In Vitro Cultivation of the Orchid Hybrid Rhyncattleanthe Queen Bee JLA 1 and Its Propagation Under Different Systems
Abstract
:1. Introduction
2. Materials and Methods
2.1. Hybridization
2.2. In Vitro Establishment
2.2.1. Preliminary Evaluation of Combinations of Growth Regulators
2.2.2. Selection of Treatments for Elongation and Generation of Shoots and Leaves
2.2.3. In Vitro Multiplication with Different Systems
2.3. Data Analysis
2.4. Acclimatization of Vitroplants of the Rth. Queen Bee JAL 1 Hybrid
3. Results
3.1. In Vitro Evaluation of Combinations of Growth Regulators on the Rth. Queen Bee JLA 1 Hybrid in Three Subcultures
3.2. Effect of Combinations of Prominent Growth Regulators
3.3. Effect of Semi-Solid System (SSS), Continuous Immersion System (ICS), and Temporary Immersion System (TIS) Type BIT on the In Vitro Propagation of the Orchid Hybrid
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
BAP | 6-Bencylaminopurine |
CIS | Continuous immersion system |
IAA | 3-indolacetic acid |
IBA | indole-3-butyric acid |
NAA | 1-naphthalenacetic acid |
Rth. | Rhyncattleanthe |
TIS | Temporary immersion system |
RHS | Royal Horticultural Society |
SSS | Semi-solid System |
BIT | Temporary immersion system bioreactors |
References
- Manu, P.; Ayushi, N.; Arundhati, S.; Aarushi, G.; Megha, R. Cattelya Orchids: A Mini Review. J. Crit. Rev. 2020, 7, 4592–4599. [Google Scholar] [CrossRef]
- Khasim, S.M.; Hegde, S.N.; González-Arnao, M.T.; Thammasiri, K. Orchid Biology: Recent Trends & Challenges; Springer: Singapore, 2020. [Google Scholar] [CrossRef]
- Chase, M.W.; Cameron, K.M.; Freudenstein, J.V.; Pridgeon, A.M.; Salazar, G.; Van den Berg, C.; Schuiteman, A. An updated classification of Orchidaceae. Bot. J. Linn. Soc. 2015, 177, 151–174. [Google Scholar] [CrossRef]
- Li, C.; Dong, N.; Zhao, Y.; Wu, S.; Liu, Z.; Zhai, J. A review for the breeding of orchids: Current achievements and prospects. Hortic. Plant J. 2021, 7, 380–392. [Google Scholar] [CrossRef]
- Hinsley, A.; de Boer, H.J.; Fay, M.F.; Gale, S.W.; Gardiner, L.M.; Gunasekara, R.S.; Kumar, P.; Masters, S.; Metusala, D.; Roberts, D.L.; et al. A review of the trade in orchids and its implications for conservation. Bot. J. Linn. Soc. 2017, 186, 435–455. [Google Scholar] [CrossRef]
- Vilcherrez-Atoche, J.A.; Silva, J.C.; Clarindo, W.R.; Mondin, M.; Cardoso, J.C. In Vitro Polyploidization of Brassolaeliocattleya Hybrid Orchid. Plants 2023, 12, 281. [Google Scholar] [CrossRef]
- Murguía-González, J.; Leyva-Ovalle, O.R.; Lee-Espinosa, H.E.; Galindo-Tovar, M.E.; Pardío-Sedas, V.T.; Llarena-Hernández, R.C. Orchid production systems (Orquidaceae) from Veracruz, México. Agroproductividad 2016, 9, 62–66. [Google Scholar]
- Bello-Bello, J.J.; Cruz-Cruz, C.A.; Pérez-Guerra, J.C. A new temporary immersion system for commercial micropropagation of banana (Musa AAA cv. Grand Naine). Vitr. Cell. Dev. Biol.-Plant 2019, 55, 313–320. [Google Scholar] [CrossRef]
