Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,073)

Search Parameters:
Keywords = VEGF-R2

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
31 pages, 4221 KiB  
Article
Estradiol Downregulates MicroRNA-193a to Mediate Its Angiogenic Actions
by Lisa Rigassi, Mirel Adrian Popa, Ruth Stiller, Brigitte Leeners, Marinella Rosselli and Raghvendra Krishna Dubey
Cells 2025, 14(15), 1134; https://doi.org/10.3390/cells14151134 - 23 Jul 2025
Cited by 1 | Viewed by 285
Abstract
Estrogens regulate many physiological processes in the human body, including the cardiovascular system. Importantly, Estradiol (E2) exerts its vascular protective actions, in part, by promoting endothelial repair via induction of endothelial cell (EC) proliferation, migration and angiogenesis. Recent evidence that microRNAs (miRNAs) play [...] Read more.
Estrogens regulate many physiological processes in the human body, including the cardiovascular system. Importantly, Estradiol (E2) exerts its vascular protective actions, in part, by promoting endothelial repair via induction of endothelial cell (EC) proliferation, migration and angiogenesis. Recent evidence that microRNAs (miRNAs) play an important role in vascular health and disease as well as in regulating Estrogen actions in many cell types. We hypothesize that E2 may mediate its vascular protective actions via the regulation of miRNAs. Following initial screening, we found that E2 downregulates the levels of miR-193a-3p in ECs. Moreover, miR-193a-3p downregulation by miR-193a-3p-antimir mimicked the effects as E2 on EC growth, migration, and capillary formation. Restoring miR-193a-3p levels with mimics after E2 treatment abrogated the vasculogenic actions of E2, suggesting a key role of miR-193a-3p in E2-mediated EC-growth-promoting effects. We further investigated the cellular mechanisms involved and found that miR-193a-3p inhibits angiogenesis by blocking phosphoinositide-3-kinase (PI3K)/Akt-vascular endothelial growth factor (VEGF) and Activin receptor-like kinase 1 (ALK1)/SMAD1/5/8 signaling in ECs, both pathways that are important in E2-mediated vascular protection. Additionally, using reverse transcription polymerase chain reaction (RT-PCR), we demonstrate that E2 downregulates miR-193a-3p in ECs via Estrogen Receptor (ER)α, but not ERβ or G protein-coupled estrogen receptor (GPER). Moreover, these actions occur post-transcriptionally, as the expression of pri-miR-193a-3p was not affected. The anti-angiogenic actions of miR-193a-3p were also observed in in vivo Matrigel implant-based capillary formation studies in ovariectomized mice where E2 induced capillary formation, and these effects were abrogated in the presence of miR-193a-3p, but not in the control mimic. Assessment of miR-193a-3p levels in plasma collected from in vitro fertilization (IVF) subjects with low and high E2 levels showed significantly lower miR-193a-3p levels in responders during the high E2 period. Hence, our findings provide the first evidence that miR-193a-3p mimic inhibits angiogenesis whereas its antimir is angiogenic. Importantly, E2 mediates its regenerative actions on ECs/capillary formation by downregulating endogenous miR-193a-3p expression. Both miR-193a-3p mimic or antimir may represent important therapeutic molecules to prevent or to induce endothelial function in treating pathophysiologies associated with capillary growth. Full article
Show Figures

Graphical abstract

16 pages, 1480 KiB  
Article
Enhanced Drug Screening Efficacy in Zebrafish Using a Highly Oxygen-Permeable Culture Plate
by Liqing Zang, Shota Kondo, Yukiya Komada and Norihiro Nishimura
Appl. Sci. 2025, 15(15), 8156; https://doi.org/10.3390/app15158156 - 22 Jul 2025
Viewed by 260
Abstract
Zebrafish are model organisms for drug screening owing to their transparent bodies, rapid embryonic development, and genetic similarities with humans. However, using standard polystyrene culture plates can limit the oxygen supply, potentially affecting embryo survival and the reliability of assays conducted in zebrafish. [...] Read more.
Zebrafish are model organisms for drug screening owing to their transparent bodies, rapid embryonic development, and genetic similarities with humans. However, using standard polystyrene culture plates can limit the oxygen supply, potentially affecting embryo survival and the reliability of assays conducted in zebrafish. In this study, we evaluated the application of a novel, highly oxygen-permeable culture plate (InnoCellTM) in zebrafish development and drug screening assays. Under both normal and oxygen-restricted conditions, zebrafish embryos cultured on InnoCellTM plates exhibited significantly improved developmental parameters, including heart rate and body length, compared with those cultured on conventional polystyrene plates. The InnoCellTM plate enabled a significant reduction in medium volume without compromising zebrafish embryo viability, thereby demonstrating its advantages, particularly in high-throughput 384-well formats. Drug screening tests using antiangiogenic receptor tyrosine kinase inhibitors (TKIs) revealed enhanced sensitivity and more pronounced biological effects in InnoCellTM plates, as evidenced by the quantification of intersegmental blood vessels and gene expression analysis of the vascular endothelial growth factor receptor (vegfr, also known as kdrl). These results indicate that the InnoCellTM highly oxygen-permeable plate markedly improves zebrafish-based drug screening efficiency and assay reliability, highlighting its potential for widespread application in biomedical research. Full article
Show Figures

