Synergistic Antimicrobial Effects of Baicalin Combined with Kanamycin Against MRSA: Underlying Mechanisms and Diminished Colonization on Lettuce
Abstract
1. Introduction
2. Results
2.1. Determination of MIC
2.2. Effect of Baicalin/Kanamycin (BA/KM) Combination on Bacterial Growth and Morphology
2.3. Effect of BA/KM Combination on Bacterial Cell Membrane Permeability
2.4. Effect of BA/KM Combination on Bacterial Cell Wall Permeability
2.5. Molecular Docking Studies on the Interactions Between BA and Peptidoglycan Synthases/Membrane Transporters
2.6. Anti-Biofilm Activity of BA/KM Combination Against Bacteria
2.7. Effect of BA/KM Combination on Metabolic Activity of Bacterial Biofilm Cells
2.8. Effects of BA/KM Combination on the Formation of Biofilm Components: EPS and PIA
2.9. Effects of BA/KM Combination on Bacterial Virulence Factors
2.10. Effects of BA/KM Combination on the Expression of Bacterial Quorum-Sensing Genes
2.11. Safety Analysis
2.12. Efficacy of BA/KM Combination in Lettuce Model
3. Discussion
4. Materials and Methods
4.1. Bacterial Strains, Cell Cultures, and Chemicals
4.2. Determination of Minimum Inhibitory Concentration (MIC)
4.3. Checkerboard Microbroth Assay
4.4. Growth Curve Assay
4.5. Scanning Electron Microscopy
4.6. Reactive Oxygen Species (ROS) Detection Assay
4.7. Cell Membrane Permeability Assay
4.8. Alkaline Phosphatase (AKP) Activity Assay
4.9. HADA Labeling
4.10. Molecular Docking
4.11. Biofilm Formation Inhibition Assay
4.12. Biofilm Metabolic Activity Assay
4.13. Quantification Experiment of Biofilm Component EPS
4.14. Experiment on PIA Synthesis in Biofilm Components
4.15. Measurement of Staphyloxanthin Production
4.16. qPCR
4.17. Measurement of Hemolytic Activity
4.18. Applications on Lettuce
4.19. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| AKP | Alkaline phosphatase |
| BA | Baicalin |
| CLSM | Confocal laser scanning microscopy |
| CR | Congo red |
| CV | Crystal violet |
| EDTA | Ethylene Diamine Tetraacetic Acid |
| EPS | Extracellular polymeric substance |
| FIC | Fractional inhibitory concentration |
| GM | Gentamicin |
| HADA | 7-hydroxycoumarincarbonylamino-D-alanine |
| KM | Kanamycin |
| MIC | Minimum inhibitory concentration |
| MRSA | Methicillin-resistant Staphylococcus aureus |
| MTT | 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide |
| PBS | Phosphate-buffered saline |
| PIA | Polysaccharide intercellular adhesion |
| ROS | Reactive oxygen species |
| SD | Standard deviation |
| TSA | Tryptic soya agar |
| TSB | Tryptic soy broth |
References
- da Silva, A.C.; Rodrigues, M.X.; Silva, N.C.C. Methicillin-resistant Staphylococcus aureus in food and the prevalence in Brazil: A review. Braz. J. Microbiol. 2020, 51, 347–356. [Google Scholar]
- Igbinosa, E.O.; Beshiru, A.; Igbinosa, I.H.; Ogofure, A.G.; Ekundayo, T.C.; Okoh, A.I. Prevalence, multiple antibiotic resistance and virulence profile of methicillin-resistant Staphylococcus aureus (MRSA) in retail poultry meat from Edo, Nigeria. Front. Cell. Infect. Microbiol. 2023, 13, 1122059. [Google Scholar] [CrossRef]
