Cubebin Attenuates Methamphetamine-Induced Neurotoxicity Through CREB/BDNF/Caspase-3 Signaling: In Vivo and In Silico Study
Abstract
1. Introduction
2. Methodology
2.1. Animals
2.2. Drugs and Chemicals
2.3. Acute Toxicity Studies and Prediction of ADMET by Computational Analysis
2.4. Experimental Design
2.5. Behavioral Studies
MWM Test
2.6. Biochemical Estimations
2.6.1. Brain Tissue Preparation
2.6.2. Neurotransmitter Levels
2.7. Antioxidant Enzymes
2.7.1. Superoxide Dismutase (SOD)
2.7.2. Reduced Glutathione (GSH)
2.7.3. Catalase (CAT)
2.8. Oxidative Stress Markers
2.8.1. Malondialdehyde (MDA)
2.8.2. Nitric Oxide (NO)
2.9. Neuroinflammatory Cytokines
2.10. Apoptotic Markers
2.11. Molecular Docking (MD)
2.11.1. Target Protein Retrieval and Preparation
2.11.2. Grid Generation
2.11.3. Ligand Preparation
2.11.4. MD of the Target Protein with Ligands
2.11.5. Visualization
2.12. Molecular Dynamics Simulation (MDS)
2.13. Binding Free Energy () Analysis
- -
- ΔGMM represents the difference between the total energies of protein and ligand in isolated form and the free energies of ligand–protein complexes.
- -
- ΔGSolv demonstrates the difference in the GSA solvation energies of the ligand–receptor complex and the addition of the total solvation energies of the receptor and the ligand in the unbound state.
- -
- ΔGSA represents the variation between the ligand and protein surface area energies.
2.14. Statistical Analysis
3. Results
3.1. Acute Toxicity Assessment
3.2. MWM Test
3.3. Biochemical Estimations
Neurotransmitter Levels
3.4. Antioxidant Enzymes
3.5. Oxidative Stress Markers
3.6. Neuroinflammatory Cytokines
3.7. Apoptotic Markers
3.8. MD
3.9. MDS
3.10. Calculations of MM-GBSA
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Bressler, J.P.; Goldstein, G.W. Mechanisms of lead neurotoxicity. Biochem. Pharmacol. 1991, 41, 479–484. [Google Scholar] [CrossRef] [PubMed]
- Spencer, P.S.; Lein, P.J. Neurotoxicity; Academic Press: Cambridge, MA, USA, 2024. [Google Scholar]
- Jayanthi, S.; Daiwile, A.P.; Cadet, J.L. Neurotoxicity of methamphetamine: Main effects and mechanisms. Exp. Neurol. 2021, 344, 113795. [Google Scholar] [CrossRef]
- Edinoff, A.N.; Kaufman, S.E.; Green, K.M.; Provenzano, D.A.; Lawson, J.; Cornett, E.M.; Murnane, K.S.; Kaye, A.M.; Kaye, A.D. Methamphetamine use: A narrative review of adverse effects and related toxicities. Health Psychol. Res. 2022, 10, 38161. [Google Scholar] [CrossRef]
- Behl, T.; Gupta, A.; Albratty, M.; Najmi, A.; Meraya, A.M.; Alhazmi, H.A.; Anwer, M.K.; Bhatia, S.; Bungau, S.G. Alkaloidal phytoconstituents for diabetes management: Exploring the unrevealed potential. Molecules 2022, 27, 5851. [Google Scholar] [CrossRef]
- Kumari, S.; Kamboj, A.; Wanjari, M.; Sharma, A.K. Nephroprotective effect of Vanillic acid in STZ-induced diabetic rats. J. Diabetes Metab. Disord. 2021, 20, 571–582. [Google Scholar] [CrossRef]
