Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (150)

Search Parameters:
Keywords = Ultra-wideband radiation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
37 pages, 9111 KiB  
Article
Conformal On-Body Antenna System Integrated with Deep Learning for Non-Invasive Breast Cancer Detection
by Marwa H. Sharaf, Manuel Arrebola, Khalid F. A. Hussein, Asmaa E. Farahat and Álvaro F. Vaquero
Sensors 2025, 25(15), 4670; https://doi.org/10.3390/s25154670 - 28 Jul 2025
Viewed by 327
Abstract
Breast cancer detection through non-invasive and accurate techniques remains a critical challenge in medical diagnostics. This study introduces a deep learning-based framework that leverages a microwave radar system equipped with an arc-shaped array of six antennas to estimate key tumor parameters, including position, [...] Read more.
Breast cancer detection through non-invasive and accurate techniques remains a critical challenge in medical diagnostics. This study introduces a deep learning-based framework that leverages a microwave radar system equipped with an arc-shaped array of six antennas to estimate key tumor parameters, including position, size, and depth. This research begins with the evolutionary design of an ultra-wideband octagram ring patch antenna optimized for enhanced tumor detection sensitivity in directional near-field coupling scenarios. The antenna is fabricated and experimentally evaluated, with its performance validated through S-parameter measurements, far-field radiation characterization, and efficiency analysis to ensure effective signal propagation and interaction with breast tissue. Specific Absorption Rate (SAR) distributions within breast tissues are comprehensively assessed, and power adjustment strategies are implemented to comply with electromagnetic exposure safety limits. The dataset for the deep learning model comprises simulated self and mutual S-parameters capturing tumor-induced variations over a broad frequency spectrum. A core innovation of this work is the development of the Attention-Based Feature Separation (ABFS) model, which dynamically identifies optimal frequency sub-bands and disentangles discriminative features tailored to each tumor parameter. A multi-branch neural network processes these features to achieve precise tumor localization and size estimation. Compared to conventional attention mechanisms, the proposed ABFS architecture demonstrates superior prediction accuracy and interpretability. The proposed approach achieves high estimation accuracy and computational efficiency in simulation studies, underscoring the promise of integrating deep learning with conformal microwave imaging for safe, effective, and non-invasive breast cancer detection. Full article
Show Figures

Figure 1

23 pages, 3210 KiB  
Article
Design and Optimization of Intelligent High-Altitude Operation Safety System Based on Sensor Fusion
by Bohan Liu, Tao Gong, Tianhua Lei, Yuxin Zhu, Yijun Huang, Kai Tang and Qingsong Zhou
Sensors 2025, 25(15), 4626; https://doi.org/10.3390/s25154626 - 25 Jul 2025
Viewed by 248
Abstract
In the field of high-altitude operations, the frequent occurrence of fall accidents is usually closely related to safety measures such as the incorrect use of safety locks and the wrong installation of safety belts. At present, the manual inspection method cannot achieve real-time [...] Read more.
In the field of high-altitude operations, the frequent occurrence of fall accidents is usually closely related to safety measures such as the incorrect use of safety locks and the wrong installation of safety belts. At present, the manual inspection method cannot achieve real-time monitoring of the safety status of the operators and is prone to serious consequences due to human negligence. This paper designs a new type of high-altitude operation safety device based on the STM32F103 microcontroller. This device integrates ultra-wideband (UWB) ranging technology, thin-film piezoresistive stress sensors, Beidou positioning, intelligent voice alarm, and intelligent safety lock. By fusing five modes, it realizes the functions of safety status detection and precise positioning. It can provide precise geographical coordinate positioning and vertical ground distance for the workers, ensuring the safety and standardization of the operation process. This safety device adopts multi-modal fusion high-altitude operation safety monitoring technology. The UWB module adopts a bidirectional ranging algorithm to achieve centimeter-level ranging accuracy. It can accurately determine dangerous heights of 2 m or more even in non-line-of-sight environments. The vertical ranging upper limit can reach 50 m, which can meet the maintenance height requirements of most transmission and distribution line towers. It uses a silicon carbide MEMS piezoresistive sensor innovatively, which is sensitive to stress detection and resistant to high temperatures and radiation. It builds a Beidou and Bluetooth cooperative positioning system, which can achieve centimeter-level positioning accuracy and an identification accuracy rate of over 99%. It can maintain meter-level positioning accuracy of geographical coordinates in complex environments. The development of this safety device can build a comprehensive and intelligent safety protection barrier for workers engaged in high-altitude operations. Full article
(This article belongs to the Section Electronic Sensors)
Show Figures