- De, L.C.; Pathak, P.; Rao, A.N.; Rajeevan, P.K. 2 Global Orchid Industry. Commer. Orchid. 2019, 13–19. [Google Scholar] [CrossRef]
- Téllez-Casas, J.M.; López-Peralta, M.C.G.; Hernández-Meneses, E.; Cruz-Huerta, N. Direct organogenesis of spouts from Rhyncholaelia glauca (LINDLEY) schlechter seedlings germinated in vitro. J. Fitotec. Mex. 2024, 47, 293. [Google Scholar] [CrossRef]
- Cardoso, J.C.; Martinelli, A.P.; da Silva, J.A.T. A novel approach for the selection of Cattleya hybrids for precocious and season-independent flowering. Euphytica 2016, 210, 143–150. [Google Scholar] [CrossRef]
- De, L.C.; Senjam, B. Flower Drying Techniques for Orchids. In Geography, Earth Science and Environment: Research Highlights; BP International: Hong Kong, China, 2025; Volume 6, pp. 177–199. [Google Scholar] [CrossRef]
- Azzam, C.R. Genetic Resources, Breeding, and Molecular Genetic Markers for Orchard Improvement and Management. In Handbook of Research on Principles and Practices for Orchards Management; IGI Global: Hershey, PA, USA, 2022; pp. 70–115. [Google Scholar] [CrossRef]
- Sabastian, K.S.; Hemanta, L.; Ariina, M.M.S.; Khamrang, M.; Devi, M.P. Micropropagation of orchids. In Recent Trends in Forest and Horticultural Crop Propagation; Taran publication: Haryana, India; Volume 68, pp. 75–76. Available online: https://www.researchgate.net/publication/355031740_Micropropagation_of_Orchids2021 (accessed on 19 April 2025).
- Castillo-Pérez, L.J.; Maldonado-Miranda, Á.J.; Alonso-Castro, J.J.; Candy, C.-Á. Effect of 6-benzylaminopurine and potassium nitrate on the in vitro micropropagation of Laelia anceps subsp. anceps (Orchidaceae). Biotecnia 2020, 22, 32–38. [Google Scholar] [CrossRef]
- Hanun, A.; Karend, A.; Setiari, N.; Nurchayati, Y.; Azzahra, F.; Rashid, A. Somatic Embryo Enhancing of Phalaenopsis amabilis (L.) Blume Orchid with 6-Benzyl Amino Purine (BAP). J. Ris. Biol. Dan Aplikasinya 2025, 7, 88–98. [Google Scholar] [CrossRef]
- Hira, A.; Bijaya, P. In vitro seed germination and seedling growth of the orchid Dendrobium primulinum Lindl. Afr. J. Plant Sci. 2019, 13, 324–331. [Google Scholar] [CrossRef]
- Jaime, K.A.F.; Zacarías, M.d.C.O.; Gómez, O.G.A.; Zambrano, E.A.G.; Fuentes, H.R.; Pérez, G.R. Inducción de brotes a partir de varas florales de la orquídea Phalaenopsis spp. (Blume) in vitro. Rev. Mex. Cienc. Agric. 2019, 10, 1207–1218. [Google Scholar] [CrossRef]
- Timilsina, S.; Poudel, A.; Ghimire, N.; Neupane, S.; Poudel, P.R. Micropropagation of ornamental plants: A review on Nepalese protocols. Cogent Food Agric. 2025, 11, 2512165. [Google Scholar] [CrossRef]
- Su’UDi, M.; Rosida, W.; Ravitamala, E.S.; Siddiq, A.M.; Setiawan, R.; Setyati, D.; Ningrum, A.Y.; Roziqoh, W. Plant Breeding Techniques in Tissue Culture to Improve the Quality of Orchids. J. Ilmu Pertan. Indones. 2024, 30, 116–122. [Google Scholar] [CrossRef]
- Chugh, S.; Guha, S.; Rao, I.U. Micropropagation of orchids: A review on the potential of different explants. Sci. Hortic. 2009, 122, 507–520. [Google Scholar] [CrossRef]