- Borges, A.; de Oliveira, I.P.; Lescano, C.H.; Parreira, R.L.T.; Orenha, R.P.; da Silva de Laurentiz, R. Molecular interaction analysis of the lignans from Piper cubeba in complex with Haemonchus contortus phosphomethyltransferase. Vet. Parasitol. 2023, 321, 110001. [Google Scholar] [CrossRef] [PubMed]
- de Souza, V.A.; da Silva, R.; Pereira, A.C.; Royo, V.d.A.; Saraiva, J.; Montanheiro, M.; de Souza, G.H.; da Silva Filho, A.A.; Grando, M.D.; Donate, P.M. Trypanocidal activity of (−)-cubebin derivatives against free amastigote forms of Trypanosoma cruzi. Bioorg. Med. Chem. Lett. 2005, 15, 303–307. [Google Scholar] [CrossRef]
- Silva, M.L.A.; Martins, C.H.; Lucarini, R.; Sato, D.N.; Pavan, F.R.; Freitas, N.H.; Andrade, L.N.; Pereira, A.C.; Bianco, T.N.; Vinholis, A.H. Antimycobacterial activity of natural and semi-synthetic lignans. Z. Naturforschung C 2009, 64, 779–784. [Google Scholar] [CrossRef]
- Souza, G.H.B.d.; da Silva Filho, A.; De Souza, V.; Pereira, A.C.; Royo, V.d.A.; e Silva, M.; Da Silva, R.; Donate, P.M.; Carvalho, J.C.; Bastos, J.K. Analgesic and anti-inflammatory activities evaluation of (-)-O-acetyl,(-)-O-methyl,(-)-O-dimethylethylamine cubebin and their preparation from (-)-cubebin. Il Farm. 2004, 59, 55–61. [Google Scholar] [CrossRef]
- Carvalho, M.T.M.; Rezende, K.C.S.; Evora, P.R.B.; Bastos, J.K.; Cunha, W.R.; Andrade e Silva, M.L.; Celotto, A.C. The Lignan (-)-Cubebin Inhibits Vascular Contraction and Induces Relaxation Via Nitric Oxide Activation in Isolated Rat Aorta. Phytother. Res. 2013, 27, 1784–1789. [Google Scholar] [CrossRef] [PubMed]
- Pires, D.E.; Blundell, T.L.; Ascher, D.B. pkCSM: Predicting small-molecule pharmacokinetic and toxicity properties using graph-based signatures. J. Med. Chem. 2015, 58, 4066–4072. [Google Scholar] [CrossRef]
- Syed, R.U.; Moni, S.S.; Hussein, W.; Alhaidan, T.M.S.; Abumilha, S.M.Y.; Alnahdi, L.K.; Wong, L.S.; Subramaniyan, V.; Kumarasamy, V. Effect of cubebin against streptozotocin-induced diabetic nephropathy rats via inhibition TNF-α/NF-κB/TGF-β: In vivo and in silico study. Sci. Rep. 2025, 15, 4369. [Google Scholar] [CrossRef]
- Aksoz, E.; Gocmez, S.S.; Sahin, T.D.; Aksit, D.; Aksit, H.; Utkan, T. The protective effect of metformin in scopolamine-induced learning and memory impairment in rats. Pharmacol. Rep. 2019, 71, 818–825. [Google Scholar] [CrossRef]
- Rattanaburee, T.; Tipmanee, V.; Tedasen, A.; Thongpanchang, T.; Graidist, P. Inhibition of CSF1R and AKT by (±)-kusunokinin hinders breast cancer cell proliferation. Biomed. Pharmacother. 2020, 129, 110361. [Google Scholar] [CrossRef]
- Robinson, R.C.; Radziejewski, C.; Spraggon, G.; Greenwald, J.; Kostura, M.R.; Burtnick, L.D.; Stuart, D.I.; Choe, S.; Jones, E.Y. The structures of the neurotrophin 4 homodimer and the brain-derived neurotrophic factor/neurotrophin 4 heterodimer reveal a common Trk-binding site. Protein Sci. 1999, 8, 2589–2597. [Google Scholar] [CrossRef] [PubMed]
- Erlanson, D.A.; Lam, J.W.; Wiesmann, C.; Luong, T.N.; Simmons, R.L.; DeLano, W.L.; Choong, I.C.; Burdett, M.T.; Flanagan, W.M.; Lee, D.; et al. In situ assembly of enzyme inhibitors using extended tethering. Nat. Biotechnol. 2003, 21, 308–314. [Google Scholar] [CrossRef] [PubMed]