Figure 1

14 pages, 10262 KiB  
Article
A Trident-Fed Wine Glass UWB Antenna Based on Bézier Curve Optimization
by Chheang Ly and Jae-Young Chung
Electronics 2025, 14(13), 2560; https://doi.org/10.3390/electronics14132560 - 24 Jun 2025
Viewed by 275
Abstract
This work introduces a wine glass-shaped planar ultra-wideband (UWB) antenna. The antenna achieves a compact form factor by reducing lateral width through Bézier curve shaping and a trident feed, while maintaining length for low-frequency operation. The wine-glass-shaped radiator increases shunt capacitance and enhances [...] Read more.
This work introduces a wine glass-shaped planar ultra-wideband (UWB) antenna. The antenna achieves a compact form factor by reducing lateral width through Bézier curve shaping and a trident feed, while maintaining length for low-frequency operation. The wine-glass-shaped radiator increases shunt capacitance and enhances midband impedance matching, as demonstrated by equivalent circuit analysis, while the trident feed improves matching at higher frequencies. This design yields a 92% fractional bandwidth (3.2–8.7 GHz) within a compact volume of 0.37λ0×0.13λ0×0.0013λ0. The prototype is fabricated on two 50-μm-thick polyimide flexible copper-clad laminates (FCCL), and its performance is evaluated in an anechoic chamber. The measured results demonstrate omnidirectional radiation with an efficiency of over 80% across the UWB band. With broad operational range and compactness, the antenna is well-suited for IoT and wearable sensing applications. Full article
(This article belongs to the Section Microwave and Wireless Communications)
Show Figures

Figure 1

22 pages, 9047 KiB  
Article
Miniaturized Dual and Quad Port MIMO Antenna Variants Featuring Elevated Diversity Performance for UWB and 5G-Midband Applications
by Karthikeyan Ramanathan, Srivatsun Gopalakrishnan and Thrisha Chandrakanthan
Micromachines 2025, 16(6), 716; https://doi.org/10.3390/mi16060716 - 17 Jun 2025
Viewed by 550
Abstract
The growing demand for high-speed and high-capacity wireless communication has intensified the need for compact, wideband, and efficient MIMO antenna systems, particularly for 5G mid-band and UWB applications. This article presents a miniaturized dual and quad port MIMO antenna design optimized for 5G [...] Read more.
The growing demand for high-speed and high-capacity wireless communication has intensified the need for compact, wideband, and efficient MIMO antenna systems, particularly for 5G mid-band and UWB applications. This article presents a miniaturized dual and quad port MIMO antenna design optimized for 5G mid-band (n77/n78/n79/n96/n102) and Ultra-Wideband (UWB) applications without employing any decoupling structures between the radiating elements. The 2-port configuration features two closely spaced symmetric monopole elements (spacing < λmax/2), promoting efficient use of space without degrading performance. An FR4 substrate (εr = 4.4) is used for fabrication with a compact size of 30 × 41 × 1.6 mm3. This layout is extended orthogonally and symmetrically to form a compact quad-port variant with dimensions of 60 × 41 × 1.6 mm3. Both designs offer a broad operational bandwidth from 2.6 GHz to 10.8 GHz (8.2 GHz), retaining return loss (SXX) below −10 dB and strong isolation (SXY < −20 dB at high frequencies, <−15 dB at low frequencies). The proposed MIMO antennas demonstrate strong performance and excellent diversity characteristics. The two-port antenna achieves an average envelope correlation coefficient (ECC) of 0.00204, diversity gain (DG) of 9.98 dB, and a mean effective gain difference (MEGij) of 0.3 dB, with a total active reflection coefficient (TARC) below −10 dB and signal delay variation under 0.25 ns, ensuring minimal pulse distortion. Similarly, the four-port design reports an average ECC of 0.01432, DG of 9.65 dB, MEGij difference below 0.3 dB, and TARC below −10 dB, confirming robust diversity and MIMO performance across both configurations. Full article
(This article belongs to the Section E:Engineering and Technology)
Show Figures