- Ali, A.; Riaz, S. Emerging threats of high biofilm formation and antibiotic resistance in clinical methicillin-resistant Staphylococcus aureus (MRSA) isolates from Pakistan. Infect. Genet. Evol. 2024, 121, 105592. [Google Scholar] [CrossRef]
- Vázquez, N.M.; Fiorilli, G.; Cáceres Guido, P.A.; Moreno, S. Carnosic acid acts synergistically with gentamicin in killing methicillin-resistant Staphylococcus aureus clinical isolates. Phytomedicine 2016, 23, 1337–1343. [Google Scholar] [CrossRef] [PubMed]
- Ozma, M.A.; Khodadadi, E.; Pakdel, F.; Kamounah, F.S.; Yousefi, M.; Yousefi, B.; Asgharzadeh, M.; Ganbarov, K.; Kafil, H.S. Baicalin, a natural antimicrobial and anti-biofilm agent. J. Herb. Med. 2021, 27, 100432. [Google Scholar] [CrossRef]
- Zhao, Q.Y.; Yuan, F.W.; Liang, T.; Liang, X.C.; Luo, Y.R.; Jiang, M.; Qing, S.Z.; Zhang, W.M. Baicalin inhibits Escherichia coli isolates in bovine mastitic milk and reduces antimicrobial resistance. J. Dairy Sci. 2018, 101, 2415–2422. [Google Scholar] [CrossRef]
- Tan, L.; Li, Y.; Wu, X.; Liu, W.; Peng, Z.; Dong, Y.; Huang, Z.; Zhang, L.; Liang, Y. Fluorescent sensor array based on Janus silica nanoflakes to realize pattern recognition of multiple aminoglycoside antibiotics and heavy metal ions. Sens. Actuators B Chem. 2023, 378, 133154. [Google Scholar]
- Robati, R.Y.; Arab, A.; Ramezani, M.; Langroodi, F.A.; Abnous, K.; Taghdisi, S.M. Aptasensors for quantitative detection of kanamycin. Biosens. Bioelectron. 2016, 82, 162–172. [Google Scholar] [CrossRef]
- Xu, W.; Wang, Y.; Liu, S.; Yu, J.; Wang, H.; Huang, J. A novel sandwich-type electrochemical aptasensor for sensitive detection of kanamycin based on GR–PANI and PAMAM–Au nanocomposites. New J. Chem. 2014, 38, 4931–4937. [Google Scholar] [CrossRef]
- Jiang, Y.; Sun, D.W.; Pu, H.; Wei, Q. Ultrasensitive analysis of kanamycin residue in milk by SERS-based aptasensor. Talanta 2019, 197, 151–158. [Google Scholar] [CrossRef]
- Yang, S.K.; Yusoff, K.; Ajat, M.; Yap, W.S.; Lim, S.E.; Lai, K.S. Antimicrobial activity and mode of action of terpene linalyl anthranilate against carbapenemase-producing Klebsiella pneumoniae. J. Pharm. Anal. 2021, 11, 210–219. [Google Scholar] [CrossRef]
- Al-Sayaghi, A.M.; Al-Kabsi, A.M.; Abduh, M.S.; Saghir, S.A.M.; Alshawsh, M.A. Antibacterial Mechanism of Action of Two Types of Honey against Escherichia coli through Interfering with Bacterial Membrane Permeability, Inhibiting Proteins, and Inducing Bacterial DNA Damage. Antibiotics 2022, 11, 1182. [Google Scholar] [CrossRef]
- Menezes Dantas, D.; Macêdo, N.S.; Sousa Silveira, Z.; Santos Barbosa, C.R.D.; Muniz, D.F.; Bezerra, A.H.; Sousa, J.T.; Alencar, G.G.; Morais Oliveira-Tintino, C.D.; Tintino, S.R.; et al. Naringenin as potentiator of norfloxacin efficacy through inhibition of the NorA efflux pump in Staphylococcus aureus. Microb. Pathog. 2025, 203, 107504. [Google Scholar] [CrossRef]