- Berman, H.M.; Westbrook, J.; Feng, Z.; Gilliland, G.; Bhat, T.N.; Weissig, H.; Shindyalov, I.N.; Bourne, P.E. The protein data bank. Nucleic Acids Res. 2000, 28, 235–242. [Google Scholar] [CrossRef] [PubMed]
- Pettersen, E.F.; Goddard, T.D.; Huang, C.C.; Couch, G.S.; Greenblatt, D.M.; Meng, E.C.; Ferrin, T.E. UCSF Chimera—A visualization system for exploratory research and analysis. J. Comput. Chem. 2004, 25, 1605–1612. [Google Scholar] [CrossRef]
- Morris, G.M.; Huey, R.; Lindstrom, W.; Sanner, M.F.; Belew, R.K.; Goodsell, D.S.; Olson, A.J. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J. Comput. Chem. 2009, 30, 2785–2791. [Google Scholar] [CrossRef]
- Schrödinger, L. Schrödinger Release 2022-3: LigPrep; Schrödinger, Inc.: New York, NY, USA, 2021. [Google Scholar]
- Bowers, K.J.; Chow, E.; Xu, H.; Dror, R.O.; Eastwood, M.P.; Gregersen, B.A.; Klepeis, J.L.; Kolossvary, I.; Moraes, M.A.; Sacerdoti, F.D. Scalable algorithms for molecular dynamics simulations on commodity clusters. In Proceedings of the 2006 ACM/IEEE Conference on Supercomputing, Tampa, FL, USA, 11–17 November 2006; p. 84-es. [Google Scholar]
- Chow, E.; Rendleman, C.A.; Bowers, K.J.; Dror, R.O.; Hughes, D.H.; Gullingsrud, J.; Sacerdoti, F.D.; Shaw, D.E. Desmond performance on a cluster of multicore processors. Simulation 2008, 1, 1–14. [Google Scholar]
- Shivakumar, D.; Williams, J.; Wu, Y.; Damm, W.; Shelley, J.; Sherman, W. Prediction of absolute solvation free energies using molecular dynamics free energy perturbation and the OPLS force field. J. Chem. Theory Comput. 2010, 6, 1509–1519. [Google Scholar] [CrossRef] [PubMed]
- Jorgensen, W.L.; Chandrasekhar, J.; Madura, J.D.; Impey, R.W.; Klein, M.L. Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 1983, 79, 926–935. [Google Scholar] [CrossRef]
- Martyna, G.J.; Tobias, D.J.; Klein, M.L. Constant pressure molecular dynamics algorithms. J. Chem. Phys. 1994, 101, 4177–4189. [Google Scholar] [CrossRef]
- Martyna, G.J.; Klein, M.L.; Tuckerman, M. Nosé–Hoover chains: The canonical ensemble via continuous dynamics. J. Chem. Phys. 1992, 97, 2635–2643. [Google Scholar] [CrossRef]
- Toukmaji, A.Y.; Board Jr, J.A. Ewald summation techniques in perspective: A survey. Comput. Phys. Commun. 1996, 95, 73–92. [Google Scholar] [CrossRef]
- Kagami, L.P.; das Neves, G.M.; Timmers, L.F.S.M.; Caceres, R.A.; Eifler-Lima, V.L. Geo-Measures: A PyMOL plugin for protein structure ensembles analysis. Comput. Biol. Chem. 2020, 87, 107322. [Google Scholar] [CrossRef]
- Bosshard, H.R.; Marti, D.N.; Jelesarov, I. Protein stabilization by salt bridges: Concepts, experimental approaches and clarification of some misunderstandings. J. Mol. Recognit. 2004, 17, 1–16. [Google Scholar] [CrossRef]
- Shafahi, M.; Vaezi, G.; Shajiee, H.; Sharafi, S.; Khaksari, M. Crocin inhibits apoptosis and astrogliosis of hippocampus neurons against methamphetamine neurotoxicity via antioxidant and anti-inflammatory mechanisms. Neurochem. Res. 2018, 43, 2252–2259. [Google Scholar] [CrossRef]