Figure 1

28 pages, 6574 KiB  
Article
Design of Segmented Ultra-Wideband TEM Horn Antenna for Calibration of Wideband Electromagnetic Pulse Sensors
by Tianchi Zhang, Yongli Wei, Yuan Wang, Changjiao Duan, Lihua Wang, Zongxiang Li, Xiao Li, Xin Li and Baofeng Cao
Sensors 2025, 25(12), 3599; https://doi.org/10.3390/s25123599 - 7 Jun 2025
Viewed by 531
Abstract
Wideband electromagnetic pulse detection is a crucial method for lightning disaster monitoring. However, the random nature of lightning events presents challenges in fulfilling real-time calibration requirements for electromagnetic pulse sensors. This paper introduces a segmented ultra-wideband TEM horn antenna tailored for portable calibration [...] Read more.
Wideband electromagnetic pulse detection is a crucial method for lightning disaster monitoring. However, the random nature of lightning events presents challenges in fulfilling real-time calibration requirements for electromagnetic pulse sensors. This paper introduces a segmented ultra-wideband TEM horn antenna tailored for portable calibration experiments in electromagnetic pulse detection systems. The radiating plates feature a four-section polygonal design, and an end-loaded metal plate is integrated to reduce reflection signal interference. Rigorous simulation analyses were performed on three key factors impacting antenna radiation performance: aperture impedance, tapering profile, and end loading configuration. Experimental results show that the designed antenna achieves a peak field strength of 48.9 V/m at a 10 m distance, with a rise time of 0.87 ns and a full width at half maximum of 1.75 ns. The operating frequency ranges from 48 MHz to 150 MHz, with main lobe beamwidths of 43° and 83° in the E-plane and H-plane radiation patterns, respectively. These parameters meet the technical requirements for electromagnetic pulse sensor calibration experiments. Full article
(This article belongs to the Section Electronic Sensors)
Show Figures

Figure 1

12 pages, 4302 KiB  
Article
Design of Ultra-Wideband Low RCS Antenna Based on Polarization Conversion Metasurface
by Haiqing Guo, Ye Zhao, Jiangwei Li, Rui Gao, Zhihui He and Zhimin Yang
Electronics 2025, 14(11), 2204; https://doi.org/10.3390/electronics14112204 - 29 May 2025
Viewed by 354
Abstract
An ultra-wideband and radar cross-section (RCS) antenna array based on polarization conversion metasurface (PCM) is proposed. Firstly, the PCM unit is proposed, and its performance is analyzed. In terms of radiation performance, the −10 dB impedance matching bandwidth of the PCM unit is [...] Read more.
An ultra-wideband and radar cross-section (RCS) antenna array based on polarization conversion metasurface (PCM) is proposed. Firstly, the PCM unit is proposed, and its performance is analyzed. In terms of radiation performance, the −10 dB impedance matching bandwidth of the PCM unit is 8.5–30.2 GHz (a relative bandwidth of 112.1%) and the polarization conversion ratio (PCR) is higher than 90%. In terms of scattering performance, the antenna achieves more than 10 dB RCS reduction in the band of 8.35–30.45 GHz (a relative bandwidth of 113.9%). Secondly, the PCM unit is combined with the microstrip antenna, and its performance is analyzed: the gain of the microstrip antenna is increased by 2.8 dB at 19.5 GHz compared to the antenna without the PCM, and the low-RCS antenna array achieves RCS reduction over 6 dB within the frequency range of 8.3–31.7 GHz (a relative bandwidth of 117%). The antenna array has the advantages of wide bandwidth, high gain, and low RCS. It can be used for radars, aircraft, and stealth platforms. Full article
Show Figures

