d14020073 - 21 Jan 2022
Cited by 6 | Viewed by 3727
Abstract
Despite the global importance of the Nile tilapia Oreochromis niloticus, especially to aquaculture, knowledge of genetic variability within native populations is still limited. While several studies have assessed genetic differentiation across the major drainage basins of Africa, relatively little effort has focused [...] Read more.
Despite the global importance of the Nile tilapia Oreochromis niloticus, especially to aquaculture, knowledge of genetic variability within native populations is still limited. While several studies have assessed genetic differentiation across the major drainage basins of Africa, relatively little effort has focused on characterizing genetic differentiation at finer scales. We assessed genetic variation in O. niloticus within and among nine drainage basins in Ghana using nuclear microsatellite DNA markers as the basis for identifying potential units of conservation among wild populations. We screened 312 wild individuals using eight nuclear microsatellite DNA markers. We found moderate genetic diversity within and differentiation among all wild populations studied, with strong signals of recent demographic bottlenecks in several populations. Genetic structure among 11 populations suggested the presence of up to ten management units (MUs). In particular, the Black Volta and the Tano–Asuhyea populations, which were the most genetically distinct and geographically isolated and may be most at risk of loss of genetic diversity over time, may well represent evolutionary significant units. Therefore, at the minimum, the Black Volta and Tano–Asuhyea populations should be prioritized for conservation actions to sustain them over the long-term. Full article
Show Figures

Figure 1

21 pages, 7486 KiB  
Article
Shoreline Changes and Coastal Erosion: The Case Study of the Coast of Togo (Bight of Benin, West Africa Margin)
by Francesco Guerrera, Manuel Martín-Martín, Mario Tramontana, Bertin Nimon and Kossi Essotina Kpémoua
Geosciences 2021, 11(2), 40; https://doi.org/10.3390/geosciences11020040 - 21 Jan 2021
Cited by 26 | Viewed by 7458
Abstract
The coastal strip between the Volta River delta and the westernmost portion of Benin (West Africa Margin of Atlantic Basin) is highly populated (e.g., Lomé) due to migrations from inland areas. The coastal zone has proved to be very vulnerable because of the [...] Read more.
The coastal strip between the Volta River delta and the westernmost portion of Benin (West Africa Margin of Atlantic Basin) is highly populated (e.g., Lomé) due to migrations from inland areas. The coastal zone has proved to be very vulnerable because of the potential development of sometimes catastrophic events related to different and interacting causes, resulting in negative effects on natural ecosystems and socio-economic conditions. The main problem is the marked erosion of large coastal sectors with maximum retreat rates of the order of 5 m/year. The continuous loss of territory leads to a progressive impoverishment of activities and human resources and to the increase of geological risk factors. The coastal erosion is induced both by natural and anthropic causes and can be controlled only by means of prevention programs, detailed scientific studies and targeted technical interventions. The main erosional processes observed in the study area are triggered by the presence of the Lomé port and other human activities on the coastal strip, including the water extraction from the subsoil, which induces subsidence and the use of sediments as inert material. These elements, together with the reduction of the solid supply from Volta River (caused by the realization of the Akosombo dam) are among the main factors that control the medium and long-term evolution of the area. Also relative sea level changes, which take into account also tectonic and/or isostatic components, can contribute to the process. In order to have a real understanding of the coastal dynamics and evolution, it would be necessary to develop a scientific structure through the collaboration of all countries of the Bight of Benin affected by coastal erosion. The aim should be primarily to collect the interdisciplinary quantitative data necessary to develop a scientific knowledge background of the Bight of Benin coastal/ocean system. In conclusion, some proposals are presented to reduce the vulnerability of the coastal area as for example to plan surveys for the realization of appropriate coastal protection works, such as walls, revetments, groins, etc. A possible expansion of the port of Lomè is also considered. Proposals comprise the constitution of a Supranational Scientific Committee as a coordinating structure on erosion for both the study of phenomena and planning interventions. Full article
(This article belongs to the Special Issue Tectono-Sedimentary Evolution of Cenozoic Basins)
Show Figures

