Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,100)

Search Parameters:
Keywords = V-dock

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
39 pages, 16563 KB  
Article
Innovative Amino-Functionalization of Pyrido[2,3-d]pyrimidine Scaffolds for Broad Therapeutic Applications Supported by Computational Analyses
by Hagar S. El-Hema, Haitham E. Shehata, Mohamed A. Hawata, Eman S. Nossier, Ahmed F. El-Sayed, Najla A. Altwaijry, Asmaa Saleh, Modather F. Hussein, Amr Sabry and Adel A.-H. Abdel-Rahman
Pharmaceuticals 2025, 18(10), 1472; https://doi.org/10.3390/ph18101472 - 30 Sep 2025
Abstract
Background: Derivatives of Pyrido[2,3-d]pyrimidine-6-carboxylate are promising multi-target scaffolds. This study focused on synthesizing 16 amino-functionalized derivatives and evaluating their dual anticancer and antibacterial activities, supported by mechanistic and computational analyses. Objectives: Design and synthesize derivatives, evaluate cytotoxicity against HeLa, HepG-2, and [...] Read more.
Background: Derivatives of Pyrido[2,3-d]pyrimidine-6-carboxylate are promising multi-target scaffolds. This study focused on synthesizing 16 amino-functionalized derivatives and evaluating their dual anticancer and antibacterial activities, supported by mechanistic and computational analyses. Objectives: Design and synthesize derivatives, evaluate cytotoxicity against HeLa, HepG-2, and MCF-7 (selectivity against WI-38), investigate EGFRWT and EGFRT790M inhibition, assess cell cycle, apoptosis, and migration effects, antibacterial efficacy against E. coli and P. aeruginosa, and perform in silico ADMET, docking, molecular dynamics, DFT, and antiviral predictions. Methods: Synthesized 16 derivatives; tested for cytotoxicity, EGFR inhibition, cell cycle, apoptosis, migration; assessed antibacterial activity; performed ADMET profiling, molecular docking, molecular dynamics, and DFT calculations. Results: Derivatives 1, 2, and 7 showed highest cytotoxicity (IC50 = 3.98–17.52 μM; WI-38 IC50 = 64.07–81.65 μM). Compound 1 potently inhibited EGFRWT (IC50 = 0.093 μM) and EGFRT790M (IC50 = 0.174 μM), induced G0/G1 arrest (74.86%) and apoptosis (26.37%), and reduced MCF-7 migration (69.63%). Moderate antibacterial activity observed (MIC = 50 μg/mL). ADMET indicated favorable pharmacokinetics, low CYP inhibition, negative mutagenicity, and oral toxicity class III. Molecular dynamics confirmed stable binding (EGFRWT RMSD 3 Å; EGFRT790M 3.5–4.6 Å) with persistent hydrogen bonds. In silico antiviral evaluation suggested strong binding to HCV NS5A (–9.36 kcal/mol), SARS-CoV-2 Mpro (–9.82 kcal/mol), and E.coli DNA gyrase (–10.25 kcal/mol). Conclusions: Compound 1 exhibits dual anticancer and antibacterial activity, supported by mechanistic and computational analyses, highlighting pyrido[2,3-d]pyrimidines as promising multi-target therapeutic scaffolds. Full article
Show Figures

Figure 1

34 pages, 4740 KB  
Article
In Silico Design and Computational Elucidation of Hypothetical Resveratrol–Curcumin Hybrids as Potential Cancer Pathway Modulators
by Nil Sazlı and Deniz Karataş
Pharmaceuticals 2025, 18(10), 1473; https://doi.org/10.3390/ph18101473 - 30 Sep 2025
Abstract
Background/Objectives: Cancer progression is characterized by the suppression of apoptosis, activation of metastatic processes, and dysregulation of cell proliferation. The proper functioning of these mechanisms relies on critical signaling pathways, including Phosphoinositide 3-kinase/Protein kinase B/mammalian Target of Rapamycin (PI3K/Akt/mTOR), Mitogen-Activated Protein Kinase (MAPK), [...] Read more.
Background/Objectives: Cancer progression is characterized by the suppression of apoptosis, activation of metastatic processes, and dysregulation of cell proliferation. The proper functioning of these mechanisms relies on critical signaling pathways, including Phosphoinositide 3-kinase/Protein kinase B/mammalian Target of Rapamycin (PI3K/Akt/mTOR), Mitogen-Activated Protein Kinase (MAPK), and Signal Transducer and Activator of Transcription 3 (STAT3). Although curcumin and resveratrol exhibit anticancer properties and affect these pathways, their pharmacokinetic limitations, including poor bioavailability and low solubility, restrict their clinical application. The aim of our study was to evaluate the synergistic anticancer potential of curcumin and resveratrol through hybrid molecules rationally designed from these compounds to mitigate their pharmacokinetic limitations. Furthermore, we analyzed the multi-target anticancer effects of these hybrids on the AKT serine/threonine kinase 1 (AKT1), MAPK, and STAT3 pathways using in silico molecular modeling approaches. Methods: Three hybrid molecules, including a long-chain (ELRC-LC) and a short-chain (ELRC-SC) hybrid, an ester-linked hybrid, and an ether-linked hybrid (EtLRC), were designed using the Avogadro software (v1.2.0), and their geometry optimization was carried out using Density Functional Theory (DFT). The electronic properties of the structures were characterized through Frontier Molecular Orbital (FMO), Molecular Electrostatic Potential (MEP), and Fourier Transform Infrared (FTIR) analyses. The binding energies of the hybrid molecules, curcumin, resveratrol, their analogs, and the reference inhibitor were calculated against the AKT1, MAPK, and STAT3 receptors using molecular docking. The stabilities of the best-fitting complexes were evaluated through 100 ns molecular dynamics (MD) simulations, and their binding free energies were estimated using the Molecular Mechanics/Poisson–Boltzmann Surface Area (MM/PBSA) method. Results: DFT analyses demonstrated stable electronic characteristics for the hybrids. Molecular docking analyses revealed that the hybrids exhibited stronger binding compared to curcumin and resveratrol. The binding energy of −11.4 kcal/mol obtained for the ELRC-LC hybrid against AKT1 was particularly remarkable. Analysis of 100 ns MD simulations confirmed the conformational stability of the hybrids. Conclusions: Hybrid molecules have been shown to exert multi-target mechanisms of action on the AKT1, MAPK, and STAT3 pathways, and to represent potential anticancer candidates capable of overcoming pharmacokinetic limitations. Our in silico-based study provides data that will guide future in vitro and in vivo studies. These rationally designed hybrid molecules, owing to their receptor affinity, may serve as de novo hybrid inhibitors. Full article
Show Figures