- JCardoso, J.C.; Zanello, C.A.; Chen, J.-T. An Overview of Orchid Protocorm-Like Bodies: Mass Propagation, Biotechnology, Molecular Aspects, and Breeding. Int. J. Mol. Sci. 2020, 21, 985. [Google Scholar] [CrossRef]
- Alcántara, J.; Godoy, A.; Alcantara, J.; Sánchez, R. Main hormone regulators and their interactions in plant growth. Nova 2019, 32, 109–129. [Google Scholar]
- Garay-Arroyo, A.; de la Paz Sánchez, M.; García-Ponce, B.; Álvarez-Buylla, E.; Gutiérrez, C. Auxin homeostasis and its importance in the development of Arabidopsis thaliana. Rev. Educ. Bioquímica 2014, 33, 13–22. [Google Scholar]
- Celedón, P.V.; Martinez, H.C.; González, M.; Seeger, M. Review Biosynthesis of indole-3-acetic acid and plant growth promoting by bacteria. Cultiv. Trop. 2016, 37, 31–37. [Google Scholar] [CrossRef]
- Ramírez-Mosqueda, M.; Cruz-Cruz, C.; Atlahua-Temoxtle, J.; Bello-Bello, J. In vitro conservation and regeneration of Laelia anceps Lindl. S. Afr. J. Bot. 2018, 121, 219–223. [Google Scholar] [CrossRef]
- Cruz, K.Z.C.M.; Alencar, A.A.d.S.; Santana, J.G.S.; Alves, L.E.O. The Auxin and Cytokinin promotes the regeneration of shoots in Phalaenopsis Golden Peoker ‘BL’ HCC/AOS (Orchidaceae). Braz. J. Dev. 2024, 10, e68953. [Google Scholar] [CrossRef]
- Kunakhonnuruk, B.; Inthima, P.; Kongbangkerd, A. In vitro propagation of rheophytic orchid, Epipactis flava seidenf.—A comparison of semi-solid, continuous immersion and temporary immersion systems. Biology 2019, 8, 72. [Google Scholar] [CrossRef]
- Hwang, H.-D.; Kwon, S.-H.; Murthy, H.N.; Yun, S.-W.; Pyo, S.-S.; Park, S.-Y. Temporary Immersion Bioreactor System as an Efficient Method for Mass Production of In Vitro Plants in Horticulture and Medicinal Plants. Agronomy 2022, 12, 346. [Google Scholar] [CrossRef]
- Rico, S.; Garrido, J.; Sánchez, C.; Ferreiro-Vera, C.; Codesido, V.; Vidal, N. A Temporary Immersion System to Improve Cannabis sativa Micropropagation. Front. Plant Sci. 2022, 13, 895971. [Google Scholar] [CrossRef] [PubMed]
- Thanonkeo, S.; Kitwetcharoen, H.; Thanonkeo, P.; Klanrit, P. Temporary Immersion Bioreactor (TIB) System for Large-Scale Micropropagation of Musa sp. cv Kluai Numwa Pakchong 50. Horticulturae 2024, 10, 1030. [Google Scholar] [CrossRef]
- Your Personal Gardening Coach–And More for RHS Members/RHS. Available online: https://apps.rhs.org.uk/horticulturaldatabase/orchidregister/orchiddetails.asp?ID=1041072 (accessed on 29 January 2025).
- Xu, J.; Beleski, D.G.; Vendrame, W.A. Effects of culture methods and plant growth regulators on in vitro propagation of Brassavola nodosa (L.) Lindl. hybrid. Vitr. Cell. Dev. Biol.-Plant 2022, 58, 931–941. [Google Scholar] [CrossRef]
- Hazarika, B.N.; da Silva, J.A.T.; Talukdar, A. Effective Acclimatization of in Vitro Cultured Plants: Methods, Physiology and Genetics. 2006. Available online: https://www.researchgate.net/publication/283300426 (accessed on 20 February 2025).