Figure 1

16 pages, 14493 KiB  
Article
Identification of Drug Repurposing Candidates for Coxsackievirus B3 Infection in iPSC-Derived Brain-like Endothelial Cells
by Jacob F. Wood, John M. Vergis, Ali S. Imami, William G. Ryan, Jon J. Sin, Brandon J. Kim, Isaac T. Schiefer and Robert E. McCullumsmith
Int. J. Mol. Sci. 2025, 26(15), 7041; https://doi.org/10.3390/ijms26157041 - 22 Jul 2025
Viewed by 173
Abstract
The enterovirus Coxsackievirus B3 causes a range of serious health problems, including aseptic meningitis, myocarditis, and pancreatitis. Currently, Coxsackievirus B3 has no targeted antiviral treatments or vaccines, leaving supportive care as the primary management option. Understanding how Coxsackievirus B3 interacts with and alters [...] Read more.
The enterovirus Coxsackievirus B3 causes a range of serious health problems, including aseptic meningitis, myocarditis, and pancreatitis. Currently, Coxsackievirus B3 has no targeted antiviral treatments or vaccines, leaving supportive care as the primary management option. Understanding how Coxsackievirus B3 interacts with and alters the blood–brain barrier may help identify new therapies to combat this often-devastating infection. We reanalyzed a previously published RNA sequencing dataset for Coxsackievirus B3-infected human-induced pluripotent stem-cell-derived brain endothelial cells (iBECs) to examine how Coxsackievirus B3 altered mRNA expression. By integrating GSEA, EnrichR, and iLINCs-based perturbagen analysis, we present a novel, systems-level approach to uncover potential drug repurposing candidates for CVB3 infection. We found dynamic changes in host transcriptomic response to Coxsackievirus B3 infection at 2- and 5-day infection time points. Downregulated pathways included ribosomal biogenesis and protein synthesis, while upregulated pathways included a defense response to viruses, and interferon production. Using iLINCs transcriptomic analysis, MEK, PDGFR, and VEGF inhibitors were identified as possible novel antiviral therapeutics. Our findings further elucidate Coxsackievirus B3-associated pathways in (iBECs) and highlight potential drug repurposing candidates, including pelitinib and neratinib, which may disrupt Coxsackievirus B3 pathology at the blood–brain barrier (BBB). Full article
Show Figures

Figure 1

15 pages, 1711 KiB  
Article
Ajuforrestin A Inhibits Tumor Proliferation and Migration by Targeting the STAT3/FAK Signaling Pathways and VEGFR-2
by Sibei Wang, Yeling Li, Mingming Rong, Yuejun Li, Yaxin Lu, Shen Li, Dongho Lee, Jing Xu and Yuanqiang Guo
Biology 2025, 14(8), 908; https://doi.org/10.3390/biology14080908 - 22 Jul 2025
Viewed by 214
Abstract
Natural products, characterized by their structural novelty, multi-target capabilities, and favorable toxicity profiles, represent a prominent reservoir for the discovery of innovative anticancer therapeutics. In the current investigation, we identified ajuforrestin A, a diterpenoid compound extracted from Ajuga lupulina Maxim, as a potent [...] Read more.
Natural products, characterized by their structural novelty, multi-target capabilities, and favorable toxicity profiles, represent a prominent reservoir for the discovery of innovative anticancer therapeutics. In the current investigation, we identified ajuforrestin A, a diterpenoid compound extracted from Ajuga lupulina Maxim, as a potent agent against lung cancer. In vitro, this compound markedly curtailed the proliferation of A549 cells. Mechanistic explorations revealed that ajuforrestin A could arrest A549 cells in the G0/G1 phase of the cell cycle, provoke apoptosis in cancer cells, and impede their migration by modulating the STAT3 and FAK signaling cascades. Angiogenesis is indispensable for tumor formation, progression, and metastatic dissemination. Vascular endothelial growth factor (VEGF) and its receptor VEGFR-2 are established as crucial mediators in tumor neovascularization, a process fundamental to both the expansion of tumor cells and the development of new blood vessels within the tumor milieu. Through the combined application of a Tg(fli1:EGFP) zebrafish model and SPR experimentation, we furnished strong evidence for the ability of ajuforrestin A to obstruct tumor angiogenesis via selective engagement with VEGFR-2. Finally, a zebrafish xenograft tumor model demonstrated that ajuforrestin A could effectively restrain tumor growth and metastasis in vivo. Ajuforrestin A therefore shows considerable promise as a lead compound for the future development of therapies against non-small cell lung cancer (NSCLC). Full article
(This article belongs to the Section Biochemistry and Molecular Biology)
Show Figures

