Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (236)

Search Parameters:
Keywords = UV shielding

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
29 pages, 42729 KiB  
Article
Sustainable and Functional Polymeric Coating for Wood Preservation
by Ramona Marina Grigorescu, Rodica-Mariana Ion, Lorena Iancu, Sofia Slamnoiu-Teodorescu, Anca Irina Gheboianu, Elvira Alexandrescu, Madalina Elena David, Mariana Constantin, Iuliana Raut, Celina Maria Damian, Cristian-Andi Nicolae and Bogdan Trica
Coatings 2025, 15(8), 875; https://doi.org/10.3390/coatings15080875 - 25 Jul 2025
Viewed by 315
Abstract
The development of sustainable and functional nanocomposites has attracted considerable attention in recent years due to their broad spectrum of potential applications, including wood preservation. Also, a global goal is to reuse the large volumes of waste for environmental issues. In this context, [...] Read more.
The development of sustainable and functional nanocomposites has attracted considerable attention in recent years due to their broad spectrum of potential applications, including wood preservation. Also, a global goal is to reuse the large volumes of waste for environmental issues. In this context, the aim of the study was to obtain soda lignin particles, to graft ZnO nanoparticles onto their surface and to apply these hybrids, embedded into a biodegradable polymer matrix, as protection/preservation coating for oak wood. The organic–inorganic hybrids were characterized in terms of compositional, structural, thermal, and morphological properties that confirm the efficacy of soda lignin extraction and ZnO grafting by physical adsorption onto the decorating support and by weak interactions and coordination bonding between the components. The developed solution based on poly(3-hydroxybutyrate-co-3-hydroxyvalerate) and lignin-ZnO was applied to oak wood specimens by brushing, and the improvement in hydrophobicity (evaluated by water absorption that decreased by 48.8% more than wood, humidity tests where the treated sample had a humidity of 4.734% in comparison with 34.911% for control, and contact angle of 97.8° vs. 80.5° for untreated wood) and UV and fungal attack protection, while maintaining the color and aspect of specimens, was sustained. L.ZnO are well dispersed into the polymer matrix, ensuring a smooth and less porous wood surface. According to the results, the obtained wood coating using both a biodegradable polymeric matrix and a waste-based preservative can be applied for protection against weathering degradation factors, with limited water uptake and swelling of the wood, UV shielding, reduced wood discoloration and photo-degradation, effective protection against fungi, and esthetic quality. Full article
Show Figures

Figure 1

21 pages, 2152 KiB  
Article
Effect of 2000-Hour Ultraviolet Irradiation on Surface Degradation of Glass and Basalt Fiber-Reinforced Laminates
by Irina G. Lukachevskaia, Aisen Kychkin, Anatoly K. Kychkin, Elena D. Vasileva and Aital E. Markov
Polymers 2025, 17(14), 1980; https://doi.org/10.3390/polym17141980 - 18 Jul 2025
Viewed by 378
Abstract
This study focuses on the influence of prolonged ultraviolet (UV) irradiation on the mechanical properties and surface microstructure of glass fiber-reinforced plastics (GFRPs) and basalt fiber-reinforced plastics (BFRPs), which are widely used in construction and transport infrastructure. The relevance of the research lies [...] Read more.
This study focuses on the influence of prolonged ultraviolet (UV) irradiation on the mechanical properties and surface microstructure of glass fiber-reinforced plastics (GFRPs) and basalt fiber-reinforced plastics (BFRPs), which are widely used in construction and transport infrastructure. The relevance of the research lies in the need to improve the reliability of composite materials under extended exposure to harsh climatic conditions. Experimental tests were conducted in a laboratory UV chamber over 2000 h, simulating accelerated weathering. Mechanical properties were evaluated using three-point bending, while surface conditions were assessed via profilometry and microscopy. It was shown that GFRPs exhibit a significant reduction in flexural strength—down to 59–64% of their original value—accompanied by increased surface roughness and microdefect depth. The degradation mechanism of GFRPs is attributed to the photochemical breakdown of the polymer matrix, involving free radical generation, bond scission, and oxidative processes. To verify these mechanisms, FTIR spectroscopy was employed, which enabled the identification of structural changes in the polymer phase and the detection of mass loss associated with matrix decomposition. In contrast, BFRP retained up to 95% of their initial strength, demonstrating high resistance to UV-induced aging. This is attributed to the shielding effect of basalt fibers and their ability to retain moisture in microcavities, which slows the progress of photo-destructive processes. Comparison with results from natural exposure tests under extreme climatic conditions (Yakutsk) confirmed the reliability of the accelerated aging model used in the laboratory. Full article
Show Figures