Figure 1

13 pages, 1569 KB  
Article
A Second Opportunity for the Peptide-Based Analogues with γ-Lactam at the P1 Position: Human Cathepsin S Inhibition
by Santo Previti, Nunzio Iraci, Elsa Calcaterra, Roberta Ettari and Maria Zappalà
Pharmaceuticals 2025, 18(10), 1462; https://doi.org/10.3390/ph18101462 - 28 Sep 2025
Abstract
Background/Objectives: SARS-CoV-2 pandemic led to the identification of peptide-based main protease (Mpro) inhibitors. The overwhelming majority of them carry an electrophilic warhead and a γ-lactam at the P1 position. During the selectivity assessment of an in-house Michael acceptors targeting SARS-CoV-2 [...] Read more.
Background/Objectives: SARS-CoV-2 pandemic led to the identification of peptide-based main protease (Mpro) inhibitors. The overwhelming majority of them carry an electrophilic warhead and a γ-lactam at the P1 position. During the selectivity assessment of an in-house Michael acceptors targeting SARS-CoV-2 Mpro, we unexpectedly observed a significant inhibition of human cathepsin S (hCatS). Methods: The biological investigation of three compounds (i.e., SPR38, SPR39, and SPR41) against hCatS was performed. The binding mode of SPRs was investigated by docking and molecular dynamics simulations. Results: Biological investigation has corroborated that hCatS is sensitive to peptide-based analogues harbouring γ-lactam at the P1 position and a vinyl methyl ketone warhead. In silico studies revealed that despite being solvent exposed, the γ-lactam at P1 might be involved in water-mediated H-bonds that could be optimized to gain inhibition potency and selectivity. Conclusions: The molecules repurposing of peptide-based SARS-CoV-2 Mpro inhibitors carrying the γ-lactam at the P1 site could pave the way for the identification of novel potent and selective hCatS ligands. Full article
(This article belongs to the Special Issue Peptide-Based Drug Discovery: Innovations and Breakthroughs)
Show Figures

Graphical abstract

19 pages, 8475 KB  
Article
Synergistic Antimicrobial Effects of Baicalin Combined with Kanamycin Against MRSA: Underlying Mechanisms and Diminished Colonization on Lettuce
by Xin Meng, Zhiyun Yu, Chao Ning, Mingtong Sun, Mengna Kang and Haiyong Guo
Pharmaceuticals 2025, 18(10), 1458; https://doi.org/10.3390/ph18101458 - 28 Sep 2025
Abstract
Background: The treatment of methicillin-resistant Staphylococcus aureus (MRSA) infections is extremely challenging due to its antibiotic resistance, and the combination of plant active ingredients with antibiotics represents a potential strategy to address this issue. Methods: We determined the combinatorial relationship between baicalin (BA) [...] Read more.
Background: The treatment of methicillin-resistant Staphylococcus aureus (MRSA) infections is extremely challenging due to its antibiotic resistance, and the combination of plant active ingredients with antibiotics represents a potential strategy to address this issue. Methods: We determined the combinatorial relationship between baicalin (BA) and kanamycin (KM) using the checkerboard dilution method. The antibacterial activity of the baicalin–kanamycin (BA/KM) combination was evaluated through growth curve determination assays and scanning electron microscopy (SEM). The effects of the BA/KM combination on the cell membrane and cell wall of MRSA were analyzed using reactive oxygen species (ROS) detection assays, intracellular protein leakage experiments, alkaline phosphatase (AKP) activity assays, laser scanning confocal microscopy (LSCM) observations, and molecular docking simulations. The antibiofilm activity and related mechanisms of the BA/KM combination were elucidated via crystal violet staining, MTT assay, phenol-sulfuric acid method, congo red staining, staphyloxanthin determination assays, and quantitative real-time polymerase chain reaction (qPCR). The safety of the BA/KM combination was assessed through hemolytic activity analysis, and its anti-MRSA efficacy was evaluated on lettuce. Results: BA/KM combination showed a synergistic antibacterial effect on MRSA USA300. Mechanistic studies revealed that BA may interact with amino acid residues of peptidoglycan synthetase PBP2a to hinder peptidoglycan synthesis, thereby facilitating KM penetration through the cell wall. Subsequently, BA binds to amino acid residues of the membrane transporter NorA, leading to disruption of cell membrane homeostasis and enhancing KM’s ability to induce intracellular ROS accumulation in MRSA. Furthermore, the BA/KM combination reduced MRSA biofilm formation by 77.85% and decreased the metabolic activity of biofilm cells by 42.93% through inhibiting the synthesis of biofilm components EPS and PIA. Additionally, this combination suppressed the synthesis of staphyloxanthin and downregulated the expression of agrA and agrC genes. When 1/8 MIC BA was combined with 1/4 MIC KM, the count of MRSA on lettuce surfaces was reduced by 0.88 log CFU/cm2, an effect comparable to that of 0.2% (v/v) hydrogen peroxide. Conclusions: According to these findings, the BA/KM combination may offer a promising option for enhancing antibacterial efficacy through synergism, reducing antibiotic usage concentrations, and limiting MRSA transmission in fresh agricultural products. Full article
(This article belongs to the Section Biopharmaceuticals)
Show Figures

