Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (600)

Search Parameters:
Keywords = Vegetation destruction

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 3506 KiB  
Review
Spectroscopic and Imaging Technologies Combined with Machine Learning for Intelligent Perception of Pesticide Residues in Fruits and Vegetables
by Haiyan He, Zhoutao Li, Qian Qin, Yue Yu, Yuanxin Guo, Sheng Cai and Zhanming Li
Foods 2025, 14(15), 2679; https://doi.org/10.3390/foods14152679 - 30 Jul 2025
Viewed by 50
Abstract
Pesticide residues in fruits and vegetables pose a serious threat to food safety. Traditional detection methods have defects such as complex operation, high cost, and long detection time. Therefore, it is of great significance to develop rapid, non-destructive, and efficient detection technologies and [...] Read more.
Pesticide residues in fruits and vegetables pose a serious threat to food safety. Traditional detection methods have defects such as complex operation, high cost, and long detection time. Therefore, it is of great significance to develop rapid, non-destructive, and efficient detection technologies and equipment. In recent years, the combination of spectroscopic techniques and imaging technologies with machine learning algorithms has developed rapidly, providing a new attempt to solve this problem. This review focuses on the research progress of the combination of spectroscopic techniques (near-infrared spectroscopy (NIRS), hyperspectral imaging technology (HSI), surface-enhanced Raman scattering (SERS), laser-induced breakdown spectroscopy (LIBS), and imaging techniques (visible light (VIS) imaging, NIRS imaging, HSI technology, terahertz imaging) with machine learning algorithms in the detection of pesticide residues in fruits and vegetables. It also explores the huge challenges faced by the application of spectroscopic and imaging technologies combined with machine learning algorithms in the intelligent perception of pesticide residues in fruits and vegetables: the performance of machine learning models requires further enhancement, the fusion of imaging and spectral data presents technical difficulties, and the commercialization of hardware devices remains underdeveloped. This review has proposed an innovative method that integrates spectral and image data, enhancing the accuracy of pesticide residue detection through the construction of interpretable machine learning algorithms, and providing support for the intelligent sensing and analysis of agricultural and food products. Full article
Show Figures

Figure 1

23 pages, 12611 KiB  
Article
Banana Fusarium Wilt Recognition Based on UAV Multi-Spectral Imagery and Automatically Constructed Enhanced Features
by Ye Su, Longlong Zhao, Huichun Ye, Wenjiang Huang, Xiaoli Li, Hongzhong Li, Jinsong Chen, Weiping Kong and Biyao Zhang
Agronomy 2025, 15(8), 1837; https://doi.org/10.3390/agronomy15081837 - 29 Jul 2025
Viewed by 82
Abstract
Banana Fusarium wilt (BFW, also known as Panama disease) is a highly infectious and destructive disease that threatens global banana production, requiring early recognition for timely prevention and control. Current monitoring methods primarily rely on continuous variable features—such as band reflectances (BRs) and [...] Read more.
Banana Fusarium wilt (BFW, also known as Panama disease) is a highly infectious and destructive disease that threatens global banana production, requiring early recognition for timely prevention and control. Current monitoring methods primarily rely on continuous variable features—such as band reflectances (BRs) and vegetation indices (VIs)—collectively referred to as basic features (BFs)—which are prone to noise during the early stages of infection and struggle to capture subtle spectral variations, thus limiting the recognition accuracy. To address this limitation, this study proposes a discretized enhanced feature (EF) construction method, the automated kernel density segmentation-based feature construction algorithm (AutoKDFC). By analyzing the differences in the kernel density distributions between healthy and diseased samples, the AutoKDFC automatically determines the optimal segmentation threshold, converting continuous BFs into binary features with higher discriminative power for early-stage recognition. Using UAV-based multi-spectral imagery, BFW recognition models are developed and tested with the random forest (RF), support vector machine (SVM), and Gaussian naïve Bayes (GNB) algorithms. The results show that EFs exhibit significantly stronger correlations with BFW’s presence than original BFs. Feature importance analysis via RF further confirms that EFs contribute more to the model performance, with VI-derived features outperforming BR-based ones. The integration of EFs results in average performance gains of 0.88%, 2.61%, and 3.07% for RF, SVM, and GNB, respectively, with SVM achieving the best performance, averaging over 90%. Additionally, the generated BFW distribution map closely aligns with ground observations and captures spectral changes linked to disease progression, validating the method’s practical utility. Overall, the proposed AutoKDFC method demonstrates high effectiveness and generalizability for BFW recognition. Its core concept of “automatic feature enhancement” has strong potential for broader applications in crop disease monitoring and supports the development of intelligent early warning systems in plant health management. Full article
(This article belongs to the Section Pest and Disease Management)
Show Figures