- Yang, X.; Wang, Y.; Li, Q.; Zhong, Y.; Chen, L.; Du, Y.; He, J.; Liao, L.; Xiong, K.; Yi, C.-x. The main molecular mechanisms underlying methamphetamine-induced neurotoxicity and implications for pharmacological treatment. Front. Mol. Neurosci. 2018, 11, 186. [Google Scholar] [CrossRef]
- Chernyuk, D.; Bol’shakova, A.; Vlasova, O.; Bezprozvanny, I. Possibilities and prospects of the behavioral test “morris water maze”. J. Evol. Biochem. Physiol. 2021, 57, 289–303. [Google Scholar] [CrossRef]
- Mizoguchi, H.; Yamada, K. Methamphetamine use causes cognitive impairment and altered decision-making. Neurochem. Int. 2019, 124, 106–113. [Google Scholar] [CrossRef]
- Somani, G.S.; Nahire, M.S.; Parikh, A.D.; Mulik, M.B.; Ghumatkar, P.J.; Laddha, K.S.; Sathaye, S. Neuroprotective effect of Cubebin: A dibenzylbutyrolactone lignan on scopolamine-induced amnesia in mice. Indian J. Med. Res. 2017, 146, 255–259. [Google Scholar] [CrossRef]
- Shrestha, P.; Katila, N.; Lee, S.; Seo, J.H.; Jeong, J.-H.; Yook, S. Methamphetamine induced neurotoxic diseases, molecular mechanism, and current treatment strategies. Biomed. Pharmacother. 2022, 154, 113591. [Google Scholar] [CrossRef] [PubMed]
- Omidvari, S.; Azimzadeh, Z.; Rashnoo, F.; Tahmasebinia, F.; Keramatinia, A.; Roozbahany, N.A.; Abbaszadeh, H.A.; Darabi, S. Molecular mechanisms and treatment strategies for methamphetamine-induced neurodegeneration, inflammation and neurotoxicity. Acta Neurobiol. Exp. 2023, 83, 414–431. [Google Scholar] [CrossRef]
- Jiménez-Balado, J.; Eich, T.S. GABAergic dysfunction, neural network hyperactivity and memory impairments in human aging and Alzheimer’s disease. In Seminars in Cell & Developmental Biology; Academic Press: Cambridge, MA, USA, 2021; pp. 146–159. [Google Scholar]
- Čechová, B.; Šlamberová, R. Methamphetamine, neurotransmitters and neurodevelopment. Physiol. Res. 2021, 70, S301. [Google Scholar] [CrossRef]
- Wan, M.; Wang, W.; He, M.; Yang, S.; Feng, Y.; Luo, Y. Cubebin alleviates chronic stress-induced depression-like behavior in mice by regulating the gut microbiome. Eur. J. Pharmacol. 2025, 994, 177384. [Google Scholar] [CrossRef]
- Graves, S.M.; Schwarzschild, S.E.; Tai, R.A.; Chen, Y.; Surmeier, D.J. Mitochondrial oxidant stress mediates methamphetamine neurotoxicity in substantia nigra dopaminergic neurons. Neurobiol. Dis. 2021, 156, 105409. [Google Scholar] [CrossRef] [PubMed]
- Garza-Lombó, C.; Posadas, Y.; Quintanar, L.; Gonsebatt, M.E.; Franco, R. Neurotoxicity linked to dysfunctional metal ion homeostasis and xenobiotic metal exposure: Redox signaling and oxidative stress. Antioxid. Redox Signal. 2018, 28, 1669–1703. [Google Scholar] [CrossRef] [PubMed]
- Nandi, A.; Yan, L.-J.; Jana, C.K.; Das, N. Role of catalase in oxidative stress-and age-associated degenerative diseases. Oxidative Med. Cell. Longev. 2019, 2019, 9613090. [Google Scholar] [CrossRef]