Figure 1

21 pages, 6905 KB  
Article
Schisandrin B Alleviates Lipid Metabolism Disorders and Apoptosis of MAFLD via Modulation of PPARγ-PCK1 and Caspase-3 Signaling Pathways
by Meng Gao, Feilong Liu, Xiyuan Feng, Mengyang Wang, Zhihong Zhang, He Li, Chunmei Wang and Jinghui Sun
Pharmaceuticals 2025, 18(10), 1441; https://doi.org/10.3390/ph18101441 - 25 Sep 2025
Abstract
Objectives: This study focuses on the regulatory mechanism of Schisandrin B (Sch B) on the lipid metabolism and apoptosis of AML-12 liver cells, with a particular emphasis on its potential therapeutic effect and mechanism of action in preventing and treating metabolic-associated fatty [...] Read more.
Objectives: This study focuses on the regulatory mechanism of Schisandrin B (Sch B) on the lipid metabolism and apoptosis of AML-12 liver cells, with a particular emphasis on its potential therapeutic effect and mechanism of action in preventing and treating metabolic-associated fatty liver disease (MAFLD) by activating the PPARγ signaling pathway. Methods: An MAFLD cell model was established by inducing AML-12 cells with a mixture of oleic acid (OA) and palmitic acid (PA) (2:1). AML-12 cells were divided into a control group, a model group, and 20 μM and 40 μM Sch B groups. The cells were lysed and prepared into the cell suspension, then the cell suspension was centrifuged to obtain its supernatant, and the levels of total cholesterol (TC), triglycerides (TG), alanine aminotransferase (ALT), and aspartate aminotransferase (AST) in the supernatant were detected according to the instructions of the kits. Effects of Sch B on the pathological changes of AML-12 cells were observed by Oil Red O staining. The key targets were screened through network pharmacology, and relevant targets were verified through molecular docking simulation. The activity of PPARγ was detected using a dual luciferase reporter plasmid, and the level of cell apoptosis was detected using the Annexin V-FITC/PI double staining method. The Western blot method was used to analyze the expression of genes related to lipid metabolism and apoptosis pathways. Results: Sch B could regulate lipid metabolism disorders in OA+PA-induced MAFLD cell model. The activation of PPARγ-PCK1/Aspase is a key step in the action of Sch B, which can effectively block fatty acid synthesis, improve fatty acid oxidation, and reduce lipid droplet aggregation in liver cells, thereby alleviating lipid metabolism abnormalities in the MAFLD cell model and inhibiting cell apoptosis. Conclusions: This finding may lay an important theoretical foundation and open a new research direction for the deep development and application of Schisandra chinensis. Full article
(This article belongs to the Special Issue Network Pharmacology of Natural Products, 2nd Edition)
Show Figures

Graphical abstract

20 pages, 3442 KB  
Article
Synergistic Induction of Apoptosis by Boswellic Acid and Cisplatin in A549 Lung Cancer Cells Through NF-κB Modulation and p53 Pathway Activation
by Mehmet Uğur Karabat and Mehmet Cudi Tuncer
Curr. Issues Mol. Biol. 2025, 47(9), 785; https://doi.org/10.3390/cimb47090785 - 22 Sep 2025
Viewed by 131
Abstract
The increasing resistance to chemotherapeutic agents in lung cancer significantly contributes to its high mortality. Natural compounds such as acetyl-11-keto-β-boswellic acid (AKBA) have emerged as promising adjuncts to standard therapies. This study investigated the synergistic apoptotic and cytotoxic effects of AKBA in combination [...] Read more.
The increasing resistance to chemotherapeutic agents in lung cancer significantly contributes to its high mortality. Natural compounds such as acetyl-11-keto-β-boswellic acid (AKBA) have emerged as promising adjuncts to standard therapies. This study investigated the synergistic apoptotic and cytotoxic effects of AKBA in combination with cisplatin (Cis) on A549 non-small-cell lung cancer (NSCLC) cells. Cell viability, apoptosis, and gene expression were evaluated using MTS assay, Annexin V-FITC/PI staining, caspase activity, RT-qPCR, and ELISA, complemented by molecular docking (AKBA–p53) and molecular dynamics (AKBA–p53 and Cis–p53) analyses. Combined AKBA + Cis treatment significantly enhanced apoptosis and reduced cell viability compared to monotherapies (p < 0.001), accompanied by upregulation of p53 and caspase-3 and suppression of NF-κB. In silico results further supported direct and stable binding of p53, particularly with AKBA. These findings indicate that AKBA synergizes with Cis to potentiate apoptotic and anti-inflammatory responses in NSCLC and may provide a novel dose-sparing strategy with improved therapeutic efficacy, warranting further in vivo validation. Full article
(This article belongs to the Special Issue Cancer Biomarkers: Discovery and Applications)
Show Figures