Graphical abstract

17 pages, 3121 KiB  
Article
Hydroxytyrosol Reprograms the Tumor Microenvironment in 3D Melanoma Models by Suppressing ERBB Family and Kinase Pathways
by David Tovar-Parra and Marion Zammit Mangion
Int. J. Mol. Sci. 2025, 26(14), 6957; https://doi.org/10.3390/ijms26146957 - 20 Jul 2025
Viewed by 325
Abstract
Malignant cutaneous melanoma is among the most aggressive forms of skin cancer, characterized by high metastatic potential and frequent resistance to standard therapies. Hydroxytyrosol, a phenolic compound derived from extra virgin olive oil, has shown promising anticancer properties in various models, yet its [...] Read more.
Malignant cutaneous melanoma is among the most aggressive forms of skin cancer, characterized by high metastatic potential and frequent resistance to standard therapies. Hydroxytyrosol, a phenolic compound derived from extra virgin olive oil, has shown promising anticancer properties in various models, yet its effects in 3D melanoma systems remain poorly understood. In this study, we used paired 3D spheroid models of non-tumorigenic (HEMa) and melanoma (C32) to assess the therapeutic potential of hydroxytyrosol. To evaluate the anti-tumoral effect of hydroxytyrosol, we performed cytotoxicity, metastasis, invasiveness, cell cycle arrest, apoptotic, and proteomic assays. Hydroxytyrosol treatment significantly impaired spheroid growth, reduced cell viability, and induced cell cycle arrest and apoptosis in C32 spheroids, with minimal cytotoxicity observed in HEMa models. Proteomic profiling further demonstrated that hydroxytyrosol selectively downregulated a network of oncogenic proteins, including ERBB2, ERBB3, ERBB4, VEGFR-2, and WIF-1, along with suppression of downstream PI3K-Akt and MAPK/ERK signaling pathways. In conclusion, compared to dabrafenib, hydroxytyrosol exerted a broader range of molecular effects and was more selective toward tumor cells. These findings support the use of hydroxytyrosol as a multi-targeted agent capable of attenuating melanoma progression through suppression of kinase signaling and tumor-stromal interactions. Full article
Show Figures