- Tyagi, A.; Kumar, V.; Joshi, N.; Dhingra, H.K. Combinatorial Effects of Ursodeoxycholic Acid and Antibiotic in Combating Staphylococcus aureus Biofilm: The Roles of ROS and Virulence Factors. Microorganisms 2024, 12, 1956. [Google Scholar] [CrossRef]
- Das, S. Genetic regulation, biosynthesis and applications of extracellular polysaccharides of the biofilm matrix of bacteria. Carbohydr. Polym. 2022, 291, 119536. [Google Scholar] [CrossRef]
- Nguyen, H.T.T.; Nguyen, T.H.; Otto, M. The staphylococcal exopolysaccharide PIA—Biosynthesis and role in biofilm formation, colonization, and infection. Comput. Struct. Biotechnol. J. 2020, 18, 3324–3334. [Google Scholar] [CrossRef] [PubMed]
- Ogawa, K.; Dohmaru, T.; Yui, T. Dependence of complex formation of (1-->3)-beta-D-glucan with congo red on temperature in alkaline solutions. Biosci. Biotechnol. Biochem. 1994, 58, 1870–1872. [Google Scholar] [CrossRef]
- Lee, J.S.; Bae, Y.M.; Han, A.; Lee, S.Y. Development of Congo red broth method for the detection of biofilm-forming or slime-producing Staphylococcus sp. LWT 2016, 73, 707–714. LWT 2016, 73, 707–714. [Google Scholar] [CrossRef]
- Glatthardt, T.; Campos, J.C.M.; Chamon, R.C.; de Sá Coimbra, T.F.; Rocha, G.A.; de Melo, M.A.F.; Parente, T.E.; Lobo, L.A.; Antunes, L.C.M.; Dos Santos, K.R.N.; et al. Small Molecules Produced by Commensal Staphylococcus epidermidis Disrupt Formation of Biofilms by Staphylococcus aureus. Appl. Environ. Microbiol. 2020, 86, e02539-19. [Google Scholar] [CrossRef]
- Xue, L.; Chen, Y.Y.; Yan, Z.; Lu, W.; Wan, D.; Zhu, H. Staphyloxanthin: A potential target for antivirulence therapy. Infect. Drug Resist. 2019, 12, 2151–2160. [Google Scholar] [CrossRef] [PubMed]
- Polaske, T.J.; West, K.H.J.; Zhao, K.; Widner, D.L.; York, J.T.; Blackwell, H.E. Chemical and biomolecular insights into the Staphylococcus aureus agr quorum sensing system: Current progress and ongoing challenges. Isr. J. Chem. 2023, 63, e202200096. [Google Scholar] [CrossRef]
- González-Machado, C.; Alonso-Calleja, C.; Capita, R. Prevalence and types of methicillin-resistant Staphylococcus aureus (MRSA) in meat and meat products from retail outlets and in samples of animal origin collected in farms, slaughterhouses and meat processing facilities. A review. Food Microbiol. 2024, 123, 104580. [Google Scholar] [CrossRef]
- Chen, K.; Liu, X.; Song, L.; Wang, Y.; Zhang, J.; Song, Y.; Zhuang, H.; Shen, J.; Yang, J.; Peng, C.; et al. The Antibacterial Activities and Effects of Baicalin on Ampicillin Resistance of MRSA and Stenotrophomonas maltophilia . Foodborne Pathog. Dis. 2025, 22, 477–488. [Google Scholar] [CrossRef] [PubMed]
- Mireles, N.A.; Malla, C.F.; Tavío, M.M. Cinnamaldehyde and baicalin reverse colistin resistance in Enterobacterales and Acinetobacter baumannii strains. Eur. J. Clin. Microbiol. Infect. Dis. 2024, 43, 1899–1908. [Google Scholar] [CrossRef]