Figure 1

20 pages, 6649 KiB  
Article
Ultra-Broadband Wearable Antenna with Thermal Sensitivity Based on Surface-Modified TiO2-PTFE-PDMS Nanocomposites
by Baoli Mi, Qingya Meng, Junping Duan, Bowen Su, Ma Jian, Yangyi Shi and Binzhen Zhang
Micromachines 2025, 16(6), 629; https://doi.org/10.3390/mi16060629 - 27 May 2025
Viewed by 466
Abstract
In this study, a composite substrate with adjustable dielectric properties was prepared, and its promising application in wearable medical device antennas was demonstrated. 3-Methacryloxypropyltrimethoxysilane (KH570) was used to modify titanium dioxide (TiO2) nano-powder, and the modified powder was blended with a [...] Read more.
In this study, a composite substrate with adjustable dielectric properties was prepared, and its promising application in wearable medical device antennas was demonstrated. 3-Methacryloxypropyltrimethoxysilane (KH570) was used to modify titanium dioxide (TiO2) nano-powder, and the modified powder was blended with a mixture of polydimethylsiloxane (PDMS) and polytetrafluoroethylene (PTFE) under the action of anhydrous ethanol. The resulting polymer material had the advantages of hydrophobicity, softness, low loss, and a high dielectric constant. Meanwhile, the effects of the KH570 mass fraction on the microstructure and dielectric properties of TiO2-PTFE-PDMS composites were investigated, and the results showed that when the mass fraction was 5%, the composites exhibited better dielectric properties in the range of 2–12 GHz. Finally, an ultra-wideband antenna with an operating frequency band in the range of 2.37–11.66 GHz was prepared based on this composite substrate. The antenna demonstrated significant potential for future applications in detecting environmental thermal changes due to its special temperature-sensitive linear frequency shift characteristics, and its effect on the human body under bending conditions was studied. In addition, specific absorption rate (SAR) measurements were performed to assess the effects of antenna radiation on the human body in practical applications. Full article
(This article belongs to the Special Issue Flexible Intelligent Sensors: Design, Fabrication and Applications)
Show Figures

Figure 1

16 pages, 958 KiB  
Technical Note
Bayesian Time-Domain Ringing Suppression Approach in Impulse Ultrawideband Synthetic Aperture Radar
by Xinhao Xu, Wenjie Li, Haibo Tang, Longyong Chen, Chengwei Zhang, Tao Jiang, Jie Liu and Xingdong Liang
Remote Sens. 2025, 17(8), 1455; https://doi.org/10.3390/rs17081455 - 18 Apr 2025
Viewed by 431
Abstract
Impulse ultrawideband (UWB) synthetic aperture radar (SAR) combines high-azimuth-range resolution with robust penetration capabilities, making it ideal for applications such as through-wall detection and subsurface imaging. In such systems, the performance of UWB antennas is critical for transmitting high-power, large-bandwidth impulse signals. However, [...] Read more.
Impulse ultrawideband (UWB) synthetic aperture radar (SAR) combines high-azimuth-range resolution with robust penetration capabilities, making it ideal for applications such as through-wall detection and subsurface imaging. In such systems, the performance of UWB antennas is critical for transmitting high-power, large-bandwidth impulse signals. However, two primary factors degrade radar imaging quality: (1) inherent limitations in antenna radiation efficiency, which lead to low-frequency signal loss and subsequent time-domain ringing artifacts; (2) impedance mismatch at the antenna terminals, causing standing wave reflections that exacerbate the ringing phenomenon. This study systematically analyzes the mechanisms of ringing generation, including its physical origins and mathematical modeling in SAR systems. Building on this analysis, we propose a Bayesian ringing suppression algorithm based on sparse optimization. The method effectively enhances imaging quality while balancing the trade-off between ringing suppression and image fidelity. Validation through numerical simulations and experimental measurements demonstrates significant suppression of time-domain ringing and improved target clarity. The proposed approach holds critical importance for advancing impulse UWB SAR systems, particularly in scenarios requiring high-resolution imaging. Full article
Show Figures