Figure 1

20 pages, 311 KiB  
Article
Serum Concentrations of Vascular Endothelial Growth Factor in Polish Patients with Systemic Lupus Erythematosus Are Associated with Cardiovascular Risk and Autoantibody Profiles
by Katarzyna Fischer, Hanna Przepiera-Będzak, Marcin Sawicki, Maciej Brzosko and Marek Brzosko
J. Clin. Med. 2025, 14(14), 5133; https://doi.org/10.3390/jcm14145133 - 19 Jul 2025
Viewed by 384
Abstract
Background/Objectives: This study was conducted to analyze the associations between vascular endothelial growth factor (VEGF) serum concentrations and immunological biomarkers, inflammatory parameters, classical atherosclerosis risk factors, and cardiovascular manifestations in systemic lupus erythematosus (SLE) patients. Methods: The project included 83 individuals [...] Read more.
Background/Objectives: This study was conducted to analyze the associations between vascular endothelial growth factor (VEGF) serum concentrations and immunological biomarkers, inflammatory parameters, classical atherosclerosis risk factors, and cardiovascular manifestations in systemic lupus erythematosus (SLE) patients. Methods: The project included 83 individuals suffering from SLE, with 20 healthy individuals as controls. The serum levels of VEGF were determined through the ELISA method using R&D Systems tests. Laboratory markers, autoantibody profiles, traditional atherosclerotic risk factors, and organ manifestations were evaluated. Atherosclerotic changes were determined based on several indices including carotid intima-media thickness, ankle-brachial index and high resistance index assessments. Results: The reference range of serum VEGF concentrations was established based on the 25th and 75th percentiles obtained in the controls. High VEGF levels were significantly correlated with the presence of selected anti-phospholipid antibodies such as anti-prothrombin (OR = 10.7; 95%CI: 2.1–53.4) and anti-beta2 glycoprotein I (OR = 3.5; 95%CI: 1.1–10.8), as well as cardiac disorders (OR = 8.0; 95%CI: 1.6–39.5). On the other hand, low concentrations of VEGF were significantly related to lower frequencies of anti-double-stranded DNA antibodies (OR = 0.31; 95%CI: 0.11–0.91) and anti-endothelial cell antibodies (OR = 0.30; 95%CI: 0.11–0.85). Patients with low VEGF levels showed significantly reduced risks of atherosclerotic lesions (OR = 0.24; 95%CI: 0.04–0.99) and vasculitis development (OR = 0.17; 95%CI = 0.03–0.91). Conclusions: In conclusion, VEGF’s pathogenetic role in SLE and SLE-related atherothrombosis is manifested in close correlation with aPLs which may enhance their direct impact on endothelium. High VEGF levels are helpful for identifying cardiovascular risk in patients, while low concentrations indicate lower disease activity, as well as a lower risk of organ involvement. Full article
(This article belongs to the Section Clinical Laboratory Medicine)
15 pages, 3945 KiB  
Article
Modeling Aberrant Angiogenesis in Arteriovenous Malformations Using Endothelial Cells and Organoids for Pharmacological Treatment
by Eun Jung Oh, Hyun Mi Kim, Suin Kwak and Ho Yun Chung
Cells 2025, 14(14), 1081; https://doi.org/10.3390/cells14141081 - 15 Jul 2025
Viewed by 354
Abstract
Arteriovenous malformations (AVMs) are congenital vascular anomalies defined by abnormal direct connections between arteries and veins due to their complex structure or endovascular approaches. Pharmacological strategies targeting the underlying molecular mechanisms are thus gaining increasing attention in an effort to determine the mechanism [...] Read more.
Arteriovenous malformations (AVMs) are congenital vascular anomalies defined by abnormal direct connections between arteries and veins due to their complex structure or endovascular approaches. Pharmacological strategies targeting the underlying molecular mechanisms are thus gaining increasing attention in an effort to determine the mechanism involved in AVM regulation. In this study, we examined 30 human tissue samples, comprising 10 vascular samples, 10 human fibroblasts derived from AVM tissue, and 10 vascular samples derived from healthy individuals. The pharmacological agents thalidomide, U0126, and rapamycin were applied to the isolated endothelial cells (ECs). The pharmacological treatments reduced the proliferation of AVM ECs and downregulated miR-135b-5p, a biomarker associated with AVMs. The expression levels of angiogenesis-related genes, including VEGF, ANG2, FSTL1, and MARCKS, decreased; in comparison, CSPG4, a gene related to capillary networks, was upregulated. Following analysis of these findings, skin samples from 10 AVM patients were reprogrammed into induced pluripotent stem cells (iPSCs) to generate AVM blood vessel organoids. Treatment of these AVM blood vessel organoids with thalidomide, U0126, and rapamycin resulted in a reduction in the expression of the EC markers CD31 and α-SMA. The establishment of AVM blood vessel organoids offers a physiologically relevant in vitro model for disease characterization and drug screening. The authors of future studies should aim to refine this model using advanced techniques, such as microfluidic systems, to more efficiently replicate AVMs’ pathology and support the development of personalized therapies. Full article
Show Figures

Figure 1

34 pages, 2170 KiB  
Article
In Silico Evaluation of Quinolone–Triazole and Conazole–Triazole Hybrids as Promising Antimicrobial and Anticancer Agents
by Humaera Noor Suha, Mansour H. Almatarneh, Raymond A. Poirier and Kabir M. Uddin
Int. J. Mol. Sci. 2025, 26(14), 6752; https://doi.org/10.3390/ijms26146752 - 14 Jul 2025
Viewed by 280
Abstract
Cancer remains one of the leading causes of death globally, highlighting the urgent need for novel anticancer therapies with higher efficacy and reduced toxicity. Similarly, the rise in multidrug-resistant pathogens and emerging infectious diseases underscores the critical demand for new antimicrobial agents that [...] Read more.
Cancer remains one of the leading causes of death globally, highlighting the urgent need for novel anticancer therapies with higher efficacy and reduced toxicity. Similarly, the rise in multidrug-resistant pathogens and emerging infectious diseases underscores the critical demand for new antimicrobial agents that target resistant infections through unique mechanisms. This study used computational approaches to investigate twenty quinolone–triazole and conazole–triazole hybrid derivatives as antimicrobial and anticancer agents (120) with nine reference drugs. By studying their interactions with 6 bacterial DNA gyrase and 10 cancer-inducing target proteins (E. faecalis, M. tuberculosis, S. aureus, E. coli, M. smegmatis, P. aeruginosa and EGFR, MPO, VEGFR, CDK6, MMP1, Bcl-2, LSD1, HDAC6, Aromatase, ALOX15) and comparing them with established drugs such as ampicillin, cefatrizine, fluconazole, gemcitabine, itraconazole, ribavirin, rufinamide, streptomycin, and tazobactam, compounds 15 and 16 emerged as noteworthy antimicrobial and anticancer agents, respectively. In molecular dynamics simulations, compounds 15 and 16 had the strongest binding at −10.6 kcal mol−1 and −12.0 kcal mol−1 with the crucial 5CDQ and 2Z3Y proteins, respectively, exceeded drug-likeness criteria, and displayed extraordinary stability within the enzyme’s pocket over varied temperatures (300–320 K). In addition, we used density functional theory (DFT) to calculate dipole moments and molecular orbital characteristics and analyze the thermodynamic stability of putative antimicrobial and anticancer derivatives. This finding reveals a well-defined, possibly therapeutic relationship, supported by theoretical and future in vitro and in vivo studies. Compounds 15 and 16, thus, emerged as intriguing contenders in the fight against infectious diseases and cancer. Full article
(This article belongs to the Special Issue Peptide Self-Assembly)
Show Figures