Figure 1

56 pages, 7184 KB  
Article
Curcumin Inhibits Protease Activated Receptor 2-Induced ERK Phosphorylation Calcium Mobilization and Anti-Apoptotic Signaling in Inflammation-Driven Colorectal Cancer Cells
by Rajashree Patnaik, Riah Varghese, Ahad Al-Kabani, Shirin Jannati and Yajnavalka Banerjee
Cells 2025, 14(18), 1451; https://doi.org/10.3390/cells14181451 - 16 Sep 2025
Viewed by 390
Abstract
Background: Chronic inflammation drives colorectal cancer (CRC) progression, with PAR-2, a G-protein coupled receptor, linking extracellular inflammatory signals to tumor-promoting pathways via ERK1/2 phosphorylation, calcium mobilization, TNF-α upregulation, and apoptosis suppression. While curcumin has notable anti-inflammatory and anti-cancer properties, its effects on PAR-2 [...] Read more.
Background: Chronic inflammation drives colorectal cancer (CRC) progression, with PAR-2, a G-protein coupled receptor, linking extracellular inflammatory signals to tumor-promoting pathways via ERK1/2 phosphorylation, calcium mobilization, TNF-α upregulation, and apoptosis suppression. While curcumin has notable anti-inflammatory and anti-cancer properties, its effects on PAR-2 signaling in inflammation-driven CRC remain underexplored. Objective: This study investigates how curcumin modulates PAR-2 expression and downstream oncogenic signaling in inflammation-driven CRC cells and explores its potential direct interaction with PAR-2 at the structural level. Methods: HT 29 and Caco-2 CRC cell lines were exposed to lipopolysaccharide (LPS) to induce an inflammatory phenotype, followed by treatment with curcumin at 50 µM and 100 µM. PAR-2 and PAR-1 expression, along with downstream markers including ERK1/2, p-ERK, TNF-α, caspase-8, cleaved caspase-8, caspase-3, Bcl 2, and Bax, were analyzed by Western blot and quantitative PCR. Calcium mobilization was assessed using Fluo-4 dye-based fluorescence imaging. Apoptosis was quantified using MTT viability assays, AO/EtBr dual staining, and Annexin V/PI flow cytometry. In parallel, AlphaFold-predicted structural models of PAR-2 were used to perform molecular docking with curcumin using CB-Dock2, to identify potential binding pockets and assess binding energetics. Results: Curcumin selectively downregulated PAR-2—but not PAR-1—at both transcript and protein levels in a dose-dependent manner. This downregulation was accompanied by suppression of ERK phosphorylation and calcium signaling, inhibition of TNF-α secretion, and reversal of the anti-apoptotic signaling axis (Bcl 2 downregulation and Bax and caspase-3/-8 upregulation). Functional assays confirmed enhanced apoptosis in curcumin-treated cells. Computational docking revealed a high-affinity binding interaction between curcumin and the transmembrane domain of PAR-2, supporting the hypothesis of direct G-Protein-Coupled Receptor (GPCR) modulation. Conclusions: Our findings reveal that curcumin targets the PAR-2/ERK/TNF-α axis and reactivates apoptotic pathways in inflammation-driven CRC, establishing it as a potent, mechanistically validated candidate for therapeutic repurposing in CRC. Full article
(This article belongs to the Collection Molecular and Cellular Mechanisms of Cancers: Colorectal Cancer)
Show Figures