Figure 1

16 pages, 6190 KiB  
Article
Compact Size 4-Port MIMO Antenna Formed with Two-Branches Strip-Monopoles with Bandwidth Enhancement Using a T-Stub Line-Load
by Jose Alfredo Tirado-Mendez, Hildeberto Jardon-Aguilar, Roberto Linares-Miranda, Erik Fritz-Andrade, Ruben Flores-Leal, Angel Perez-Miguel and Ricardo Gomez-Villanueva
Appl. Sci. 2025, 15(7), 3757; https://doi.org/10.3390/app15073757 - 29 Mar 2025
Viewed by 502
Abstract
This work presents a compact four-port MIMO antenna with each radiator consisting of a conventional two-monopole array fed at a single point by a coplanar line and reactively loaded with a stub. The incorporation of a T-stub-loaded tuning technique significantly improves the radiating [...] Read more.
This work presents a compact four-port MIMO antenna with each radiator consisting of a conventional two-monopole array fed at a single point by a coplanar line and reactively loaded with a stub. The incorporation of a T-stub-loaded tuning technique significantly improves the radiating element’s impedance, leading to deeper port coupling, a broader bandwidth, and an increased electrical length. Consequently, the operating frequency is substantially lower compared to a standalone radiator. By implementing this configuration with two monopoles of different lengths fed at the same end, an ultra-wideband effect is achieved. By placing four of these stub-loaded monopole arrays in an axial symmetric configuration, a MIMO antenna array is formed. The proposed MIMO array operates from 2.89 GHz to 12 GHz, exhibiting a TARC of less than −10 dB, an ECC of less than 0.002, an average diversity gain of 9.999, and port isolations are within a threshold from −18 dB to −50 dB over the entire bandwidth. The array’s footprint is 32 × 32 mm2, equivalent to 0.083λ02 at the lower cutoff frequency. Full article
Show Figures

Figure 1

18 pages, 7712 KiB  
Article
Development of a Multi-Channel Ultra-Wideband Electromagnetic Transient Measurement System
by Shaoyin He, Xiangyu Chen, Bohao Zhang and Liang Song
Sensors 2025, 25(4), 1159; https://doi.org/10.3390/s25041159 - 14 Feb 2025
Viewed by 925
Abstract
In complex electromagnetic environments, such as substations, converter stations in power systems, and the compartments of aircraft, trains, and automobiles, electromagnetic immunity testing is crucial. It requires that the electric field sensor has features such as a large dynamic measurement range (amplitude from [...] Read more.
In complex electromagnetic environments, such as substations, converter stations in power systems, and the compartments of aircraft, trains, and automobiles, electromagnetic immunity testing is crucial. It requires that the electric field sensor has features such as a large dynamic measurement range (amplitude from hundreds of V/m to tens of kV/m), a fast response speed (response time in the order of nanoseconds or sub-nanoseconds), a wide test bandwidth (DC to 1 GHz even above), miniaturization, and robustness to strong electromagnetic interference. This paper introduces a multi-channel, ultra-wideband transient electric field measurement system. The system’s analog bandwidth covers the spectrum from DC and a power frequency of 50 Hz to partial discharge signals, from DC to 1.65 GHz, with a storage depth of 2 GB (expandable). It overcomes issues related to the instability, insufficient bandwidth, and lack of accuracy of optical fibers in analog signal transmission by using front-end digital sampling based on field-programmable gate array (FPGA) technology and transmitting digital signals via optical fibers. This approach is effectively applicable to measurements in strong electromagnetic environments. Additionally, the system can simultaneously access four channels of signals, with synchronization timing reaching 300 picoseconds, can be connected to voltage and current sensors simultaneously, and the front-end sensor can be flexibly replaced. The performance of the system is verified by means of a disconnect switch operation and steady state test in an HVDC converter station. It is effectively applicable in scenarios such as the online monitoring of transient electromagnetic environments in high-voltage power equipment, fault diagnosis, and the precise localization of radiation sources such as partial discharge or intentional electromagnetic interference (IEMI). Full article
(This article belongs to the Special Issue Magnetoelectric Sensors and Their Applications)
Show Figures