Figure 1

24 pages, 6571 KiB  
Article
Leech Extract Enhances the Pro-Angiogenic Effects of Endothelial Cell-Derived Exosomes in a Mouse Model of Ischemic Stroke
by Yushuang Cao, Jin Sun, Lichen Guo, Meng Wang, Linlin Su, Tong Zhang, Shaoxia Wang, Lijuan Chai, Qing Yuan and Limin Hu
Curr. Issues Mol. Biol. 2025, 47(7), 499; https://doi.org/10.3390/cimb47070499 - 1 Jul 2025
Viewed by 367
Abstract
Background: Intercellular communication, facilitated by exosomes (Exos) derived from endothelial cells (ECs), significantly influences the regulation of angiogenesis. Leech extract significantly reduces ischemia–reperfusion injury, promotes angiogenesis, and improves neurological function in mice with stroke. However, further investigation is required to determine whether leech [...] Read more.
Background: Intercellular communication, facilitated by exosomes (Exos) derived from endothelial cells (ECs), significantly influences the regulation of angiogenesis. Leech extract significantly reduces ischemia–reperfusion injury, promotes angiogenesis, and improves neurological function in mice with stroke. However, further investigation is required to determine whether leech promotes angiogenesis through EC-Exo. Objective: This study aims to further explore whether leech regulates Exos to promote the establishment of collateral circulation in mice with ischemic stroke (IS) and the specific mechanisms involved. Methods: Here, we utilized an in vitro co-culture system comprising ECs and pericytes to investigate the impact of Leech-EC-Exo on enhancing the proliferation and migration of mouse brain microvascular pericytes (MBVPs). We further established an in vivo mouse model of middle cerebral artery occlusion/reperfusion (MCAO/R) to investigate the effects and underlying mechanisms of leech on collateral circulation establishment. Results: The findings demonstrated that leech significantly enhanced the in vitro cell migration number and migration number of pericytes. Therefore, it can also enhance the effect of EC-Exo on improving the infarct area and gait of mice, as well as modulating the HIFα-VEGF-DLL4-Notch1 signaling pathway to promote cerebral angiogenesis and facilitating the stable maturation of neovascularization in vivo. Conclusions: These results suggest that leech has the potential to enhance collateral circulation establishment, and its mechanism may involve the modulation of miRNA content in Exos and the promotion of signaling pathways associated with angiogenesis and vascular maturation. Full article
(This article belongs to the Section Molecular Medicine)
Show Figures

Figure 1

39 pages, 7427 KiB  
Article
Molecular Mediated Angiogenesis and Vasculogenesis Networks
by Claudiu N. Lungu, Ionel I. Mangalagiu, Aurelia Romila, Aurel Nechita, Mihai V. Putz and Mihaela C. Mehedinti
Int. J. Mol. Sci. 2025, 26(13), 6316; https://doi.org/10.3390/ijms26136316 - 30 Jun 2025
Viewed by 502
Abstract
By stimulating living tissues with proper molecules, the angiogenesis and vasculogenesis processes can be observed. Prostaglandin E1 (PGE1), which is a molecule that widens blood vessels and which is used for several medical purposes, such as treating critical limb ischemia, is a typical [...] Read more.
By stimulating living tissues with proper molecules, the angiogenesis and vasculogenesis processes can be observed. Prostaglandin E1 (PGE1), which is a molecule that widens blood vessels and which is used for several medical purposes, such as treating critical limb ischemia, is a typical leading molecule in angiogenesis studies. Nevertheless, its involvement in vasculogenesis and morphogenesis is a more specific subject in the field of developmental biology and therapeutic research. Vasculogenesis is the embryonic phenomenon in which endothelial progenitor cells generate new blood vessels. This phenomenon is distinct and divergent from angiogenesis, which entails the creation of novel blood vessels extending from pre-existing ones. Morphogenesis is the biological phenomenon responsible for the development of an organism or its components into a specific shape. Embryonic development and tissue regeneration are essential components. Current research is investigating the broader consequences of prostaglandins, such as PGE1, in the fields of developmental biology and regenerative medicine. Gaining knowledge about the impact of PGE1 on morphogenesis could provide valuable insights into congenital vascular abnormalities and innovative approaches for tissue repair and regeneration, especially in limb ischemia. In this study, a histologic and morphogenesis study was carried out on Artemia salina napi (first stage of development) by simulating the angiogenesis and morphogenesis processes using PGE1 as the top molecule with vasoactive properties and a series of benopyridyne (3-aminoquinolines, 5-amino quinolines, 8-aminoquinolines, 8-hydroxyquinolines and quinolines, respectively). A series of 30 Artemia salina napi were exposed to the compound listed before. Also, a lot of 30 unexposed Artemia salina napi was taken into account. In total, 210 Artemia salina napi were studied as a model for angionensis and morphogenesis. The study used wet experiments together with imaging reconstruction and graph-generating methodologies. The results show that PGE1 can initiate the shape of the vessel formation. Also, some quinoline series have a pro-mild morphogenetic and angiogenetic effect. Overall, PGE1 plays a significant role in mediating vasculogenesis and morphogenesis through its vasodilatory, anti-inflammatory, and pro-proliferative effects on endothelial cells. PGE1 is involved mainly in increasing the length of the vessel, while the number of vascular branching has an all-simulating general impact. However, the molecules with mild vasculogenic effects tend to develop more complex, limited vascular networks, having a more localized role in the angiogenetic process. Overall imaging and graph analysis showed significant and distinct properties of the vascular network-derived graph. Full article
(This article belongs to the Special Issue Molecular Mechanism and Treatment of Hemangioma)
Show Figures