Figure 1

21 pages, 3158 KiB  
Article
Estimation of Leaf, Spike, Stem and Total Biomass of Winter Wheat Under Water-Deficit Conditions Using UAV Multimodal Data and Machine Learning
by Jinhang Liu, Wenying Zhang, Yongfeng Wu, Juncheng Ma, Yulin Zhang and Binhui Liu
Remote Sens. 2025, 17(15), 2562; https://doi.org/10.3390/rs17152562 - 23 Jul 2025
Viewed by 219
Abstract
Accurate estimation aboveground biomass (AGB) in winter wheat is crucial for yield assessment but remains challenging to achieve non-destructively. Unmanned aerial vehicle (UAV)-based remote sensing offers a promising solution at the plot level. Traditional field sampling methods, such as random plant selection or [...] Read more.
Accurate estimation aboveground biomass (AGB) in winter wheat is crucial for yield assessment but remains challenging to achieve non-destructively. Unmanned aerial vehicle (UAV)-based remote sensing offers a promising solution at the plot level. Traditional field sampling methods, such as random plant selection or full-quadrat harvesting, are labor intensive and may introduce substantial errors compared to the canopy-level estimates obtained from UAV imagery. This study proposes a novel method using Fractional Vegetation Coverage (FVC) to adjust field-sampled AGB to per-plant biomass, enhancing the accuracy of AGB estimation using UAV imagery. Correlation analysis and Variance Inflation Factor (VIF) were employed for feature selection, and estimation models for leaf, spike, stem, and total AGB were constructed using Random Forest (RF), Support Vector Machine (SVM), and Neural Network (NN) models. The aim was to evaluate the performance of multimodal data in estimating winter wheat leaves, spikes, stems, and total AGB. Results demonstrated that (1) FVC-adjusted per-plant biomass significantly improved correlations with most indicators, particularly during the filling stage, when the correlation between leaf biomass and NDVI increased by 56.1%; (2) RF and NN models outperformed SVM, with the optimal accuracies being R2 = 0.709, RMSE = 0.114 g for RF, R2 = 0.66, RMSE = 0.08 g for NN, and R2 = 0.557, RMSE = 0.117 g for SVM. Notably, the RF model achieved the highest prediction accuracy for leaf biomass during the flowering stage (R2 = 0.709, RMSE = 0.114); (3) among different water treatments, the R2 values of water and drought treatments were higher 0.723 and 0.742, respectively, indicating strong adaptability. This study provides an economically effective method for monitoring winter wheat growth in the field, contributing to improved agricultural productivity and fertilization management. Full article
(This article belongs to the Section Remote Sensing in Agriculture and Vegetation)
Show Figures

Figure 1

31 pages, 4937 KiB  
Article
Proximal LiDAR Sensing for Monitoring of Vegetative Growth in Rice at Different Growing Stages
by Md Rejaul Karim, Md Nasim Reza, Shahriar Ahmed, Kyu-Ho Lee, Joonjea Sung and Sun-Ok Chung
Agriculture 2025, 15(15), 1579; https://doi.org/10.3390/agriculture15151579 - 23 Jul 2025
Viewed by 249
Abstract
Precise monitoring of vegetative growth is essential for assessing crop responses to environmental changes. Conventional methods of geometric characterization of plants such as RGB imaging, multispectral sensing, and manual measurements often lack precision or scalability for growth monitoring of rice. LiDAR offers high-resolution, [...] Read more.
Precise monitoring of vegetative growth is essential for assessing crop responses to environmental changes. Conventional methods of geometric characterization of plants such as RGB imaging, multispectral sensing, and manual measurements often lack precision or scalability for growth monitoring of rice. LiDAR offers high-resolution, non-destructive 3D canopy characterization, yet applications in rice cultivation across different growth stages remain underexplored, while LiDAR has shown success in other crops such as vineyards. This study addresses that gap by using LiDAR for geometric characterization of rice plants at early, middle, and late growth stages. The objective of this study was to characterize rice plant geometry such as plant height, canopy volume, row distance, and plant spacing using the proximal LiDAR sensing technique at three different growth stages. A commercial LiDAR sensor (model: VPL−16, Velodyne Lidar, San Jose, CA, USA) mounted on a wheeled aluminum frame for data collection, preprocessing, visualization, and geometric feature characterization using a commercial software solution, Python (version 3.11.5), and a custom algorithm. Manual measurements compared with the LiDAR 3D point cloud data measurements, demonstrating high precision in estimating plant geometric characteristics. LiDAR-estimated plant height, canopy volume, row distance, and spacing were 0.5 ± 0.1 m, 0.7 ± 0.05 m3, 0.3 ± 0.00 m, and 0.2 ± 0.001 m at the early stage; 0.93 ± 0.13 m, 1.30 ± 0.12 m3, 0.32 ± 0.01 m, and 0.19 ± 0.01 m at the middle stage; and 0.99 ± 0.06 m, 1.25 ± 0.13 m3, 0.38 ± 0.03 m, and 0.10 ± 0.01 m at the late growth stage. These measurements closely matched manual observations across three stages. RMSE values ranged from 0.01 to 0.06 m and r2 values ranged from 0.86 to 0.98 across parameters, confirming the high accuracy and reliability of proximal LiDAR sensing under field conditions. Although precision was achieved across growth stages, complex canopy structures under field conditions posed segmentation challenges. Further advances in point cloud filtering and classification are required to reliably capture such variability. Full article
(This article belongs to the Section Artificial Intelligence and Digital Agriculture)
Show Figures