Figure 1

22 pages, 2640 KiB  
Article
Aquaculture-Mediated Invasion of the Genetically Improved Farmed Tilapia (Gift) into the Lower Volta Basin of Ghana
by Gifty Anane-Taabeah, Emmanuel A. Frimpong and Eric Hallerman
Diversity 2019, 11(10), 188; https://doi.org/10.3390/d11100188 - 2 Oct 2019
Cited by 29 | Viewed by 6569
Abstract
The need for improved aquaculture productivity has led to widespread pressure to introduce the Genetically Improved Farmed Tilapia (GIFT) strains of Nile tilapia (Oreochromis niloticus) into Africa. However, the physical and regulatory infrastructures for preventing the escape of farmed stocks into [...] Read more.
The need for improved aquaculture productivity has led to widespread pressure to introduce the Genetically Improved Farmed Tilapia (GIFT) strains of Nile tilapia (Oreochromis niloticus) into Africa. However, the physical and regulatory infrastructures for preventing the escape of farmed stocks into wild populations and ecosystems are generally lacking. This study characterized the genetic background of O. niloticus being farmed in Ghana and assessed the genetic effects of aquaculture on wild populations. We characterized O. niloticus collected in 2017 using mitochondrial and microsatellite DNA markers from 140 farmed individuals sampled from five major aquaculture facilities on the Volta Lake, and from 72 individuals sampled from the wild in the Lower Volta River downstream of the lake and the Black Volta tributary upstream of the lake. Our results revealed that two farms were culturing non-native O. niloticus stocks, which were distinct from the native Akosombo strain. The non-native tilapia stocks were identical to several GIFT strains, some of which showed introgression of mitochondrial DNA from non-native Oreochromis mossambicus. We also found that the non-native cultured tilapias have escaped into the wild and interbred with local populations, and also observed potentially admixed individuals on some farms. Our results highlight aquaculture as a vector in the spread of invasive non-native species and strains, and underscore the importance of genetic baseline studies to guide conservation planning for wild populations. Full article
(This article belongs to the Special Issue Biological Invasions 2020 Horizon)
Show Figures

Figure 1

21 pages, 4527 KiB  
Article
Fish Communities, Habitat Use, and Human Pressures in the Upper Volta Basin, Burkina Faso, West Africa
by Paul Meulenbroek, Sebastian Stranzl, Adama Oueda, Jan Sendzimir, Komandan Mano, Idrissa Kabore, Raymond Ouedraogo and Andreas Melcher
Sustainability 2019, 11(19), 5444; https://doi.org/10.3390/su11195444 - 1 Oct 2019
Cited by 14 | Viewed by 4632
Abstract
Human pressures and loss of natural fish habitats led to a decline in fish populations in terms of abundances, biodiversity, and average size in sub-Sahelian Burkina Faso. Little knowledge exists about fish assemblages regarding their composition, their habitat preferences, or their sensitivity to [...] Read more.
Human pressures and loss of natural fish habitats led to a decline in fish populations in terms of abundances, biodiversity, and average size in sub-Sahelian Burkina Faso. Little knowledge exists about fish assemblages regarding their composition, their habitat preferences, or their sensitivity to or tolerance of human pressures. This research provides the first data-driven basis for sustainably managing fish and associated aquatic and terrestrial habitats. Surveys in four different regions sampled 18,000 specimens from 69 species during the dry season. Fish communities, available abiotic habitat conditions, habitat use, and human pressures were assessed and analyzed. Fish communities cluster into four distinct types, each dominated by either Cichlidae, Clariidae, Cyprinidae, or Alestidae and accompanied by specific other families and genera of fish. Habitat preferences of four key species (Labeo coubie, Bagrus bajad, Chelaethiops bibie, and Lates niloticus) were linked to ecological habitat conditions. Results show that physical parameters influence fish community composition and abundances and, when indexed according to pressure type, are linked to responses in fish metrics. Relative abundance either dropped (Mormyridae) or increased (Cichlidae, Cyprinidae) with rising pressure intensity, and some sentinel taxa (Auchenoglanis, Hydrocynus) were only found in low-pressure sites. The outcomes of this study provide basic knowledge of habitat availability, habitat use by fish, species associations, and human pressures and therefore provide the basis for effective conservation and management of fish populations. Full article
(This article belongs to the Special Issue Sustainable Natural Resource Management)
Show Figures