Figure 1

15 pages, 256 KiB  
Article
Systemic and Local Immunological Markers in Preeclampsia
by Almagul Kurmanova, Altynay Nurmakova, Damilya Salimbayeva, Gulfiruz Urazbayeva, Gaukhar Kurmanova, Natalya Kravtsova, Zhanar Kypshakbayeva and Madina Khalmirzaeva
Diagnostics 2025, 15(13), 1644; https://doi.org/10.3390/diagnostics15131644 - 27 Jun 2025
Viewed by 406
Abstract
Preeclampsia (PE) is one of the main causes of obstetric complications and leads to both maternal and neonatal mortality. The maternal innate immune system plays an important role throughout pregnancy by providing protection against pathogens, while simultaneously inducing tolerance to a semi-allogenic developing [...] Read more.
Preeclampsia (PE) is one of the main causes of obstetric complications and leads to both maternal and neonatal mortality. The maternal innate immune system plays an important role throughout pregnancy by providing protection against pathogens, while simultaneously inducing tolerance to a semi-allogenic developing fetus and placental development. Background/Objectives: To conduct a comparative study of immunological markers in the blood and placenta in preeclampsia. Methods: A total of 35 pregnant women were enrolled in a comparative study with preeclampsia (7) and with physiological pregnancy (28). A study of the immune status in peripheral blood and placenta was conducted with an examination of the subpopulation of lymphocytes profile and intracellular cytokines production by flow cytometry. Results: In the blood of pregnant women with PE, there was a decrease in CD14+ monocytes, as well as a significant increase of natural killers CD16+, CD56+ and activation markers HLA-DR+ and CD95+, as well as a significant rise in production of IL-10, TNF, Perforin, GM-CSF, and IGF. At the same time, in placental tissue in patients with preeclampsia, on the contrary, a significant decrease in regulatory cells CD4+, CD8+, CD14+, CD56+, CD59+, activation markers CD95+, as well as anti-inflammatory cytokine IL-10, growth factors VEGFR and IGF was detected. Conclusions: The maternal–fetal immune profile is crucial for successful fetal development and dysregulation of T-, B-, and NK cells can contribute to inflammation, oxidative stress, and the development of preeclampsia. Full article
(This article belongs to the Special Issue New Insights into Maternal-Fetal Medicine: Diagnosis and Management)
22 pages, 3860 KiB  
Article
In Vitro and In Silico Wound-Healing Activity of Two Cationic Peptides Derived from Cecropin D in Galleria mellonella
by Sandra Patricia Rivera-Sanchez, Iván Darío Ocampo-Ibáñez, Maria Camila Moncaleano, Yamil Liscano, Liliana Janeth Flórez Elvira, Yesid Armando Aristizabal Salazar, Luis Martínez-Martínez and Jose Oñate-Garzon
Antibiotics 2025, 14(7), 651; https://doi.org/10.3390/antibiotics14070651 - 27 Jun 2025
Viewed by 502
Abstract
Background: Chronic wounds pose a significant public health challenge due to high treatment costs and the limited efficacy of current therapies. This study aims to evaluate the in vitro wound-healing activity and in silico interactions of two antimicrobial cationic peptides, derived from Galleria [...] Read more.
Background: Chronic wounds pose a significant public health challenge due to high treatment costs and the limited efficacy of current therapies. This study aims to evaluate the in vitro wound-healing activity and in silico interactions of two antimicrobial cationic peptides, derived from Galleria mellonella cecropin D, whose receptors are involved in tissue healing. Methods: Two peptides were tested: a long peptide (∆M2, 39 amino acids) and a short peptide (CAMP-CecD, 18 amino acids). Their cytotoxicity, as well as their effects on fibroblast proliferation and migration, were assessed using Detroit 551 cells. In parallel, molecular docking studies were conducted with AutoDock Vina to predict the binding affinities of these peptides to the key receptors involved in wound healing: the epidermal growth factor receptor (EGFR), the transforming growth factor beta receptor (TGFRβ2), and the vascular endothelial growth factor receptor (VEGFR). Results: In vitro assays showed that the short peptide exhibited lower cytotoxicity and significantly enhanced cell proliferation and migration, leading to a greater percentage of gap closure compared to the long peptide. A docking analysis revealed binding affinities of −6.7, −7.2, and −5.6 kcal/mol for VEGFR, EGFR, and TGFRβ2, respectively, with the RMSD values below 2 Å, indicating stable binding interactions. Conclusions: These findings suggest that the structure and cationic charge of the short peptide facilitate robust interactions with growth factor receptors, enhancing re-epithelialization and tissue regeneration. Consequently, this peptide is a promising candidate ligand for the treatment of chronic wounds and associated infections. Full article
Show Figures