Figure 1

21 pages, 5735 KiB  
Article
Estimation of Tomato Quality During Storage by Means of Image Analysis, Instrumental Analytical Methods, and Statistical Approaches
by Paris Christodoulou, Eftichia Kritsi, Georgia Ladika, Panagiota Tsafou, Kostantinos Tsiantas, Thalia Tsiaka, Panagiotis Zoumpoulakis, Dionisis Cavouras and Vassilia J. Sinanoglou
Appl. Sci. 2025, 15(14), 7936; https://doi.org/10.3390/app15147936 - 16 Jul 2025
Viewed by 284
Abstract
The quality and freshness of fruits and vegetables are critical factors in consumer acceptance and are significantly affected during transport and storage. This study aimed to evaluate the quality of greenhouse-grown tomatoes stored for 24 days by combining non-destructive image analysis, spectrophotometric assays [...] Read more.
The quality and freshness of fruits and vegetables are critical factors in consumer acceptance and are significantly affected during transport and storage. This study aimed to evaluate the quality of greenhouse-grown tomatoes stored for 24 days by combining non-destructive image analysis, spectrophotometric assays (including total phenolic content and antioxidant and antiradical activity assessments), and attenuated total reflectance–Fourier transform infrared (ATR-FTIR) spectroscopy. Additionally, water activity, moisture content, total soluble solids, texture, and color were evaluated. Most physicochemical changes occurred between days 14 and 17, without major impact on overall fruit quality. A progressive transition in peel hue from orange to dark orange, and increased surface irregularity of their textural image were noted. Moreover, the combined use of instrumental and image analyses results via multivariate analysis allowed the clear discrimination of tomatoes according to storage days. In this sense, tomato samples were effectively classified by ATR-FTIR spectral bands, linked to carotenoids, phenolics, and polysaccharides. Machine learning (ML) models, including Random Forest and Gradient Boosting, were trained on image-derived features and accurately predicted shelf life and quality traits, achieving R2 values exceeding 0.9. The findings demonstrate the effectiveness of combining imaging, spectroscopy, and ML for non-invasive tomato quality monitoring and support the development of predictive tools to improve postharvest handling and reduce food waste. Full article
(This article belongs to the Section Food Science and Technology)
Show Figures

Figure 1

25 pages, 7406 KiB  
Article
Landslide Susceptibility Level Mapping in Kozhikode, Kerala, Using Machine Learning-Based Random Forest, Remote Sensing, and GIS Techniques
by Pradeep Kumar Badapalli, Anusha Boya Nakkala, Raghu Babu Kottala, Sakram Gugulothu, Fahdah Falah Ben Hasher, Varun Narayan Mishra and Mohamed Zhran
Land 2025, 14(7), 1453; https://doi.org/10.3390/land14071453 - 12 Jul 2025
Viewed by 1063
Abstract
Landslides are among the most destructive natural hazards in the Western Ghats region of Kerala, driven by complex interactions between geological, hydrological, and anthropogenic factors. This study aims to generate a high-resolution Landslide Susceptibility Level Map (LSLM) using a machine learning (ML)-based Random [...] Read more.
Landslides are among the most destructive natural hazards in the Western Ghats region of Kerala, driven by complex interactions between geological, hydrological, and anthropogenic factors. This study aims to generate a high-resolution Landslide Susceptibility Level Map (LSLM) using a machine learning (ML)-based Random Forest (RF) model integrated with Geographic Information Systems (GIS). A total of 231 historical landslide locations obtained from the Bhukosh portal were used as reference data. Eight predictive factors—Stream Order, Drainage Density, Slope, Aspect, Geology, Land Use/Land Cover (LULC), Normalized Difference Vegetation Index (NDVI), and Moisture Stress Index (MSI)—were derived from remote sensing and ancillary datasets, preprocessed, and reclassified for model input. The RF model was trained and validated using a 50:50 split of landslide and non-landslide points, with variable importance values derived to weight each predictive factor of the raster layer in ArcGIS. The resulting Landslide Susceptibility Index (LSI) was reclassified into five susceptibility zones: Very Low, Low, Moderate, High, and Very High. Results indicate that approximately 17.82% of the study area falls under high to very high susceptibility, predominantly in the steep, weathered, and high rainfall zones of the Western Ghats. Validation using Area Under the Curve–Receiver Operating Characteristic (AUC-ROC) analysis yielded an accuracy of 0.890, demonstrating excellent model performance. The output LSM provides valuable spatial insights for planners, disaster managers, and policymakers, enabling targeted mitigation strategies and sustainable land-use planning in landslide-prone regions. Full article
Show Figures