Figure 1

13 pages, 3131 KiB  
Article
Carbon Isotopes of Riparian Forests Trees in the Savannas of the Volta Sub-Basin of Ghana Reveal Contrasting Responses to Climatic and Environmental Variations
by Emmanuel Amoah Boakye, Aster Gebrekirstos, Dibi N’da Hyppolite, Victor Rex Barnes, Stefan Porembski and Achim Bräuning
Forests 2019, 10(3), 251; https://doi.org/10.3390/f10030251 - 12 Mar 2019
Cited by 4 | Viewed by 4056
Abstract
Stable isotopes of tree rings are frequently used as proxies in climate change studies. However, species-specific relationships between climate and tree-ring stable isotopes have not yet been studied in riparian forests in the savannas of West Africa. Four cross-dated discs, each of Afzelia [...] Read more.
Stable isotopes of tree rings are frequently used as proxies in climate change studies. However, species-specific relationships between climate and tree-ring stable isotopes have not yet been studied in riparian forests in the savannas of West Africa. Four cross-dated discs, each of Afzelia africana Sm. (evergreen) and Anogeissus leiocarpus (DC.) Guill. & Perr. (deciduous) in the humid (HSZ) and dry (DSZ) savanna zones of the Volta basin in Ghana were selected from a larger tree-ring dataset to assess the relationships between the tree-ring carbon isotope composition (δ13C values) and climatic parameters. The atmospherically corrected δ13C values of both studied species showed that A. africana was enriched in 13C compared to A. leiocarpus. Strong correlations were found between δ13C values of A. africana and A. leiocarpus with temperature, but weak correlations with precipitation. Spatial correlation analysis revealed significant relationships between δ13C values of both tree species and Sea Surface Temperatures in the Gulf of Guinea in the southern Atlantic Ocean. The results suggest that the carbon isotope composition of riparian trees in the Volta river basin has a potential to reconstruct climate variability and to assess tree ecological responses to climate change. Full article
(This article belongs to the Special Issue Stable Isotopes in Forest Ecosystem Research)
Show Figures

Figure 1

25 pages, 3453 KiB  
Article
Assessment of Spatio-Temporal Changes of Land Use and Land Cover over South-Western African Basins and Their Relations with Variations of Discharges
by Salomon Obahoundje, Arona Diedhiou, Eric Antwi Ofosu, Sandrine Anquetin, Baptiste François, Julien Adounkpe, Ernest Amoussou, Yao Morton Kouame, Kouakou Lazare Kouassi, Vami Hermann Nguessan Bi and Marc Youan Ta
Hydrology 2018, 5(4), 56; https://doi.org/10.3390/hydrology5040056 - 10 Oct 2018
Cited by 25 | Viewed by 5740
Abstract
West African basins play a vital role in the socio-economic development of the region. They are mostly trans-boundary and sources of different land use practices. This work attempts to assess the spatio-temporal land use and land cover changes over three South Western African [...] Read more.
West African basins play a vital role in the socio-economic development of the region. They are mostly trans-boundary and sources of different land use practices. This work attempts to assess the spatio-temporal land use and land cover changes over three South Western African basins (Volta, Mono and Sassandra basins) and their influence on discharge. The land use and land cover maps of each basin were developed for 1988, 2002 and 2016. The results show that all the studied basins present an increase in water bodies, built-up, agricultural land and a decline in vegetative areas. These increases in water bodies and land use are as a result of an increase in small reservoirs, of dugouts and of dam constructions. However, the decline in some vegetative clusters could be attributed to the demographic and socio-economic growth as expressed by the expansion of agriculture and urbanization. The basic statistical analysis of precipitation and discharge data reveals that the mean annual discharge varies much more than the total annual precipitation at the three basins. For instance, in the entire Volta basin, the annual precipitation coefficient of variation (CV) is 10% while the annual discharge CV of Nawuni, Saboba and Bui are 43.6%, 36.51% and 47.43%, respectively. In Mono basin, the annual precipitation CV is 11.5% while the Nangbeto and Athieme annual discharge CV are 37.15% and 46.60%, respectively. The annual precipitation CV in Sassandra basin is 7.64% while the annual discharge CV of Soubre and Dakpadou are 29.41% and 37%, respectively. The discharge varies at least three times much more than the precipitation in the studied basins. The same conclusion was found for all months except the driest months (December and January). We showed that this great variation in discharge is mainly due to land use and land cover changes. Beside the hydrological modification of the land use and land cover changes, the climate of the region as well as the water quality and availability and the hydropower generation may be impacted by these changes in land surfaces conditions. Therefore, these impacts should be further assessed to implement appropriate climate services and measures for a sustainable land use and water management. Full article
Show Figures