Figure 1

24 pages, 8581 KiB  
Article
Preclinical Evidence That Mesoglycan Unfolds Complex Anti-Aging Effects in Photoaged Female Facial Skin
by Assaf Zeltzer, Aviad Keren, Ralf Paus and Amos Gilhar
Int. J. Mol. Sci. 2025, 26(12), 5787; https://doi.org/10.3390/ijms26125787 - 17 Jun 2025
Viewed by 538
Abstract
Novel senotherapeutics are needed to reverse aging-related skin decline. The research question addressed was whether mesoglycan, a clinically approved glycosaminoglycan formulation known to enhance perfusion, angiogenesis, and VEGF-A signaling, possesses therapeutic potential for rejuvenating photo aged human skin. To test this, we treated [...] Read more.
Novel senotherapeutics are needed to reverse aging-related skin decline. The research question addressed was whether mesoglycan, a clinically approved glycosaminoglycan formulation known to enhance perfusion, angiogenesis, and VEGF-A signaling, possesses therapeutic potential for rejuvenating photo aged human skin. To test this, we treated full-thickness photoaged facial human skin samples (mean age: 72 ± 5 years) from seven women ex vivo. The samples were treated with topical or medium-delivered mesoglycan (100, 200, and 300 µM) for 6 days under serum-free conditions that accelerate skin aging. Biomarkers associated with aging were assessed using quantitative immunohistomorphometry. Mesoglycan treatment improved key skin aging biomarkers at all doses. Compared to vehicle-treated skin, mesoglycan broadly enhanced epidermal structure and function, improved pigmentation-related markers, reduced cellular senescence, boosted mitochondrial performance and antioxidant defenses, and improved dermal matrix structure and microvasculature density. Notably, mesoglycan also upregulated VEGF-A and VEGFR2, promoting skin rejuvenation. Medium-delivered mesoglycan produced stronger overall effects, while rete ridge reappearance was observed exclusively after topical application. Mesoglycan demonstrates senotherapeutic potential in photoaged human skin, acting via complementary pathways, including VEGF-A upregulation. Although medium-delivered mesoglycan yielded the greatest biomarker improvements topical application restored rete ridges, a sign of epidermal reorganization and also significantly enhanced basement membrane structure, pigmentation, mitochondrial function and antioxidant defenses, while avoiding systemic exposure, making it the safer and more feasible route for localized skin anti-aging. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Graphical abstract