Figure 1

20 pages, 2421 KiB  
Article
Mitigation of Water-Deficit Stress in Soybean by Seaweed Extract: The Integrated Approaches of UAV-Based Remote Sensing and a Field Trial
by Md. Raihanul Islam, Hasan Muhammad Abdullah, Md Farhadur Rahman, Mahfuzul Islam, Abdul Kaium Tuhin, Md Ashiquzzaman, Kh Shakibul Islam and Daniel Geisseler
Drones 2025, 9(7), 487; https://doi.org/10.3390/drones9070487 - 10 Jul 2025
Viewed by 392
Abstract
In recent years, global agriculture has encountered several challenges exacerbated by the effects of changes in climate, such as extreme water shortages for irrigation and heat waves. Water-deficit stress adversely affects the morpho-physiology of numerous crops, including soybean (Glycine max L.), which [...] Read more.
In recent years, global agriculture has encountered several challenges exacerbated by the effects of changes in climate, such as extreme water shortages for irrigation and heat waves. Water-deficit stress adversely affects the morpho-physiology of numerous crops, including soybean (Glycine max L.), which is considered as promising crop in Bangladesh. Seaweed extract (SWE) has the potential to improve crop yield and alleviate the adverse effects of water-deficit stress. Remote and proximal sensing are also extensively utilized in estimating morpho-physiological traits owing to their cost-efficiency and non-destructive characteristics. The study was carried out to evaluate soybean morpho-physiological traits under the application of water extracts of Gracilaria tenuistipitata var. liui (red seaweed) with two varying irrigation water conditions (100% of total crop water requirement (TCWR) and 70% of TCWR). Principal component analysis (PCA) revealed that among the four treatments, the 70% irrigation + 5% (v/v) SWE and the 100% irrigation treatments overlapped, indicating that the application of SWE effectively mitigated water-deficit stress in soybeans. This result demonstrates that the foliar application of 5% SWE enabled soybeans to achieve morpho-physiological performance comparable to that of fully irrigated plants while reducing irrigation water use by 30%. Based on Pearson’s correlation matrix, a simple linear regression model was used to ascertain the relationship between unmanned aerial vehicle (UAV)-derived vegetation indices and the field-measured physiological characteristics of soybean. The Normalized Difference Red Edge (NDRE) strongly correlated with stomatal conductance (R2 = 0.76), photosystem II efficiency (R2 = 0.78), maximum fluorescence (R2 = 0.64), and apparent transpiration rate (R2 = 0.69). The Soil Adjusted Vegetation Index (SAVI) had the highest correlation with leaf relative water content (R2 = 0.87), the Blue Normalized Difference Vegetation Index (bNDVI) with steady-state fluorescence (R2 = 0.56) and vapor pressure deficit (R2 = 0.74), and the Green Normalized Difference Vegetation Index (gNDVI) with chlorophyll content (R2 = 0.73). Our results demonstrate how UAV and physiological data can be integrated to improve precision soybean farming and support sustainable soybean production under water-deficit stress. Full article
(This article belongs to the Special Issue Recent Advances in Crop Protection Using UAV and UGV)
Show Figures