- Tarbiat, S.; Unver, D.; Tuncay, S.; Isik, S.; Yeman, K.B.; Mohseni, A.R. Neuroprotective effects of Cubebin and Hinokinin lignan fractions of Piper cubeba fruit in Alzheimer’s disease in vitro model. Turk. J. Biochem. 2023, 48, 303–310. [Google Scholar] [CrossRef]
- Olufunmilayo, E.O.; Gerke-Duncan, M.B.; Holsinger, R.D. Oxidative stress and antioxidants in neurodegenerative disorders. Antioxidants 2023, 12, 517. [Google Scholar] [CrossRef]
- Li, Z.; Li, J.; Li, Z.; Zhang, H.; Yang, S.; Ouyang, H.; He, M.; Feng, Y. Protective activity of cubebin from Syringa oblata against CCl4-induced hepatic damage in mice. Rev. Bras. Farm. 2021, 31, 322–329. [Google Scholar] [CrossRef]
- Lee, C.; Jang, J.-H.; Park, G.H. α-Pinene Attenuates Methamphetamine-Induced Conditioned Place Preference in C57BL/6 Mice. Biomol. Ther. 2023, 31, 411–416. [Google Scholar] [CrossRef]
- Shi, S.; Chen, T.; Zhao, M. The crosstalk between neurons and glia in methamphetamine-induced neuroinflammation. Neurochem. Res. 2022, 47, 872–884. [Google Scholar] [CrossRef] [PubMed]
- Bastos, J.K.; Carvalho, J.C.; de Souza, G.H.; Pedrazzi, A.H.; Sarti, S.J. Anti-inflammatory activity of cubebin, a lignan from the leaves of Zanthoxyllum naranjillo Griseb. J. Ethnopharmacol. 2001, 75, 279–282. [Google Scholar] [CrossRef] [PubMed]
- Namgyal, D.; Ali, S.; Mehta, R.; Sarwat, M. The neuroprotective effect of curcumin against Cd-induced neurotoxicity and hippocampal neurogenesis promotion through CREB-BDNF signaling pathway. Toxicology 2020, 442, 152542. [Google Scholar] [CrossRef] [PubMed]
- El-Sheref, E.M.; Aly, A.A.; Alshammari, M.B.; Brown, A.B.; Abdel-Hafez, S.M.N.; Abdelzaher, W.Y.; Bräse, S.; Abdelhafez, E.M.N. Design, Synthesis, Molecular Docking, Antiapoptotic and Caspase-3 Inhibition of New 1,2,3-Triazole/Bis-2(1H)-Quinolinone Hybrids. Molecules 2020, 25, 5057. [Google Scholar] [CrossRef]
- Li, Y.-Z.; Wu, Z.-Y.; Zhu, B.-Q.; Wang, Y.-X.; Kan, Y.-Q.; Zeng, H.-C. The BDNF–TrkB–CREB signalling pathway Is involved in bisphenol S-induced neurotoxicity in male mice by regulating methylation. Toxics 2022, 10, 413. [Google Scholar] [CrossRef]
- Foroughi, K.; Jahanbani, S.; Khaksari, M.; Shayannia, A. Obestatin attenuated methamphetamine-induced PC12 cells neurotoxicity via inhibiting autophagy and apoptosis. Hum. Exp. Toxicol. 2020, 39, 301–310. [Google Scholar] [CrossRef] [PubMed]
- Ashwini, S.; Varkey, S.; Shantaram, M. In Silico docking of polyphenolic compounds against Caspase 3-HeLa cell line protein. Int. J. Drug. Dev. Res. 2017, 9, 28–32. [Google Scholar]
- Kirubhanand, C.; Selvaraj, J.; Rekha, U.V.; Vishnupriya, V.; Nalini, D.; Mohan, S.K.; Vijayalakshmi, P.; Rajalakshmi, M.; Ponnulakshmi, R. Molecular docking data of piperine with Bax, Caspase 3, Cox 2 and Caspase 9. Bioinformation 2020, 16, 458–461. [Google Scholar] [CrossRef] [PubMed]
- Lin, T.H.; Chang, K.H.; Chiu, Y.J.; Weng, Z.K.; Sun, Y.C.; Lin, W.; Lee-Chen, G.J.; Chen, C.M. Neuroprotective Action of Coumarin Derivatives through Activation of TRKB-CREB-BDNF Pathway and Reduction of Caspase Activity in Neuronal Cells Expressing Pro-Aggregated Tau Protein. Int. J. Mol. Sci. 2022, 23, 12734. [Google Scholar] [CrossRef] [PubMed]