- Cheng, P.; Sun, Y.; Wang, B.; Liang, S.; Yang, Y.; Gui, S.; Zhang, K.; Qu, S.; Li, L. Mechanism of synergistic action of colistin with resveratrol and baicalin against mcr-1-positive Escherichia coli. Biomed. Pharmacother. 2024, 180, 117487. [Google Scholar] [CrossRef] [PubMed]
- Du, Z.; Han, J.; Luo, J.; Bi, G.; Liu, T.; Kong, J.; Chen, Y. Combination effects of baicalin with linezolid against Staphylococcus aureus biofilm-related infections: In vivo animal model. New Microbiol. 2023, 46, 258–263. [Google Scholar] [PubMed]
- Han, J.; Luo, J.; Du, Z.; Chen, Y.; Liu, T. Synergistic Effects of Baicalin and Levofloxacin Against Hypervirulent Klebsiella pneumoniae Biofilm In Vitro. Curr. Microbiol. 2023, 80, 126. [Google Scholar] [CrossRef]
- Addo, K.A.; Li, H.; Yu, Y.; Xiao, X. Unraveling the mechanism of the synergistic antimicrobial effect of cineole and carvacrol on Escherichia coli O157: H7 inhibition and its application on fresh-cut cucumbers. Food Control 2023, 144, 109339. [Google Scholar] [CrossRef]
- Jin, R.; Wang, Y.; Lan, W.; Zhao, Y.; Sun, X. Unleashing potent antimicrobial synergy: Carnosic acid and caffeic acid tackle multidrug-resistant MRSA. Food Biosci. 2025, 68, 106650. [Google Scholar] [CrossRef]
- Shang, D.; Liu, Y.; Jiang, F.; Ji, F.; Wang, H.; Han, X. Synergistic Antibacterial Activity of Designed Trp-Containing Antibacterial Peptides in Combination With Antibiotics Against Multidrug-Resistant Staphylococcus epidermidis . Front. Microbiol. 2019, 10, 2719. [Google Scholar]
- Yi, L.; Dang, Y.; Wu, J.; Zhang, L.; Liu, X.; Liu, B.; Zhou, Y.; Lu, X. Purification and characterization of a novel bacteriocin produced by Lactobacillus crustorum MN047 isolated from koumiss from Xinjiang, China. J. Dairy Sci. 2016, 99, 7002–7015. [Google Scholar] [CrossRef] [PubMed]
- Shang, D.; Meng, X.; Zhang, D.; Kou, Z. Antibacterial activity of chensinin-1b, a peptide with a random coil conformation, against multiple-drug-resistant Pseudomonas aeruginosa. Biochem. Pharmacol. 2017, 143, 65–78. [Google Scholar] [CrossRef]
- Chakraborty, P.; Paul, P.; Kumari, M.; Bhattacharjee, S.; Singh, M.; Maiti, D.; Tribedi, P. Attenuation of Pseudomonas aeruginosa biofilm by thymoquinone: An individual and combinatorial study with tetrazine-capped silver nanoparticles and tryptophan. Microbiologica 2021, 66, 255–271. [Google Scholar] [CrossRef]
- Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Zhao, J.; Liu, C.; Wu, D.; Wang, X. In-vitro antibacterial activity and mechanism of Monarda didyma essential oils against Carbapenem-resistant Klebsiella pneumoniae . BMC Microbiol. 2023, 23, 263. [Google Scholar] [CrossRef]
- He, Q.; Yang, Z.; Zou, Z.; Qian, M.; Wang, X.; Zhang, X.; Yin, Z.; Wang, J.; Ye, X.; Liu, D.; et al. Combating Escherichia coli O157: H7 with Functionalized Chickpea-Derived Antimicrobial Peptides. Adv. Sci. 2022, 10, 2205301. [Google Scholar] [CrossRef]
- Sanner, M.F. Python:aprogramminglanguageforsoftwareintegrationanddevelopment. J. Mol. Graph. Model. 1999, 17, 57–61. [Google Scholar]