Graphical abstract

17 pages, 4293 KiB  
Article
Predicting Nitrogen Flavanol Index (NFI) in Mentha arvensis Using UAV Imaging and Machine Learning Techniques for Sustainable Agriculture
by Bhavneet Gulati, Zainab Zubair, Ankita Sinha, Nikita Sinha, Nupoor Prasad and Manoj Semwal
Drones 2025, 9(7), 483; https://doi.org/10.3390/drones9070483 - 9 Jul 2025
Viewed by 1642
Abstract
Crop growth monitoring at various growth stages is essential for optimizing agricultural inputs and enhancing crop yield. Nitrogen plays a critical role in plant development; however, its improper application can reduce productivity and, in the long term, degrade soil health. The aim of [...] Read more.
Crop growth monitoring at various growth stages is essential for optimizing agricultural inputs and enhancing crop yield. Nitrogen plays a critical role in plant development; however, its improper application can reduce productivity and, in the long term, degrade soil health. The aim of this study was to develop a non-invasive approach for nitrogen estimation through proxies (Nitrogen Flavanol Index) in Mentha arvensis using UAV-derived multispectral vegetation indices and machine learning models. Support Vector Regression, Random Forest, and Gradient Boosting were used to predict the Nitrogen Flavanol Index (NFI) across different growth stages. Among the tested models, Random Forest achieved the highest predictive accuracy (R2 = 0.86, RMSE = 0.32) at 75 days after planting (DAP), followed by Gradient Boosting (R2 = 0.75, RMSE = 0.43). Model performance was lowest during early growth stages (15–30 DAP) but improved markedly from mid to late growth stages (45–90 DAP). The findings highlight the significance of UAV-acquired data coupled with machine learning approaches for non-destructive nitrogen flavanol estimation, which can immensely contribute to improving real-time crop growth monitoring. Full article
(This article belongs to the Section Drones in Agriculture and Forestry)
Show Figures

Figure 1

18 pages, 4682 KiB  
Article
UAS Remote Sensing for Coastal Wetland Vegetation Biomass Estimation: A Destructive vs. Non-Destructive Sampling Experiment
by Grayson R. Morgan, Lane Stevenson, Cuizhen Wang and Ram Avtar
Remote Sens. 2025, 17(14), 2335; https://doi.org/10.3390/rs17142335 - 8 Jul 2025
Viewed by 291
Abstract
Coastal wetlands are critical ecosystems that require effective monitoring to support conservation and restoration efforts. This study evaluates the use of small unmanned aerial systems (sUAS) and multispectral imagery to estimate aboveground biomass (AGB) in tidal marshes, comparing models calibrated with destructive versus [...] Read more.
Coastal wetlands are critical ecosystems that require effective monitoring to support conservation and restoration efforts. This study evaluates the use of small unmanned aerial systems (sUAS) and multispectral imagery to estimate aboveground biomass (AGB) in tidal marshes, comparing models calibrated with destructive versus non-destructive in situ sampling methods. Imagery was collected over South Carolina’s North Inlet-Winyah Bay National Estuarine Research Reserve, and vegetation indices (VIs) were derived from sUAS imagery to model biomass. Stepwise linear regression was used to develop and validate models based on both sampling approaches. Destructive sampling models, particularly those using the Normalized Difference Vegetation Index (NDVI) and Difference Vegetation Index (DVI), achieved the lowest root mean square error (RMSE) values (as low as 70.91 g/m2), indicating higher predictive accuracy. Non-destructive models, while less accurate (minimum RMSE of 214.86 g/m2), demonstrated higher R2 values (0.44 and 0.61), suggesting the potential for broader application with further refinement. These findings highlight the trade-offs between ecological impact and model performance, and support the viability of non-destructive methods for biomass estimation in sensitive wetland environments. Future work should explore machine learning approaches and improved temporal alignment of data collection to enhance model robustness. Full article
Show Figures

Figure 1

28 pages, 2543 KiB  
Article
Assessing Plant Water Status and Physiological Behaviour Using Multispectral Images from UAV in Merlot Vineyards in Central Spain
by Luz K. Atencia Payares, Juan C. Nowack, Ana M. Tarquis and Maria Gomez-del-Campo
Remote Sens. 2025, 17(13), 2273; https://doi.org/10.3390/rs17132273 - 2 Jul 2025
Viewed by 249
Abstract
Water status is a key determinant of physiological performance and vineyard productivity. However, its assessment through field measurements is time-consuming and labour-intensive. Remote sensing offers a fast and reliable alternative to traditional in situ methods for the monitoring of the water status in [...] Read more.
Water status is a key determinant of physiological performance and vineyard productivity. However, its assessment through field measurements is time-consuming and labour-intensive. Remote sensing offers a fast and reliable alternative to traditional in situ methods for the monitoring of the water status in vineyards. This study aimed to assess the potential of high-resolution multispectral imagery acquired by UAVs to estimate the vine water status. The research was conducted over two growing seasons (2021 and 2022) in a commercial Merlot vineyard in Yepes (Toledo, Central Spain), under five irrigation regimes designed to generate a range of water statuses. UAV flights were performed at two times of day (09:00 and 12:00 solar time), coinciding with in-field measurements of physiological parameters. Stem water potential (SWP), chlorophyll content, and photosynthesis data were collected. The SWP consistently showed the strongest and most stable associations with vegetation indices (VIs) and the red spectral band at 12:00. A simple linear regression model using the NDVI explained up to 58% of the SWP variability regardless of the time of day or year. Multiple linear regression models incorporating the red and NIR bands yielded even higher predictive power (R2 = 0.62). Stronger correlations were observed at 12:00, especially when combining data from both years, highlighting the importance of midday measurements in capturing water stress effects. These findings demonstrate the potential of UAV-based multispectral imagery as a non-destructive and scalable tool for the monitoring of the vine water status under field conditions. Full article
Show Figures