Parameters | Details | Standards | ||
---|---|---|---|---|
Method of Experiment | X-Ray Diffraction | |||
Protein ID | 4NYX | 1B8M | 1NME | |
Mutation | No | No | No | No |
Resolution | 1.10 Å | 2.75 Å | 1.60 Å | Near about 3.00 Å |
wwPDB Validation | Better | Better | Better | Better |
Co-Crystal Ligand | 2O4 | - | 159 | - |
Ramachandran Plot | 96.1% | 89.5% | 90.2% | >88% |
Protein ID | Active Sites’ Amino Acids |
---|---|
4NYX | ASN1168A, PRO1110A, VAL1115A, LEU1120A, TYR1125A, ARG1173A, VAL1174A, PHE1177A |
1B8M | ALA46, ARG53, ARG88, ALA89, ARG98, ALA99, GLN54, GLY99, GLY109, ILE105, PRO43, SER45, LYS46, LYS50, LEU49, GLN51, TYR52, TYR54, TYR86, PHE53, SER85, VAL87, LEU90, ILE98, TRP100, PHE102, THR107, PRO45, LEU52, TYR55, PHE56, SER95, TYR96, VAL97, LEU100, VAL42, VAL44, VAL108, TRP110, TRP112, ILE115, THR117 |
1NME | TRP206, ARG207, ASN208, SER209, LYS210, TRP214, SER249, PHE250, SER251, PHE252 |
Sr. No. | Protein ID | Center Coordinates | Size Coordinates | ||||
---|---|---|---|---|---|---|---|
x | y | z | x | y | z | ||
1 | 4NYX | 9.51 | 39.76 | 12.85 | 25 | 25 | 25 |
2 | 1B8M | −0.833 | 33.139 | 7.083 | 25 | 25 | 25 |
3 | 1NME | 42.09 | 96.34 | 24.13 | 25 | 25 | 25 |
Property | Model Name | Predicted Value | Unit |
---|---|---|---|
Absorption | Water solubility | −4.516 | Numeric (log mol/L) |
Caco2 permeability | 1.236 | Numeric (log Papp in 10−6 cm/s) | |
Intestinal absorption (human) | 97.749 | Numeric (% Absorbed) | |
Skin permeability | −2.865 | Numeric (log Kp) | |
P-glycoprotein substrate | Yes | Categorical (Yes/No) | |
P-glycoprotein I inhibitor | Yes | Categorical (Yes/No) | |
P-glycoprotein II inhibitor | No | Categorical (Yes/No) | |
Distribution | VDss (human) | −0.371 | Numeric (log L/kg) |
Fraction unbound (human) | 0 | Numeric (Fu) | |
BBB permeability | −1.111 | Numeric (log BB) | |
CNS permeability | −3.08 | Numeric (log PS) | |
Metabolism | CYP2D6 substrate | No | Categorical (Yes/No) |
CYP3A4 substrate | Yes | Categorical (Yes/No) | |
CYP1A2 inhibitor | No | Categorical (Yes/No) | |
CYP2C19 inhibitor | Yes | Categorical (Yes/No) | |
CYP2C9 inhibitor | No | Categorical (Yes/No) | |
CYP2D6 inhibitor | No | Categorical (Yes/No) | |
CYP3A4 inhibitor | Yes | Categorical (Yes/No) | |
Excretion | Total clearance | −0.117 | Numeric (log ml/min/kg) |
Renal OCT2 substrate | No | Categorical (Yes/No) | |
Toxicity | AMES toxicity | Yes | Categorical (Yes/No) |
Max. tolerated dose (human) | −0.273 | Numeric (log mg/kg/day) | |
hERG I inhibitor | No | Categorical (Yes/No) | |
hERG II inhibitor | Yes | Categorical (Yes/No) | |
Oral rat acute toxicity (LD50) | 2.5 | Numeric (mol/kg) | |
Oral rat chronic toxicity (LOAEL) | 1.584 | Numeric (log mg/kg_bw/day) | |
Hepatotoxicity | No | Categorical (Yes/No) | |
Skin sensitization | No | Categorical (Yes/No) | |
T. pyriformis toxicity | 0.346 | Numeric (log ug/L) | |
Minnow toxicity | 0.159 | Numeric (log mM) |