Figure 1

25 pages, 15082 KiB  
Article
A Sub-6GHz Two-Port Crescent MIMO Array Antenna for 5G Applications
by Heba Ahmed, Allam M. Ameen, Ahmed Magdy, Ahmed Nasser and Mohammed Abo-Zahhad
Electronics 2025, 14(3), 411; https://doi.org/10.3390/electronics14030411 - 21 Jan 2025
Cited by 2 | Viewed by 1487
Abstract
The fifth generation of wireless communication (5G) technology is becoming more innovative with the increasing need for high data rates because of the incremental rapidity of mobile data growth. In 5G systems, enhancing device-to-device communication, ultra-low latency (1 ms), outstanding dependability, significant flexibility, [...] Read more.
The fifth generation of wireless communication (5G) technology is becoming more innovative with the increasing need for high data rates because of the incremental rapidity of mobile data growth. In 5G systems, enhancing device-to-device communication, ultra-low latency (1 ms), outstanding dependability, significant flexibility, and data throughput (up to 20 Gbps) is considered one of the most essential factors for wireless networks. To meet these objectives, a sub-6 5G wideband multiple-input multiple-output (MIMO) array microstrip antenna for 5G Worldwide Interoperability for Microwave Access (WiMAX) applications on hotspot devices has been proposed in this research. The 1 × 4 MIMO array radiating element antenna with a partial ground proposed in this research complies with the 5G application standard set out by the Federal Communications Commission. The planned antenna configuration consists of a hollow, regular circular stub patch antenna shaped like a crescent with a rectangular defect at the top of the patch. The suggested structure is mounted on an FR-4 substrate with a thickness “h” of 1.6, a permittivity “εr” of 4.4, and a tangential loss of 0.02. The proposed antenna achieves a high radiation gain and offers a frequency spectrum bandwidth of 3.01 GHz to 6.5 GHz, covering two 5G resonant frequencies “fr” of 3.5 and 5.8 GHz as the mid-band, which yields a gain of 7.66 dBi and 7.84 dBi, respectively. MIMO antenna parameters are examined and introduced to assess the system’s performance. Beneficial results are obtained, with the channel capacity loss (CCL) tending to 0.2 bit/s/Hz throughout the operating frequency band, the envelope correlation coefficient (ECC) yielding 0.02, a mean effective gain (MEG) of less than −6 dB over the operating frequency band, and a total active reflection coefficient (TARC) of less than −10 dB; the radiation efficiency is equal to 71.5%, maintaining impedance matching as well as good mutual coupling among the adjacent parameters. The suggested antenna has been implemented and experimentally tested using the 5G system Open Air Interface (OAI) platform, which operates at sub-6 GHz, yielding −67 dBm for the received signal strength indicator (RSSI), and superior frequency stability, precision, and reproducibility for the signal-to-interference-plus-noise ratio (SINR) and a high level of positivity in the power headroom report (PHR) 5G system performance report, confirming its operational effectiveness in 5G WiMAX (Worldwide Interoperability for Microwave Access) application. Full article
(This article belongs to the Section Microwave and Wireless Communications)
Show Figures

Figure 1

12 pages, 6322 KiB  
Article
Three-Dimensional Ultra-Wideband Antenna: From Guiding Physical Considerations to Sequential Computer Optimization of Parameters and Characteristics
by Victor P. Belichenko, Yuri Buyanov, George Dymov, Aleksandr Mironchev and Aleksandr Gorst
Appl. Sci. 2024, 14(24), 11658; https://doi.org/10.3390/app142411658 - 13 Dec 2024
Viewed by 744
Abstract
Features of radiation from a three-dimensional ultra-wideband (UWB) unidirectional antenna are studied within the framework of the theory of characteristic modes. The antenna has a very simple structure and is distinguished by a rational use of accommodation volume. It has been found that [...] Read more.
Features of radiation from a three-dimensional ultra-wideband (UWB) unidirectional antenna are studied within the framework of the theory of characteristic modes. The antenna has a very simple structure and is distinguished by a rational use of accommodation volume. It has been found that a very wide matching band is provided by the simultaneous excitation of modes of two groups. Since the modes of each group have similar directional patterns, the stability of the antenna directional pattern also occurs practically within the entire matching band. Full article
Show Figures

Figure 1

12 pages, 7215 KiB  
Article
Radio Spectrum Observations and Studies of the Solar Broadband Radio Dynamic Spectrometer (SBRS)
by Jing Huang and Baolin Tan
Universe 2024, 10(12), 440; https://doi.org/10.3390/universe10120440 - 29 Nov 2024
Viewed by 918
Abstract
Solar radio spectral observation is one of the essential approaches for solar physics research, which helps us study the plasma dynamics in the solar atmosphere. The Solar Broadband Radio Dynamic Spectrometer (SBRS) started observing the Sun at Huairou Solar Observing Station in Beijing, [...] Read more.
Solar radio spectral observation is one of the essential approaches for solar physics research, which helps us study the plasma dynamics in the solar atmosphere. The Solar Broadband Radio Dynamic Spectrometer (SBRS) started observing the Sun at Huairou Solar Observing Station in Beijing, China, in 1999. It has obtained a large amount of high-quality observation data of solar radio dynamic spectra in the centimeter–decimeter wavelengths (1.10–7.60 GHz). In particular, the observations with high-temporal resolution of millisecond and high-frequency resolution of MHz display plenty of superfine structures in the dynamic spectrum, which provide crucial information on the radiation process of various radio bursts. We review the past history of solar radio spectral observation and scientific results of SBRS. It is meaningful and will undoubtedly help us inspire new ideas for future research. The understanding of the basic plasma processes in solar plasma could also promote the development of solar physics, astrophysics, and space weather. To broaden the observation frequency range, we propose a new spectrometer at millimeter wavelengths (20–100 GHz) with ultra-wideband and high time–frequency resolution to study the physical processes in the solar transition region. This will open a new window for solar physics research and will provide crucial observational evidence for exploring a series of major issues in solar physics, including coronal heating, solar eruptions, and the origin of solar winds. Full article
Show Figures