Figure 1

15 pages, 17572 KiB  
Article
High-Resolution Mapping and Biomass Estimation of Suaeda salsa in Coastal Wetlands Using UAV Visible-Light Imagery and Hue Angle Inversion
by Lin Wang, Xiang Wang, Xiu Su, Shiyong Wen, Xinxin Wang, Qinghui Meng and Lingling Jiang
Appl. Sci. 2025, 15(13), 7423; https://doi.org/10.3390/app15137423 - 2 Jul 2025
Viewed by 219
Abstract
Unmanned Aerial Vehicles (UAVs) have become powerful tools for high-resolution, quantitative remote sensing in ecological and environmental studies. In this study, we present a novel approach to accurately mapping and estimating the biomass of Suaeda salsa using UAV-based visible-light imagery combined with hue [...] Read more.
Unmanned Aerial Vehicles (UAVs) have become powerful tools for high-resolution, quantitative remote sensing in ecological and environmental studies. In this study, we present a novel approach to accurately mapping and estimating the biomass of Suaeda salsa using UAV-based visible-light imagery combined with hue angle inversion modeling. By integrating diffuse reflectance standard plates into the flight protocol, we converted RGB pixel values into reflectance and derived hue angle metrics with enhanced radiometric accuracy. A hue angle cutoff threshold of 249.01° was identified as the optimal cutoff to distinguish Suaeda salsa from the surrounding land cover types with high confidence. To estimate biomass, we developed an exponential inversion model based on hue angle data calibrated through extensive field measurements. The resulting model—Biomass = 3.57639 × 10−15 × e0.12201×α—achieved exceptional performance (R2 = 0.99696; MAPE = 3.616%; RMSE = 0.02183 kg/m2), indicating strong predictive accuracy and robustness. This study highlights a cost-effective, non-destructive, and scalable method for the real-time monitoring of coastal vegetation, offering a significant advancement in remote sensing applications for wetland ecosystem management. Full article
(This article belongs to the Section Environmental Sciences)
Show Figures

Figure 1

20 pages, 2735 KiB  
Article
Leaf Area Estimation in High-Wire Tomato Cultivation Using Plant Body Scanning
by Hiroki Naito, Tokihiro Fukatsu, Kota Shimomoto, Fumiki Hosoi and Tomohiko Ota
AgriEngineering 2025, 7(7), 206; https://doi.org/10.3390/agriengineering7070206 - 1 Jul 2025
Viewed by 458
Abstract
Accurate estimation of the leaf area index (LAI), a key indicator of canopy development and light interception, is essential for improving productivity in greenhouse tomato cultivation. This study presents a non-destructive LAI estimation method using side-view images captured by a vertical scanning system. [...] Read more.
Accurate estimation of the leaf area index (LAI), a key indicator of canopy development and light interception, is essential for improving productivity in greenhouse tomato cultivation. This study presents a non-destructive LAI estimation method using side-view images captured by a vertical scanning system. The system recorded the full vertical profile of tomato plants grown under two deleafing strategies: modifying leaf height (LH) and altering leaf density (LD). Vegetative and leaf areas were extracted using color-based masking and semantic segmentation with the Segment Anything Model (SAM), a general-purpose deep learning tool. Regression models based on leaf or all vegetative pixel counts showed strong correlations with destructively measured LAI, particularly under LH conditions (R2 > 0.85; mean absolute percentage error ≈ 16%). Under LD conditions, accuracy was slightly lower due to occlusion and leaf orientation. Compared with prior 3D-based methods, the proposed 2D approach achieved comparable accuracy while maintaining low cost and a labor-efficient design. However, the system has not been tested in real production, and its generalizability across cultivars, environments, and growth stages remains unverified. This proof-of-concept study highlights the potential of side-view imaging for LAI monitoring and calls for further validation and integration of leaf count estimation. Full article
Show Figures