Figure 1

23 pages, 6698 KiB  
Article
Problemshed or Watershed? Participatory Modeling towards IWRM in North Ghana
by William’s Daré, Jean-Philippe Venot, Christophe Le Page and Aaron Aduna
Water 2018, 10(6), 721; https://doi.org/10.3390/w10060721 - 2 Jun 2018
Cited by 22 | Viewed by 6893
Abstract
This paper is a reflexive analysis of a three-year participatory water research project conducted in the Upper East Region (UER) of Ghana, whose explicit objective was to initiate a multi-level dialogue to support the national Integrated Water Resources Management (IWRM) policy framework. The [...] Read more.
This paper is a reflexive analysis of a three-year participatory water research project conducted in the Upper East Region (UER) of Ghana, whose explicit objective was to initiate a multi-level dialogue to support the national Integrated Water Resources Management (IWRM) policy framework. The transdisciplinary team adopted the Companion Modeling approach (ComMod), using role-playing games and a computerized agent-based model to support the identification of a problemshed centered on issues of river bank cultivation, erosion, and flooding, and initiate a multi-level dialogue on ways that this problemshed could be tackled. On the basis of this experience, we identify three key criteria for transdisciplinary research to support innovative water governance: (1) the iterative adaptation of tools and facilitation techniques based on feedback from participants; (2) a common understanding of the objectives pursued and the approach used among researchers, who need to explicit their posture, and crucially; (3) the co-identification of a problemshed that diverse stakeholders are interested in tackling. Finally, we argue that the context in which research is funded and conducted in the development sector constitutes a challenge for researchers to be “participants like any other” in the projects they coordinate, which constitutes a barrier to true transdisciplinarity. Full article
Show Figures

Figure 1

26 pages, 7843 KiB  
Article
Land Water-Storage Variability over West Africa: Inferences from Space-Borne Sensors
by Vagner G. Ferreira, Zibrila Asiah, Jia Xu, Zheng Gong and Samuel A. Andam-Akorful
Water 2018, 10(4), 380; https://doi.org/10.3390/w10040380 - 25 Mar 2018
Cited by 15 | Viewed by 5851
Abstract
The potential of terrestrial water storage (TWS) inverted from Gravity Recovery and Climate Experiment (GRACE) measurements to investigate water variations and their response to droughts over the Volta, Niger, and Senegal Basins of West Africa was investigated. An altimetry-imagery approach was proposed to [...] Read more.
The potential of terrestrial water storage (TWS) inverted from Gravity Recovery and Climate Experiment (GRACE) measurements to investigate water variations and their response to droughts over the Volta, Niger, and Senegal Basins of West Africa was investigated. An altimetry-imagery approach was proposed to deduce the contribution of Lake Volta to TWS as “sensed” by GRACE. The results showed that from April 2002 to July 2016, Lake Volta contributed to approximately 8.8% of the water gain within the Volta Basin. As the signal spreads out far from the lake, it impacts both the Niger and Senegal Basins with 1.7% (at a significance level of 95%). This figure of 8.8% for the Volta Basin is approximately 20% of the values reported in previous works. Drought analysis based on GRACE-TWS (after removing the lake’s contribution) depicted below-normal conditions prevailing from 2002 to 2008. Wavelet analysis revealed that TWS changes (fluxes) and rainfall as well as vegetation index depicted a highly coupled relationship at the semi-annual to biennial periods, with common power covariance prevailing in the annual frequencies. While acknowledging that validation of the drought occurrence and severity based on GRACE-TWS is needed, we believe that our findings shall contribute to the water management over West Africa. Full article
(This article belongs to the Special Issue Applications of Remote Sensing and GIS in Hydrology)
Show Figures