Figure 1

14 pages, 885 KB  
Review
Epigallocatechin Gallate as a Targeted Therapeutic Strategy Against the JAK2V617F Mutation: New Perspectives for the Treatment of Myeloproliferative Neoplasms and Acute Myeloid Leukemia
by Leidivan Sousa Da Cunha, Isabelle Magalhães Farias, Beatriz Maria Dias Nogueira, Caio Bezerra Machado, Flávia Melo Cunha De Pinho Pessoa, Deivide De Sousa Oliveira, Guilherme Passos de Morais, André Pontes Thé, Patrícia Maria Pontes Thé, Manoel Odorico De Moraes Filho, Maria Elisabete Amaral De Moraes and Caroline Aquino Moreira-Nunes
Int. J. Transl. Med. 2025, 5(3), 43; https://doi.org/10.3390/ijtm5030043 - 15 Sep 2025
Viewed by 1870
Abstract
The JAK2V617F mutation is a major molecular factor in Philadelphia chromosome-negative myeloproliferative neoplasms (MPNs) and has been increasingly associated with clonal progression to acute myeloid leukemia (AML), resulting in a poorer prognosis and resistance to conventional therapies. This study integrates a comprehensive literature [...] Read more.
The JAK2V617F mutation is a major molecular factor in Philadelphia chromosome-negative myeloproliferative neoplasms (MPNs) and has been increasingly associated with clonal progression to acute myeloid leukemia (AML), resulting in a poorer prognosis and resistance to conventional therapies. This study integrates a comprehensive literature review with bioinformatic approaches to investigate the potential inhibitory activity of Epigallocatechin Gallate (EGCG), a green tea polyphenol widely recognized for its antioxidant and anticancer properties, on the JAK2V617F mutation. Clinical data from case reports demonstrated heterogeneity in disease progression and frequent therapeutic failures. Molecular docking analysis using the Janus Kinase 2 (JAK2) protein structure (PDB ID: 6D2I) identified a high-affinity binding pocket for EGCG near the V617F mutation site. EGCG exhibited strong binding affinity (−9.2 kcal/mol), forming key interactions with residues Lys581, Ile559, and Leu680, suggesting allosteric modulation of the JH2 pseudokinase domain. To validate our docking protocol, redocking of the known inhibitor AT9283 yielded a favorable Root Mean Square Deviation (RMSD) 2.683 Å and binding energy (−8.3 kcal/mol), confirming the reliability of our approach. Notably, EGCG demonstrated superior binding affinity compared to AT9283 and targets a distinct allosteric site, highlighting its unique mechanism of action and potential as a selective allosteric inhibitor. These findings position EGCG as a promising candidate for future preclinical evaluation, offering a novel strategy to overcome therapy resistance in JAK2V617F-driven malignancies. Full article
Show Figures

Figure 1

27 pages, 5735 KB  
Article
Targeting Oxidative Stress and Inflammation with Vitis vinifera Leaf Extract: A Combined Experimental and Computational Pharmacological Study
by Sanja Djakovic, Marina Nikolic, Ivan Srejovic, Nikola Nedeljkovic, Marko Karovic, Jovana Bradic, Marijana Andjic, Vladimir Jakovljevic and Milos Nikolic
Future Pharmacol. 2025, 5(3), 52; https://doi.org/10.3390/futurepharmacol5030052 - 14 Sep 2025
Viewed by 270
Abstract
Objectives: Our study aimed to examine the antioxidative and anti-inflammatory potential of the lyophilized aqueous leaf extract of Vitis vinifera. Methods: The antioxidant capacity of the extract was evaluated using the DPPH and FRAP assays. The in vivo phase of [...] Read more.
Objectives: Our study aimed to examine the antioxidative and anti-inflammatory potential of the lyophilized aqueous leaf extract of Vitis vinifera. Methods: The antioxidant capacity of the extract was evaluated using the DPPH and FRAP assays. The in vivo phase of the study included 40 male Wistar albino rats. One half of the animals were used to induce the carrageenan model of acute inflammation, while the other half were used for examination of the extract effect on the redox state. Rats from the experimental group drank tap water containing 150 mg/kg Vitis vinifera extract for 14 days, while control animals received saline at the same volume. The molecular docking studies of polyphenols present in the leaf extract were conducted in AutoDock Vina. Results: In vitro assessment of the antioxidative capacity of the applied extract revealed significant free radical scavenging activity (IC50 value 11.63 µg/mL), along with a pronounced ferric reducing ability (0.143 at 700 nm). Moreover, animal treatment with the extract led to significant paw edema inhibition (30.34%, 35.06%, and 41.54% in the second, third, and fourth hours, respectively) and to pro-oxidative marker reduction. Additionally, Vitis vinifera extract significantly increased catalase activity and glutathione levels. The in silico results showed that rutin binds to cyclooxygenase 1 (−8.2 kcal/mol) and 2 (−8.3 kcal/mol), as well as to antioxidant enzymes (catalase: −8.6 kcal/mol, SOD: −7.4 kcal/mol), indicating its key role in mediating the biological activity of the tested extract. Conclusions: This study highlights the significant antioxidant and anti-inflammatory potential of V. vinifera lyophilized aqueous leaf extract from the Serbian market, supported by both in vivo and in silico analyses. Full article
(This article belongs to the Special Issue Recent Advances in the Discovery of Anti-Inflammatory Compounds)
Show Figures