17 pages, 2320 KiB  
Article
Ultrasound as a New Method for the Release and Identification of Novel microRNAs and Proteins as Candidate Biomarkers in Pancreatic Cancer
by Veronica Zelli, Alessandra Corrente, Chiara Compagnoni, Francesco Colaianni, Martina Sara Miscione, Monica Di Padova, Daria Capece, Gaetano Barbato, Edoardo Alesse, Francesca Zazzeroni and Alessandra Tessitore
Cancers 2025, 17(12), 1979; https://doi.org/10.3390/cancers17121979 - 13 Jun 2025
Viewed by 568
Abstract
Background/Objectives: Pancreatic cancer (PC) is among the most aggressive malignancies, often diagnosed at late stages. MicroRNAs (miRNAs) and proteins released from the tumor microenvironment into body fluids represent promising non-invasive biomarkers for early cancer detection. In this study, we took advantage of an [...] Read more.
Background/Objectives: Pancreatic cancer (PC) is among the most aggressive malignancies, often diagnosed at late stages. MicroRNAs (miRNAs) and proteins released from the tumor microenvironment into body fluids represent promising non-invasive biomarkers for early cancer detection. In this study, we took advantage of an innovative ultrasound (US)-based instrument (SonoWell®, Inno-Sol srl, Rome, Italy) to treat PC cells in order to promote and amplify the release of molecules, with the aim of identifying novel putative diagnostic PC biomarkers. Methods: Three human pancreatic adenocarcinoma cell lines (T3M-4, Panc02.03, and PaCa-44) and a non-cancerous pancreatic epithelial line (HPanEPic) were subjected to US using the SonoWell instrument. MiRNAs released in the supernatants were profiled by TaqMan-based qRT-PCR microfluidic cards, while proteins were analyzed by antibody arrays. Publicly available datasets of circulating miRNAs in PC patients were also reviewed. Results: Expression levels of 22 miRNAs in T3M-4 cells, 11 in Panc02.03, and 22 in PaCa-44, none of which were identified in the non-cancerous cell line profiling, were increased in the supernatant of US-treated as opposed to control cells. Among the statistically significant miRNAs or miRNAs common to at least two tumor cell lines, the expression levels of miR-155-5p, miR-320a, miR-32-5p, and miR-93-5p were also found to be significantly upregulated in sera from PC patients compared to the results for healthy controls. With regard to proteins released after sonication, several molecules were identified as candidate biomarkers in cancer US supernatants (Beta-2 microglobulin, CA125, CA19-9, CEA, CRP, Galectin-3, TIMP-1, uPA, and VEGF-A). Conclusions: We demonstrated that US-mediated sonoporation can promote and amplify the release of small molecules, miRNAs, and proteins into cell culture supernatants for consideration as putative biomarkers, thus encouraging further studies aimed at directly validating their expression levels in sera/plasma from PC patients and at deepening their role in the treatment of PC. Full article
(This article belongs to the Special Issue Management of Pancreatic Cancer)
Show Figures

Graphical abstract

12 pages, 1354 KiB  
Article
Expression of HCMV-Encoded miRNA in Subjects Acutely Coinfected with HIV: Correlation with Inflammation and Immune Activation
by Elisabetta Lazzari, Gabriella Rozera, Rozenn Esvan, Roberta Gagliardini, Valentina Mazzotta, Annalisa Mondi, Luigi Federici, Enrico Girardi, Andrea Antinori, Fabrizio Maggi and Isabella Abbate
Int. J. Mol. Sci. 2025, 26(12), 5673; https://doi.org/10.3390/ijms26125673 - 13 Jun 2025
Viewed by 366
Abstract
Human cytomegalovirus (HCMV) coinfection is associated with a faster HIV disease progression and adverse clinical outcomes. HCMV-encoded miRNA expression, in individuals acutely infected with HIV (AHI), compared to those with HCMV monoinfection, was investigated in relation to viral replication and inflammation/immune activation. Sixteen [...] Read more.
Human cytomegalovirus (HCMV) coinfection is associated with a faster HIV disease progression and adverse clinical outcomes. HCMV-encoded miRNA expression, in individuals acutely infected with HIV (AHI), compared to those with HCMV monoinfection, was investigated in relation to viral replication and inflammation/immune activation. Sixteen individuals with AHI coinfected with HCMV were analyzed at serodiagnosis (T0) and after 6 (T1) and 12 (T2) months of antiretroviral therapy initiated within one week from serodiagnosis. Fourteen HCMV monoinfected subjects were also studied. Plasma RNA was reverse-transcribed and amplified with a panel designed to detect 14 different HCMV-microRNAs (miRNAs). VEGF-A and IP-10 plasma levels were quantified using ELISA. Except for hcmv-miR-70-3p, detected in all subjects, hcmv-miR-UL112-3p, hcmv-miR-US25-1-5p, hcmv-miR-US25-2-3p, hcmv-miR-US4-5p, hcmv-miR-US5-1, hcmv-miR-US5-2-3p, hcmv-miR-UL36-3p, and hcmv-miR-UL36-5p were significantly more frequently detected when HCMV DNA was present (lytic infection). In latent HCMV infection, hcmv-miR-UL22A-5p and hcmv-miR-UL148D were more frequently observed in HIV/HCMV-coinfected individuals, compared to mono-HCMV infection. Hcmv-miR-UL22A-5p and hcmv-miR-US33-5p showed a direct correlation with HIV-1 RNA. Notable positive correlations between hcmv-miR-UL22A-5p and the interferon-gamma-inducible protein 10 (IP-10), as well as between hcmv-miR-UL148D and the vascular endothelial growth factor A (VEGF-A), were also observed. HCMV-miRNA expression varies between lytic and latent infection and differs in HIV coinfection. In HCMV/HIV coinfection, increased levels of hcmv-miR-UL148D, associated with VEGF-A production, seem to be less linked to HIV viremia with respect to hcmv-miR-UL22A-5p and hcmv-miR-US33-5p. A deeper understanding of HCMV-encoded miRNA biology may facilitate the comprehension of HCMV/HIV coinfection pathogenetic mechanisms. Full article
(This article belongs to the Special Issue MicroRNAs in the Pathophysiology of Chronic Diseases: 2nd Edition)
Show Figures

Figure 1

Back to TopTop