Figure 1

18 pages, 8581 KiB  
Article
Scalp-Implanted Ultra-Wideband Circularly Polarized MIMO Antenna for Biotelemetry Systems
by Zhiwei Song, Youwei Shi, Xianren Zheng and Yuchao Wang
Sensors 2024, 24(23), 7522; https://doi.org/10.3390/s24237522 - 25 Nov 2024
Cited by 1 | Viewed by 1136
Abstract
This paper presents an innovative, compact, dual-element, implantable, ultra-wideband, circularly polarized multiple-input multiple-output (MIMO) antenna designed to operate within the 2.45 GHz industrial, scientific, and medical band, and both of its radiating units are circularly polarized antennas with polarization diversity. Specifically, antenna-1 exhibits [...] Read more.
This paper presents an innovative, compact, dual-element, implantable, ultra-wideband, circularly polarized multiple-input multiple-output (MIMO) antenna designed to operate within the 2.45 GHz industrial, scientific, and medical band, and both of its radiating units are circularly polarized antennas with polarization diversity. Specifically, antenna-1 exhibits left-handed circular polarization properties, while antenna-2 demonstrates right-handed circular polarization properties. The slots in the radiating patch and ground plane help the antenna achieve 690 MHz (2.14–2.83 GHz) ultra-wide bandwidth characteristics and circularly polarized characteristics. Additionally, a slit connecting two U-slots on the ground plane allows the antenna to achieve a wide effective circularly polarized axial ratio bandwidth of 400 MHz (2.23–2.63 GHz). The antenna is compact, with dimensions of 0.065 × 0.057 × 0.0042 λ030 represents the free-space wavelength corresponding to the lowest operating frequency). The proposed antenna system’s performance was evaluated with a seven-layer homogeneous human head model, a real human head model, and minced pork. This evaluation revealed that the antenna attained a peak gain of −24.1 dBi and an isolation level of 27.5 dB. Furthermore, the assessment included the antenna’s link margin (LM), key MIMO channel characteristics, and Specific Absorption Rate (SAR) metrics. The results indicate that the antenna performs exceptionally well. Full article
Show Figures

Figure 1

29 pages, 454 KiB  
Review
Overview of Vivaldi Antenna Selection for Through-Wall Radar Applications
by Mariana Amador, André Rouco, Daniel Albuquerque and Pedro Pinho
Sensors 2024, 24(20), 6536; https://doi.org/10.3390/s24206536 - 10 Oct 2024
Cited by 1 | Viewed by 3957
Abstract
This paper analyzes broadband antennas, with a special focus on Vivaldi antennas, for their suitability for through-wall radar applications. It assesses various antenna designs, emphasizing high gain, wide impedance bandwidth, and effective wall penetration capabilities. Vivaldi antennas are superior due to their broad [...] Read more.
This paper analyzes broadband antennas, with a special focus on Vivaldi antennas, for their suitability for through-wall radar applications. It assesses various antenna designs, emphasizing high gain, wide impedance bandwidth, and effective wall penetration capabilities. Vivaldi antennas are superior due to their broad bandwidth, high gain, and directional radiation patterns. This study further explores structural optimizations, feeding techniques, and performance enhancement strategies to refine Vivaldi antenna designs for through-wall radar systems. Through a comparative analysis and technical evaluation, this paper highlights Vivaldi antennas’ potential for improving through-wall radar systems’ imaging and sensing capabilities. This presents a pathway for future ultra-wideband advancements. Full article
Show Figures

Figure 1

Back to TopTop