Figure 1

38 pages, 5546 KB  
Article
Network Pharmacology, Molecular Docking and Molecular Dynamics Studies to Predict the Molecular Targets and Mechanisms of Action of Melissa officinalis Phytoconstituents in Type-2 Diabetes Mellitus
by Chimaobi J. Ononamadu, Ziyad Ben Ahmed and Veronique Seidel
Plants 2025, 14(18), 2828; https://doi.org/10.3390/plants14182828 - 10 Sep 2025
Cited by 1 | Viewed by 617
Abstract
Network pharmacology, molecular docking, and molecular dynamics (MD) studies were used to investigate the molecular targets and mechanisms of action of Melissa officinalis phytoconstituents in type-2 diabetes mellitus (T2DM). SciFinder was used to retrieve previously known phytoconstituents from M. officinalis aerial parts. Targets [...] Read more.
Network pharmacology, molecular docking, and molecular dynamics (MD) studies were used to investigate the molecular targets and mechanisms of action of Melissa officinalis phytoconstituents in type-2 diabetes mellitus (T2DM). SciFinder was used to retrieve previously known phytoconstituents from M. officinalis aerial parts. Targets related to these compounds were predicted using the Swiss TargetPrediction, SEA (similarity ensemble approach) and BindingDB databases, and were intersected with T2DM-relevant targets from public databases. Networks were constructed using the STRING online tool and Cytoscape (v.3.9.1) software. Gene ontology/KEGG pathway analysis was performed using DAVID and SHINEGO 0.77. Molecular docking used the MOE suite. MD simulations were conducted for 100 ns using GROMACS 2023 with a CHARMM36 force field. A total of 17 phytoconstituents and 154 targets associated with T2DM were identified. The protein–protein interaction (PPI) and target–pathway (TP) network analysis identified key hub genes, including EGFR, SRC, AKT1, TNF, PPARG, PIK3R1, RELA, INSR, GSK3B, PIK3CG, FYN, PTBIN, and PPARA, with critical roles in insulin resistance and T2DM-relevant pathways. The pathway enrichment analysis highlighted notable involvement in insulin signaling, inflammation, and diabetic complications. The compound–target (CT) network predicted quercetin, luteolin, ursolic acid, isoquercitrin, 2α-hydroxy-ursolic acid, and oleanolic acid to be key bioactive compounds. Molecular docking, followed by MD studies, identified that isoquercitrin showed most energetically favorable and stable complexes with three targets, namely EGFR, PPARα, and AKT1. These findings enhance our understanding of the antidiabetic potential of M. officinalis and underscore the need for further studies on its phytoconstituents, such as isoquercitrin, in search for new antidiabetic agents. Full article
(This article belongs to the Section Phytochemistry)
Show Figures

Figure 1

16 pages, 7237 KB  
Article
In Silico Analysis of Two Hard Tick P450s: Identification, Characterization, and Putative Metabolism of Cymbopogon citratus Essential Oil Constituents
by Caishan Li, Licui Wen, Wenyu Shi, Yuqian Deng, Na Zhou, Xueqing Zhao, Qingyong Guo and Bayinchahan Gailike
Int. J. Mol. Sci. 2025, 26(17), 8489; https://doi.org/10.3390/ijms26178489 - 1 Sep 2025
Viewed by 433
Abstract
The cytochrome p450 gene family is widely involved in various biological processes in arthropods. Tick p450s are often associated with chemical acaricides, but knowledge of their involvement in the metabolism of plant-derived essential oil components is limited. In this study, we identified the [...] Read more.
The cytochrome p450 gene family is widely involved in various biological processes in arthropods. Tick p450s are often associated with chemical acaricides, but knowledge of their involvement in the metabolism of plant-derived essential oil components is limited. In this study, we identified the non-redundant number of p450 transcripts (NRNPTs) from Haemaphysalis longicornis and Hyalomma asiaticum under the Cymbopogon citratus essential oil (CCEO) and terpinolene stress using de novo transcriptome data, respectively. In this study, we identified and characterized the NRNPTs of Ha. longicornis and Hy. asiaticum. Their gene expression patterns and biological functions under CCEO and terpinolene stress were further analyzed. Finally, Hy. asiaticum NRNPTs (87) were more numerous than Ha. longicornis (58). Phylogenetic analyses showed that NRNPTs of both Hy. asiaticum and Ha. longicornis could be categorized in clan 2, clan 3, clan 4, and clan mito, this data comes from the NRNPTs. Phylogenetic analyses showed that NRNPTs of both Hy. asiaticum and Ha. longicornis could be categorized in clan 2, clan 3, clan 4, and clan mito. p450 members of both were most distributed in clan 3. In addition, one Hy. asiaticum NRNPT was identified as belonging to the new classification clan 20 (HyasCYP20A1). The biological functions and pathways of p450 family members enriched in Hy. asiaticum and Ha. longicornis under different exogenous substance stresses were different, and the expression patterns of these genes were inconsistent. Molecular docking results showed that Ha. longicornis p450 members (HaloCYP3A4 and HaloCYP4B1), which were significantly up-regulated under CCEO stress, as well as Hy. asiaticum HyasCYP24A1 and HyasCYP4V2 (the HaloCYP3A4 and HaloCYP4B1 homologous genes), encode proteins that differ in their ability to metabolize CCEO components, but they all bind well to Germacrene D and naphthalene. Our study enriches the knowledge of the involvement of p450 family members of different tick species in the metabolism of essential oil components of plants, and provides a theoretical basis for further in-depth studies on the function of tick p450 enzymes. Full article
(This article belongs to the Section Bioactives and Nutraceuticals)
Show Figures