Targets | CREB | BDNF | Caspase-3 |
---|---|---|---|
PDB | 4NYX | 1B8M | 1NME |
Co-crystal ligand | 2O4 | - | 159 |
Cubebin | −8.881 | −9.173 | −7.322 |
Co-crystal ligand | −8.645 | - | −6.250 |
PDB | Name of Molecule | Binding Energy | Type of Interaction | Residue ID | Distance |
---|---|---|---|---|---|
4NYX | Cubebin | −8.881 | Hydrophobic Interactions | LEU1120A | 3.58 |
LEU1120A | 3.76 | ||||
ILE1122A | 3.92 | ||||
TYR1125A | 3.34 | ||||
VAL1174A | 3.81 | ||||
VAL1174A | 3.49 | ||||
1B8M | −9.173 | Hydrophobic Interactions | PHE56B | 3.5 | |
VAL87A | 3.91 | ||||
ARG88A | 3.73 | ||||
ARG88A | 3.79 | ||||
VAL97B | 3.28 | ||||
ARG98B | 3.13 | ||||
TRP100A | 3.1 | ||||
TRP100A | 3.48 | ||||
PHE102A | 3.82 | ||||
TRP110B | 3.76 | ||||
Hydrogen Bonds | PHE57B | 2.35 | |||
ARG88A | 2.7 | ||||
ARG98B | 2.65 | ||||
Salt Bridges | ARG88A | 5.1 | |||
1NME | −7.322 | Hydrophobic Interactions | PHE256B | 3.62 | |
Hydrogen Bonds | TYR204B | 3.57 | |||
ARG207B | 2.11 | ||||
p-Stacking | PHE256B | 3.67 |
Energies (kcal/mol) | Cubebin_1B8M | Cubebin_1NME | Cubebin_4NYX |
---|---|---|---|
ΔGbind | −75.50 ± 5.29 | −43.76 ± 5.10 | −38.81 ± 4.71 |
ΔGbindCoulomb | −18.79 ± 1.84 | −8.80 ± 2.84 | −10.52 ± 2.62 |
ΔGbindCovalent | −0.61 ± 0.86 | 1.68 ± 1.19 | 1.11 ± 1.73 |
ΔGbindHbond | −2.11 ± 0.52 | −0.68 ± 0.32 | −0.52 ± 0.05 |
ΔGbindLipo | −28.76 ± 1.99 | −21.22 ± 2.16 | −15.26 ± 1.27 |
ΔGbindPacking | −1.08 ± 0.39 | −2.23 ± 0.39 | −1.55 ± 0.84 |
ΔGbindSolvGB | 22.45 ± 1.59 | 14.44 ± 1.75 | 14.58 ± 1.92 |
ΔGbindVdW | −46.61 ± 1.83 | −26.95 ± 3.01 | −26.66 ± 2.62 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Published by MDPI on behalf of the Lithuanian University of Health Sciences. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alenezi, S.K.; Alharbi, K.S.; Alsahli, T.G.; Afzal, M.; ALQahtani, R.; Alshehri, S.; Kazmi, I.; Sayyed, N. Cubebin Attenuates Methamphetamine-Induced Neurotoxicity Through CREB/BDNF/Caspase-3 Signaling: In Vivo and In Silico Study. Medicina 2025, 61, 1567. https://doi.org/10.3390/medicina61091567
Alenezi SK, Alharbi KS, Alsahli TG, Afzal M, ALQahtani R, Alshehri S, Kazmi I, Sayyed N. Cubebin Attenuates Methamphetamine-Induced Neurotoxicity Through CREB/BDNF/Caspase-3 Signaling: In Vivo and In Silico Study. Medicina. 2025; 61(9):1567. https://doi.org/10.3390/medicina61091567
Chicago/Turabian StyleAlenezi, Sattam Khulaif, Khalid Saad Alharbi, Tariq G. Alsahli, Muhammad Afzal, Reem ALQahtani, Samiyah Alshehri, Imran Kazmi, and Nadeem Sayyed. 2025. "Cubebin Attenuates Methamphetamine-Induced Neurotoxicity Through CREB/BDNF/Caspase-3 Signaling: In Vivo and In Silico Study" Medicina 61, no. 9: 1567. https://doi.org/10.3390/medicina61091567
APA StyleAlenezi, S. K., Alharbi, K. S., Alsahli, T. G., Afzal, M., ALQahtani, R., Alshehri, S., Kazmi, I., & Sayyed, N. (2025). Cubebin Attenuates Methamphetamine-Induced Neurotoxicity Through CREB/BDNF/Caspase-3 Signaling: In Vivo and In Silico Study. Medicina, 61(9), 1567. https://doi.org/10.3390/medicina61091567