Figure 1

23 pages, 4475 KiB  
Article
Big Data and Multiple Methods for Mapping Small Reservoirs: Comparing Accuracies for Applications in Agricultural Landscapes
by Sarah K. Jones, Alexander K. Fremier, Fabrice A. DeClerck, David Smedley, Aline Ortega Pieck and Mark Mulligan
Remote Sens. 2017, 9(12), 1307; https://doi.org/10.3390/rs9121307 - 13 Dec 2017
Cited by 28 | Viewed by 7440
Abstract
Whether or not reservoirs contain water throughout the dry season is critical to avoiding late season crop failure in seasonally-arid agricultural landscapes. Locations, volumes, and temporal dynamics, particularly of small (<1 Mm3) reservoirs are poorly documented globally, thus making it difficult [...] Read more.
Whether or not reservoirs contain water throughout the dry season is critical to avoiding late season crop failure in seasonally-arid agricultural landscapes. Locations, volumes, and temporal dynamics, particularly of small (<1 Mm3) reservoirs are poorly documented globally, thus making it difficult to identify geographic and intra-annual gaps in reservoir water availability. Yet, small reservoirs are the most vulnerable to drying out and often service the poorest of farmers. Using the transboundary Volta River Basin (~413,000 sq km) in West Africa as a case study, we present a novel method to map reservoirs and quantify the uncertainty of Landsat derived reservoir area estimates, which can be readily applied anywhere in the globe. We applied our method to compare the accuracy of reservoir areas that are derived from the Global Surface Water Monthly Water History (GSW) dataset to those that are derived when surface water is classified on Landsat 8 OLI imagery using the Normalised Difference Water Index (NDWI), Modified NDWI with band 6 (MNDWI1), and Modified NDWI with band 7 (MNDWI2). We quantified how the areal accuracies of reservoir size estimates vary with the water classification method, reservoir properties, and environmental context, and assessed the options and limitations of using uncertain reservoir area estimates to monitor reservoir dynamics in an agricultural context. Results show that reservoir area estimates that are derived from the GSW data are 19% less accurate for our study site than MNDWI1 derived estimates, for a sample of 272 reservoir extents of 0.09 to 72 ha. The accuracy of Landsat-derived estimates improves with reservoir size and perimeter-area ratio, while accuracy may decline as surface vegetation increases. We show that GSW derived reservoir area estimates can provide an upper limit for current reservoir capacity and seasonal dynamics of larger reservoirs. Data gaps and uncertainties make GSW derived reservoir extents unsuitable for monitoring reservoirs that are smaller than 5.1 ha (holding ~49,759 m3), which constitute 674 (56%) reservoirs in the Volta basin, or monitoring seasonal fluctuations of most small reservoirs, limiting its utility for agricultural planning. This study is one of the first to test the utility and limitations of the newly available GSW dataset and provides guidance on the conditions under which this, and other Landsat-based surface water maps, can be reliably used to monitor reservoir resources. Full article
(This article belongs to the Section Remote Sensing in Geology, Geomorphology and Hydrology)
Show Figures

Graphical abstract

Back to TopTop