Figure 1

32 pages, 9927 KB  
Article
Cubebin Attenuates Methamphetamine-Induced Neurotoxicity Through CREB/BDNF/Caspase-3 Signaling: In Vivo and In Silico Study
by Sattam Khulaif Alenezi, Khalid Saad Alharbi, Tariq G. Alsahli, Muhammad Afzal, Reem ALQahtani, Samiyah Alshehri, Imran Kazmi and Nadeem Sayyed
Medicina 2025, 61(9), 1567; https://doi.org/10.3390/medicina61091567 - 31 Aug 2025
Viewed by 433
Abstract
Background and Objectives: Methamphetamine (METH) is a potent psychostimulant known to induce neurotoxicity and neurodegeneration, leading to cognitive impairment. This study aimed to explore cubebin’s potential neuroprotective effects against METH-induced cognitive deficits by investigating its ability to suppress lipid peroxidation and pro-inflammatory markers [...] Read more.
Background and Objectives: Methamphetamine (METH) is a potent psychostimulant known to induce neurotoxicity and neurodegeneration, leading to cognitive impairment. This study aimed to explore cubebin’s potential neuroprotective effects against METH-induced cognitive deficits by investigating its ability to suppress lipid peroxidation and pro-inflammatory markers and modulate neurotransmitter levels. Material and Methods: A total of 30 rats were taken and randomly grouped into five groups: group I—control; group II—METH 100 mg/kg/i.p.; group III—METH + cubebin (10 mg/kg/p.o.); group IV—METH + cubebin (20 mg/kg/p.o.); and group V—cubebin per os at 20 mg/kg. After a 14-day oral regimen, behavioral activities were assessed utilizing the Morris water maze (MWM). Biochemical analysis included neurotransmitters, including dopamine (DA), norepinephrine (NE), and gamma-aminobutyric acid (GABA); oxidative stress markers (malondialdehyde (MDA); nitric oxide (NO), catalase (CAT), reduced glutathione (GSH)); inflammatory cytokines [interleukin (IL-1β), IL-6, tumor necrosis factor-α (TNF-α), nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB)]; neurotrophic factors (BDNF, CREB); and apoptotic markers (caspase-3 and caspase-9). Furthermore, molecular docking and simulation studies were conducted. Results: Treatment with cubebin led to a marked reduction in latency during the MWM task. It significantly modulated the oxidative stress markers (SOD, GSH, CAT, MDA, and NO), inflammatory cytokines (IL-6, IL-1β, TNF-α), neurotrophic factors (CREB, BDNF), apoptotic markers (NFkB, caspase-3, caspase-9), and neurotransmitters (NE, DA, and GABA) in METH-induced memory-impaired rats. The results of molecular dynamics simulation (MDS) provided insight into the mechanisms that associate proteins CREB, BDNF, and caspase-3 in conformational dynamics upon binding to cubebin. Conclusions: In conclusion, cubebin administration improved cognitive function in rats by modulating antioxidant enzyme activity, reducing pro-inflammatory cytokines, and regulating neurotransmitter levels, demonstrating its potential neuroprotective effects against MA-induced neurodegeneration. Full article
(This article belongs to the Section Pharmacology)
Show Figures

Figure 1

33 pages, 30680 KB  
Article
Quantitative Structure–Activity Relationship Study of Cathepsin L Inhibitors as SARS-CoV-2 Therapeutics Using Enhanced SVR with Multiple Kernel Function and PSO
by Shaokang Li, Zheng Li, Peijian Zhang and Aili Qu
Int. J. Mol. Sci. 2025, 26(17), 8423; https://doi.org/10.3390/ijms26178423 - 29 Aug 2025
Viewed by 465
Abstract
Cathepsin L (CatL) is a critical protease involved in cleaving the spike protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), facilitating viral entry into host cells. Inhibition of CatL is essential for preventing SARS-CoV-2 cell entry, making it a potential therapeutic target [...] Read more.
Cathepsin L (CatL) is a critical protease involved in cleaving the spike protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), facilitating viral entry into host cells. Inhibition of CatL is essential for preventing SARS-CoV-2 cell entry, making it a potential therapeutic target for drug development. Six QSAR models were established to predict the inhibitory activity (expressed as IC50 values) of candidate compounds against CatL. These models were developed using statistical method heuristic methods (HMs), the evolutionary algorithm gene expression programming (GEP), and the ensemble method random forest (RF), along with the kernel-based machine learning algorithm support vector regression (SVR) configured with various kernels: radial basis function (RBF), linear-RBF hybrid (LMIX2-SVR), and linear-RBF-polynomial hybrid (LMIX3-SVR). The particle swarm optimization algorithm was applied to optimize multi-parameter SVM models, ensuring low complexity and fast convergence. The properties of novel CatL inhibitors were explored through molecular docking analysis. The LMIX3-SVR model exhibited the best performance, with an R2 of 0.9676 and 0.9632 for the training set and test set and RMSE values of 0.0834 and 0.0322. Five-fold cross-validation R5fold2 = 0.9043 and leave-one-out cross-validation Rloo2 = 0.9525 demonstrated the strong prediction ability and robustness of the model, which fully proved the correctness of the five selected descriptors. Based on these results, the IC50 values of 578 newly designed compounds were predicted using the HM model, and the top five candidate compounds with the best physicochemical properties were further verified by Property Explorer Applet (PEA). The LMIX3-SVR model significantly advances QSAR modeling for drug discovery, providing a robust tool for designing and screening new drug molecules. This study contributes to the identification of novel CatL inhibitors, which aids in the development of effective therapeutics for SARS-CoV-2. Full article
Show Figures