- Maier, J.A.; Martinez, C.; Kasavajhala, K.; Wickstrom, L.; Hauser, K.E.; Simmerling, C. ff14SB: Improving the Accuracy of Protein Side Chain and Backbone Parameters from ff99SB. J. Chem. Theory Comput. 2015, 11, 3696–3713. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.; Liang, Y.; Lin, S.; Chen, D.; Li, B.; Li, L.; Deng, Y. Crystal Violet and XTT Assays on Staphylococcus aureus Biofilm Quantification. Curr. Microbiol. 2016, 73, 474–482. [Google Scholar] [CrossRef]
- Sathiya, D.M.; Thangam, R.; Sakthidhasan, P.; Arun, S.; Sivasubramanian, S.; Thirumurugan, R. Combined effect of a natural flavonoid rutin from Citrus sinensis and conventional antibiotic gentamicin on Pseudomonas aeruginosa biofilm formation. Food Control. 2018, 2, 044. [Google Scholar]
- Lee, J.H.; Cho, H.S.; Kim, Y.; Kim, J.; Banskota, S.; Cho, M.H.; Lee, J. Indole and 7-benzyloxyindole attenuate the virulence of Staphylococcus aureus. Appl. Microbiol. Biotechnol. 2013, 97, 4543–4552. [Google Scholar] [CrossRef] [PubMed]
- Saadati, F.; Shahryari, S.; Sani, N.M.; Farajzadeh, D.; Zahiri, H.S.; Vali, H.; Noghabi, K.A. Effect of MA01 rhamnolipid on cell viability and expression of quorum-sensing (QS) genes involved in biofilm formation by methicillin-resistant Staphylococcus aureus. Sci. Rep. 2022, 12, 14833. [Google Scholar] [CrossRef] [PubMed]
- Dong, N.; Wang, C.; Zhang, T.; Zhang, L.; Xue, C.; Feng, X.; Bi, C.; Shan, A. Bioactivity and Bactericidal Mechanism of Histidine-Rich β-Hairpin Peptide against Gram-Negative Bacteria. Int. J. Mol. Sci. 2019, 20, 3954. [Google Scholar] [CrossRef] [PubMed]







| Strains | Agents | MIC (µg/mL) | FICI | Outcome | |
|---|---|---|---|---|---|
| Alone | Combination | ||||
| MRSA USA300 | baicalin kanamycin | 1250 7.5 | 312.5 1.875 | 0.375 | synergy |
| Staphylococcus aureus ATCC29213 | baicalin kanamycin | 2500 1.875 | 312.5 0.9375 | 0.625 | partial synergy |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Meng, X.; Yu, Z.; Ning, C.; Sun, M.; Kang, M.; Guo, H. Synergistic Antimicrobial Effects of Baicalin Combined with Kanamycin Against MRSA: Underlying Mechanisms and Diminished Colonization on Lettuce. Pharmaceuticals 2025, 18, 1458. https://doi.org/10.3390/ph18101458
Meng X, Yu Z, Ning C, Sun M, Kang M, Guo H. Synergistic Antimicrobial Effects of Baicalin Combined with Kanamycin Against MRSA: Underlying Mechanisms and Diminished Colonization on Lettuce. Pharmaceuticals. 2025; 18(10):1458. https://doi.org/10.3390/ph18101458
Chicago/Turabian StyleMeng, Xin, Zhiyun Yu, Chao Ning, Mingtong Sun, Mengna Kang, and Haiyong Guo. 2025. "Synergistic Antimicrobial Effects of Baicalin Combined with Kanamycin Against MRSA: Underlying Mechanisms and Diminished Colonization on Lettuce" Pharmaceuticals 18, no. 10: 1458. https://doi.org/10.3390/ph18101458
APA StyleMeng, X., Yu, Z., Ning, C., Sun, M., Kang, M., & Guo, H. (2025). Synergistic Antimicrobial Effects of Baicalin Combined with Kanamycin Against MRSA: Underlying Mechanisms and Diminished Colonization on Lettuce. Pharmaceuticals, 18(10), 1458. https://doi.org/10.3390/ph18101458