Figure 1

19 pages, 2692 KiB  
Article
Enhanced Spring Wheat Soil Plant Analysis Development (SPAD) Estimation in Hetao Irrigation District: Integrating Leaf Area Index (LAI) Under Variable Irrigation Conditions
by Qiang Wu, Dingyi Hou, Min Xie, Qi Gao, Mengyuan Li, Shuiyuan Hao, Chao Cui, Keke Fan, Yu Zhang and Yongping Zhang
Agriculture 2025, 15(13), 1372; https://doi.org/10.3390/agriculture15131372 - 26 Jun 2025
Viewed by 348
Abstract
Non-destructive monitoring of chlorophyll content through Soil Plant Analysis Development (SPAD) values is essential for precision agriculture in water-limited regions. However, current estimation methods using spectral information alone face significant limitations in sensitivity and transferability under variable irrigation conditions. While integrating canopy structural [...] Read more.
Non-destructive monitoring of chlorophyll content through Soil Plant Analysis Development (SPAD) values is essential for precision agriculture in water-limited regions. However, current estimation methods using spectral information alone face significant limitations in sensitivity and transferability under variable irrigation conditions. While integrating canopy structural parameters with spectral data represents a promising solution, systematic investigation of this approach throughout the entire growth cycle of spring wheat under different irrigation regimes remains limited. This study evaluated three machine learning algorithms (Random Forest, Support Vector Regression, and Multi-Layer Perceptron) for SPAD estimation in spring wheat cultivated in the Hetao Irrigation District. Using a split-plot experimental design with two irrigation treatments (conventional: four irrigations; limited: two irrigations) and five nitrogen levels (0–300 kg·ha−1), we analyzed ten vegetation indices derived from Unmanned Aerial Vehicle (UAV) multispectral imagery, with and without Leaf Area Index (LAI) integration, across six growth stages. Results demonstrated that incorporating LAI significantly improved SPAD estimation accuracy across all algorithms, with Random Forest exhibiting the most substantial enhancement (R2 increasing from 0.698 to 0.842, +20.6%; RMSE decreasing from 5.025 to 3.640, −27.6%). Notably, LAI contributed more significantly to SPAD estimation under limited irrigation conditions (R2 improvement: +17.6%) compared to conventional irrigation (+11.0%), indicating its particular value for chlorophyll monitoring in water-stressed environments. The Green Normalized Difference Vegetation Index (GNDVI) emerged as the most important predictor (importance score: 0.347), followed by LAI (0.213), confirming the complementary nature of spectral and structural information. These findings provide a robust framework for non-destructive SPAD estimation in spring wheat and highlight the importance of integrating canopy structural information with spectral data, particularly in water-limited agricultural systems. Full article
(This article belongs to the Special Issue Remote Sensing in Smart Irrigation Systems)
Show Figures