- Castañeda, N.B.; Barrera, C.A.C.; Perez, M.M. Revisión sistemática sobre tipos de sustratos utilizados en la propagación de orquídeas bajo invernadero. Rev. Mutis 2022, 13, 1–18. [Google Scholar] [CrossRef]
- Vudala, S.; Padial, A.; Ribas, L. Micropropagation of Hadrolaelia grandis through transverse and longitudinal thin cell layer culture. S. Afr. J. Bot. 2018, 121, 76–82. [Google Scholar] [CrossRef]
- Aremu, A.O.; Plačková, L.; Pěnčík, A.; Novák, O.; Doležal, K.; Van Staden, J. Auxin-cytokinin interaction and variations in their metabolic products in the regulation of organogenesis in two Eucomis species. New Biotechnol. 2016, 33, 883–890. [Google Scholar] [CrossRef]
- Cavallaro, V.; Pellegrino, A.; Muleo, R.; Forgione, I. Light and Plant Growth Regulators on In Vitro Proliferation. Plants 2022, 11, 844. [Google Scholar] [CrossRef] [PubMed]
- Saravia-Castillo, G.; Figueroa, L.T.Y.; Borjas-Ventura, R. Auxins and Cytokinins elicit a differentiated response in the formation of shoots and roots in Cattleya maxima Lindl and Phalaenopsis amabilis (L.) Blume. Sci. Agropecu. 2022, 13, 63–69. [Google Scholar] [CrossRef]
- Aragón, C.E.; Escalona, M.; Rodríguez, R.; Cañal, M.J.; Capote, I.; Pina, D.; González-Olmedo, J. Effect of sucrose, light, and carbon dioxide on plantain micropropagation in temporary immersion bioreactors. Vitr. Cell. Dev. Biol.-Plant 2010, 46, 89–94. [Google Scholar] [CrossRef]
- Hvoslef-Eide, A.K.; Preil, W. Liquid Culture Systems for In Vitro Plant Propagation; Springer: Dordrecht, The Netherlands, 2005. [Google Scholar] [CrossRef]
- Zhao, Y.; Sun, W.; Wang, Y.; Saxena, P.K.; Liu, C.-Z. Improved mass multiplication of Rhodiola crenulata shoots using temporary immersion bioreactor with forced ventilation. Appl. Biochem. Biotechnol. 2012, 166, 1480–1490. [Google Scholar] [CrossRef] [PubMed]
- Solís-Zanotelli, F.Y.; Baltazar-Bernal, O. In vitro germination and development of ‘Canelita’ (Lycaste aromatica (Graham) Lindl.) in gravity immersion bioreactors. Res. Sq. 2022, 1–11. [Google Scholar] [CrossRef]
- Cuba-Díaz, M.; Acuña, D.; Cordero, C.M.; Klagges, M. Optimización de parámetros para la propagación in vitro de Colobanthus quitensis (Kunth) Bartl. Gayana Bot. 2014, 71, 58–67. [Google Scholar] [CrossRef]
- Delgado-Aceves, L.; Corona, S.; Marin-Castro, U.R.; Rascón-Díaz, M.P.; Portillo, L.; Gutiérrez-Mora, A.; González-Arnao, M.T. Comparative Studies for Cryopreservation of Agave Shoot Tips by Droplet-Vitrification. Plants 2024, 13, 2609. [Google Scholar] [CrossRef]
- Sánchez-Vidaña, M.R.; Tejeda-Sartorius, O.; Hernández-Anguiano, A.M.; Trejo-Téllez, L.I.; Soto-Hernández, R.M.; Gaytán-Acuña, E.A. Ambiente y antecedentes de floración en el crecimiento, inducción y desarrollo floral de Laelia anceps subesp. anceps (Orchidaceae). Agrociencia 2018, 52, 35–54. [Google Scholar]
- Bazzicalupo, M.; Calevo, J.; Adamo, M.; Giovannini, A.; Copetta, A.; Cornara, L. Micromorfología de semillas, germinación in vitro y características morfológicas de plántulas en etapa temprana de Cattleya purpurata (Lindl. y Paxton) Van den Berg. Horticulturae 2021, 7, 480. [Google Scholar] [CrossRef]