Graphical abstract

16 pages, 2432 KB  
Article
Licoflavone B Suppresses Influenza A Virus by Targeting the Viral RNA-Dependent RNA Polymerase (RdRp)
by Pu Fan, Peng Lv, Sen Zhang, Zheng Zhu, Kewen Qian, Jin Han, Yue Cui, Ye Feng, Zeya Li, Li Qiang, Yunzhu Dong, Ting Fang, Tao Jiang, Changming Yu and Xiangyang Chi
Viruses 2025, 17(9), 1157; https://doi.org/10.3390/v17091157 - 24 Aug 2025
Viewed by 867
Abstract
Influenza A virus pandemics pose a persistent global health threat, and emerging antiviral resistance underscores the critical importance of developing novel broad-spectrum therapeutic agents. Building on licorice’s (Glycyrrhiza spp.) historical use in traditional Chinese medicine for respiratory infections—as documented in the Chinese [...] Read more.
Influenza A virus pandemics pose a persistent global health threat, and emerging antiviral resistance underscores the critical importance of developing novel broad-spectrum therapeutic agents. Building on licorice’s (Glycyrrhiza spp.) historical use in traditional Chinese medicine for respiratory infections—as documented in the Chinese Guidelines for Diagnosis and Treatment of Influenza—and its demonstrated anti-SARS-CoV-2 activity, we identified licoflavone B as a potent anti-influenza agent, bridging ethnopharmacological knowledge with mechanistic validation. In this study, we identified licoflavone B, a natural flavonoid derived from licorice (Glycyrrhiza spp.), as a potent inhibitor of diverse influenza viruses, including multiple influenza A subtypes and type B virus. Mechanistic studies revealed that licoflavone B selectively targets the viral RNA-dependent RNA polymerase (RdRp), effectively suppressing viral replication. The compound exhibits a favorable selectivity index (SI = 14.9–29.9), indicating a promising therapeutic window. Molecular docking simulations identified potential binding interactions between licoflavone B and regions of the RdRp complex, which were further validated by dose-dependent inhibition of viral nucleoprotein (NP) and polymerase subunit PB2 expression in Western blot and immunofluorescence assays. In addition, licoflavone B maintained broad-spectrum antiviral activity against multiple influenza strains, including H1N1 (A/Puerto Rico/8/34), H3N2 (A/Darwin/9/2021), and a clinical influenza B isolate (B/Beijing/ZYY-B18/2018). These findings position licoflavone B as a promising lead compound for developing next-generation, broad-spectrum antiviral therapies against influenza and potentially other viruses. Full article
(This article belongs to the Special Issue Antiviral Agents to Influenza Virus 2025)
Show Figures

Figure 1

21 pages, 9432 KB  
Article
Exploring the Anticancer Potential of Proton Pump Inhibitors by Targeting GRP78 and V-ATPase: Molecular Docking, Molecular Dynamics, PCA, and MM-GBSA Calculations
by Abdo A. Elfiky, Kirolos R. Mansour, Yousef Mohamed, Yomna Kh. Abdelaziz and Ian A. Nicholls
Int. J. Mol. Sci. 2025, 26(17), 8170; https://doi.org/10.3390/ijms26178170 - 22 Aug 2025
Viewed by 582
Abstract
Cancer cells can adapt to their surrounding microenvironment by upregulating glucose-regulated protein 78 kDa (GRP78) and vacuolar-type ATPase (V-ATPase) proteins to increase their proliferation and resilience to anticancer therapy. Therefore, targeting these proteins can obstruct cancer progression. A comprehensive computational study was conducted [...] Read more.
Cancer cells can adapt to their surrounding microenvironment by upregulating glucose-regulated protein 78 kDa (GRP78) and vacuolar-type ATPase (V-ATPase) proteins to increase their proliferation and resilience to anticancer therapy. Therefore, targeting these proteins can obstruct cancer progression. A comprehensive computational study was conducted to investigate the inhibitory potential of four proton pump inhibitors (PPIs), dexlasnoprazole (DEX), esomeprazole (ESO), pantoprazole (PAN), and rabeprazole (RAB), against GRP78 and V-ATPase. Molecular docking revealed high-affinity scores for PPIs against both proteins. Moreover, molecular dynamics showed favorable root mean square deviation values for GRP78 and V-ATPase complexes, whereas root mean square fluctuations were high at the substrate-binding subdomains of GRP78 complexes and the α-helices of V-ATPase. Meanwhile, the radius of gyration and the surface-accessible surface area of the complexes were not significantly affected by ligand binding. Trajectory projections of the first two principal components showed similar motions of GRP78 structures and the fluctuating nature of V-ATPase structures, while the free-energy landscape revealed the thermodynamically favored GRP78-RAB and V-ATPase-DEX conformations. Furthermore, the binding free energy was −16.59 and −18.97 kcal/mol for GRP78-RAB and V-ATPase-DEX, respectively, indicating their stability. According to our findings, RAB and DEX are promising candidates for GRP78 and V-ATPase inhibition experiments, respectively. Full article
(This article belongs to the Special Issue Benchmarking of Modeling and Informatic Methods in Molecular Sciences)
Show Figures

Figure 1

Back to TopTop