Figure 1

24 pages, 18914 KiB  
Article
Canopy Chlorophyll Content Inversion of Mountainous Heterogeneous Grasslands Based on the Synergy of Ground Hyperspectral and Sentinel-2 Data: A New Vegetation Index Approach
by Yi Zheng, Yao Wang, Tayir Aziz, Ali Mamtimin, Yang Li and Yan Liu
Remote Sens. 2025, 17(13), 2149; https://doi.org/10.3390/rs17132149 - 23 Jun 2025
Viewed by 414
Abstract
Canopy chlorophyll content (CCC) is a key indicator for assessing the carbon sequestration capacity and material cycling efficiency of ecosystems, and its accurate retrieval holds significant importance for analyzing ecosystem functioning. Although numerous destructive and remote sensing methods have been developed to estimate [...] Read more.
Canopy chlorophyll content (CCC) is a key indicator for assessing the carbon sequestration capacity and material cycling efficiency of ecosystems, and its accurate retrieval holds significant importance for analyzing ecosystem functioning. Although numerous destructive and remote sensing methods have been developed to estimate CCC, the accurate estimation of CCC remains a significant challenge in mountainous regions with complex terrain and heterogeneous vegetation types. Through the synergistic analysis of ground hyperspectral and Sentinel-2 data, this study employed Pearson correlation analysis and spectral resampling techniques to identify Sentinel-2 blue band B1 (443 nm) and red band B4 (665 nm) as chlorophyll-sensitive bands through spectral matching with the hyperspectral reflectance of typical grassland vegetation. Based on this, we developed a new four-band vegetation index (VI), the Dual Red-edge and Coastal Aerosol Vegetation Index (DRECAVI), for estimating the CCC of heterogeneous grasslands in the middle section of the Tianshan Mountains. DRECAVI incorporates red-edge anti-saturation modules (bands B4 and B7) and aerosol correction modules (bands B1 and B8). In order to test the performance of the new index, we compared it with eight commonly used indices and a hybrid model, the Sentinel-2 Biophysical Processor (S2BP). The results indicated the following: (1) DRECAVI demonstrated the highest accuracy in CCC retrieval for mountainous vegetation (R2 = 0.74, RMSE = 16.79, MAE = 12.50) compared to other VIs and hybrid methods, effectively mitigating saturation effects in high biomass areas and capturing a weak bimodal distribution pattern of CCC in the montane meadow. (2) The blue band B1 enhances atmospheric correction robustness by suppressing aerosol scattering, and the red-edge band B7 overcomes the sensitivity limitations of conventional red-edge indices (such as NDVI705, CIred-edge, and NDRE), demonstrating the potential application of the synergy mechanism between the blue band and the red-edge band. (3) Although the S2BP achieved high accuracy (R2 = 0.73, RMSE = 19.83, MAE = 14.71) without saturation effects and detected a bimodal distribution of CCC in the montane meadow of the study area, its algorithmic complexity hindered large-scale operational applications. In contrast, DRECAVI maintained similar precision while reducing algorithmic complexity, making it more suitable for regional-scale grassland dynamic monitoring. This study confirms that the synergistic use of multi-source data effectively overcomes the limitations of the spectral–spatial resolution of a single data source, providing a novel methodology for the precision monitoring of mountain ecosystems. Full article
Show Figures

Figure 1

13 pages, 4060 KiB  
Article
In Vitro Cultivation of the Orchid Hybrid Rhyncattleanthe Queen Bee JLA 1 and Its Propagation Under Different Systems
by Luis Alberto Solano-Rodríguez, María Elena Galindo-Tovar, Odon Castañeda-Castro, Juan Valente Hidalgo-Contreras, Joaquín Murguía-González, Gabriela Lucero Cuatra-Xicalhua, José Guadalupe Vián-Pérez, Pablo Antonio Mendoza del Ángel and Miriam Cristina Pastelín-Solano
Horticulturae 2025, 11(7), 722; https://doi.org/10.3390/horticulturae11070722 - 21 Jun 2025
Viewed by 329
Abstract
The Orchidaceae family is of significant decorative, pharmaceutical, alimentary, and cultural importance worldwide. This family is very vulnerable due to illegal looting, habitat destruction, and climate change. The development of new hybrids helps meet the demand for specimens that possess outstanding appearance, fragrance, [...] Read more.
The Orchidaceae family is of significant decorative, pharmaceutical, alimentary, and cultural importance worldwide. This family is very vulnerable due to illegal looting, habitat destruction, and climate change. The development of new hybrids helps meet the demand for specimens that possess outstanding appearance, fragrance, and resistance characteristics and may reduce illegal looting. The objective of this research was to investigate the in vitro propagation of the hybrid Rhyncattleanthe Queen Bee JLA 1 (Rth. Queen Bee JLA 1). Shoot induction was performed with germinated seedlings that were 1 cm in length on semi-solid MS medium with different 6-Benzylaminopurine (BAP), 1-Naphthaleneacetic acid (NAA), 3-Indoleacetic acid (IAA), and 3-indolebutyric acid (IBA) concentrations. Micropropagation was conducted using a temporary immersion system (TIS), a liquid continuous immersion system (CIS), and a conventional semi-solid system (SSS). Afterwards, all regenerated seedlings underwent an acclimatization stage. The highest numbers of shoots (7.04) and leaves (14.28) were obtained with the combination of 1.5 mg L−1 BAP and 0.4 mg L−1 NAA, while the addition of 0.4 mg L−1 IBA in combination with 1.5 mg L−1 BAP enhanced the length of stems (2.12 cm) and leaves (1.88 cm). TIS produced the highest number of shoots (15.68), leaves (22.92), stem length (5.94 cm), and number of leaves (3.50) in seedlings analyzed. The combination of growth regulators BAP and NAA together with the temporary immersion system influenced both the development of the vitroplants and their vegetative development after acclimatization of the hybrid Rth. Queen Bee JLA1 orchid. Full article
(This article belongs to the Special Issue The Role of Plant Growth Regulators in Horticulture)
Show Figures

Figure 1

Back to TopTop