- Hernández, A.M.; de la O, J.L.R.; Cruz-Castillo, J.G.; Mascorro-Gallardo, J.O.; Juárez-Hernández, M.d.J.; Barrera-Guzmán, L.Á.; Mójica-Zárate, H.T. Micropropagation and phytopathology of calla lily (Zantedeschia spp.). Rev. Colomb. Cienc. Hortic. 2024, 18, e17623. [Google Scholar] [CrossRef]
Treatments | BAP | NAA | IAA | IBA |
---|---|---|---|---|
mg L−1 | ||||
T1 | 0 | 0 | 0 | 0 |
T2 | 0.1 | |||
T3 | 0.5 | |||
T4 | 1.0 | |||
T5 | 1.5 | |||
T6 | 2.0 | |||
T7 | 0.1 | 0.1 | ||
T8 | 0.5 | 0.2 | ||
T9 | 1.0 | 0.3 | ||
T10 | 1.5 | 0.4 | ||
T11 | 2.0 | 0.5 | ||
T12 | 0.1 | 0.1 | ||
T13 | 0.5 | 0.2 | ||
T14 | 1.0 | 0.3 | ||
T15 | 1.5 | 0.4 | ||
T16 | 2.0 | 0.5 | ||
T17 | 0.1 | 0.1 | ||
T18 | 0.5 | 0.2 | ||
T19 | 1.0 | 0.3 | ||
T20 | 1.5 | 0.4 | ||
T21 | 2.0 | 0.5 |
Propagation Systems | Number of Shoots | Number of Leaves | Leaf Length (cm) | Stem Length (cm) | Survival in Acclimatization (%) |
---|---|---|---|---|---|
TIS | 15.68 ± 3.95 a | 22.92 ± 2.40 a | 5.94 ± 1.00 a | 3.50 ± 1.17 a | 100 ± 0.00 a |
SSS | 6.48 ± 0.87 b | 5.40 ± 6.50 b | 2.14 ± 1.57 b | 1.93 ± 0.17 b | 96.66 ± 3.33 a |
CIS | 4.96 ± 2.93 b | 4.12 ± 0.50 b | 1.60 ± 0.73 b | 1.64 ± 0.61 b | 92.66 ± 7.34 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Solano-Rodríguez, L.A.; Galindo-Tovar, M.E.; Castañeda-Castro, O.; Hidalgo-Contreras, J.V.; Murguía-González, J.; Cuatra-Xicalhua, G.L.; Vián-Pérez, J.G.; Mendoza del Ángel, P.A.; Pastelín-Solano, M.C. In Vitro Cultivation of the Orchid Hybrid Rhyncattleanthe Queen Bee JLA 1 and Its Propagation Under Different Systems. Horticulturae 2025, 11, 722. https://doi.org/10.3390/horticulturae11070722
Solano-Rodríguez LA, Galindo-Tovar ME, Castañeda-Castro O, Hidalgo-Contreras JV, Murguía-González J, Cuatra-Xicalhua GL, Vián-Pérez JG, Mendoza del Ángel PA, Pastelín-Solano MC. In Vitro Cultivation of the Orchid Hybrid Rhyncattleanthe Queen Bee JLA 1 and Its Propagation Under Different Systems. Horticulturae. 2025; 11(7):722. https://doi.org/10.3390/horticulturae11070722
Chicago/Turabian StyleSolano-Rodríguez, Luis Alberto, María Elena Galindo-Tovar, Odon Castañeda-Castro, Juan Valente Hidalgo-Contreras, Joaquín Murguía-González, Gabriela Lucero Cuatra-Xicalhua, José Guadalupe Vián-Pérez, Pablo Antonio Mendoza del Ángel, and Miriam Cristina Pastelín-Solano. 2025. "In Vitro Cultivation of the Orchid Hybrid Rhyncattleanthe Queen Bee JLA 1 and Its Propagation Under Different Systems" Horticulturae 11, no. 7: 722. https://doi.org/10.3390/horticulturae11070722
APA StyleSolano-Rodríguez, L. A., Galindo-Tovar, M. E., Castañeda-Castro, O., Hidalgo-Contreras, J. V., Murguía-González, J., Cuatra-Xicalhua, G. L., Vián-Pérez, J. G., Mendoza del Ángel, P. A., & Pastelín-Solano, M. C. (2025). In Vitro Cultivation of the Orchid Hybrid Rhyncattleanthe Queen Bee JLA 1 and Its Propagation Under Different Systems. Horticulturae, 11(7), 722. https://doi.org/10.3390/horticulturae11070722