Figure 1

28 pages, 6945 KiB  
Article
Exploring the Structural Effects of Benzaldehyde Derivatives as Corrosion Inhibitors on Mild Steel in Acidic Medium Using Computational and Experimental Approaches
by Tumelo Hope Baloyi, Motsie Elija Mashuga, Abdelilah El-Khlifi, Mohammad Salman and Indra Bahadur
Corros. Mater. Degrad. 2025, 6(3), 29; https://doi.org/10.3390/cmd6030029 - 5 Jul 2025
Viewed by 417
Abstract
In a recent investigation the corrosion-fighting potential of five benzaldehyde derivatives were explored: 4-Formylbenzonitrile (BA1), 4-Nitrobenzaldehyde (BA2), 2-Hydroxy-5-methoxy-3-nitrobenzaldehyde (BA3), 3,5-Bis(trifluoromethyl)benzaldehyde (BA4), and 4-Fluorobenzaldehyde (BA5). Benzaldehyde derivative (BA-2) showed a maximum inhibition efficiency of 93.3% at 500 ppm. Several techniques were used to evaluate [...] Read more.
In a recent investigation the corrosion-fighting potential of five benzaldehyde derivatives were explored: 4-Formylbenzonitrile (BA1), 4-Nitrobenzaldehyde (BA2), 2-Hydroxy-5-methoxy-3-nitrobenzaldehyde (BA3), 3,5-Bis(trifluoromethyl)benzaldehyde (BA4), and 4-Fluorobenzaldehyde (BA5). Benzaldehyde derivative (BA-2) showed a maximum inhibition efficiency of 93.3% at 500 ppm. Several techniques were used to evaluate these compounds’ ability to protect mild steel from corrosion in a 1 M HCl solution, including potentiodynamic polarization (PDP), electrochemical impedance spectroscopy (EIS), adsorption isotherms, and computational methods. Supporting techniques Fourier transform infrared spectroscopy (FTIR) and ultraviolet–visible (UV-Vis) spectroscopy were also employed to validate the results. Despite sharing a common benzene ring, the molecules differ in their substituents, allowing for a comprehensive examination of the substituents’ impact on corrosion inhibition. PDP analysis disclosed that the inhibitors exhibited mixed-type inhibition behavior, interacting with anodic as well as cathodic reactions, influencing the corrosion process. EIS analysis revealed that benzaldehyde derivatives formed a protective passive film on the metal, exhibiting high corrosion resistance by shielding the alloy from corrosive attacks. The benzaldehyde inhibitors followed the Langmuir adsorption isotherm, with high R² values near one, indicating a monolayer adsorption mechanism. DFT results indicate that BA 2 is the most effective inhibitor. FTIR and UV-vis spectroscopy revealed the molecular interactions between metal and benzaldehyde derivative molecules, providing insight into the binding mechanism. Experimental results support the outcomes obtained from the molecular dynamic (MD) simulations. Full article
Show Figures

Figure 1

16 pages, 2389 KiB  
Article
Collaboration of Two UV-Absorbing Dyes in Cholesteric Liquid Crystals Films for Infrared Broadband Reflection and Ultraviolet Shielding
by Mengqi Xie, Yutong Liu, Xiaohui Zhao, Zhidong Liu, Jinghao Zhang, Dengyue Zuo, Guang Cui, Hui Cao and Maoyuan Li
Photonics 2025, 12(7), 656; https://doi.org/10.3390/photonics12070656 - 29 Jun 2025
Viewed by 344
Abstract
This study developed cholesteric liquid crystal broadband reflective films using zinc oxide nanoparticles (ZnO NPs) and homotriazine UV-absorbing dye (UV-1577) to enhance infrared shielding. Unlike benzotriazole-based UV absorber UV-327, which suffers from volatility and contamination, UV-1577 exhibits superior compatibility with liquid crystals, higher [...] Read more.
This study developed cholesteric liquid crystal broadband reflective films using zinc oxide nanoparticles (ZnO NPs) and homotriazine UV-absorbing dye (UV-1577) to enhance infrared shielding. Unlike benzotriazole-based UV absorber UV-327, which suffers from volatility and contamination, UV-1577 exhibits superior compatibility with liquid crystals, higher UV absorption efficiency, and enhanced processing stability due to its larger molecular structure. By synergizing UV-1577 with ZnO NPs, we achieved a gradient UV intensity distribution across the film thickness, inducing a pitch gradient that broadened the reflection bandwidth to 915 nm and surpassing the performance of previous systems using UV-327/ZnO NPs (<900 nm). We conducted a detailed examination of the factors influencing the reflective bandwidth. These included the UV-1577/ZnO NP ratio, the concentrations of the polymerizable monomer (RM257) and chiral dopant (R5011), along with polymerization temperature, UV irradiation intensity, and irradiation time. The resultant films demonstrated efficient ultraviolet shielding via the UV-1577/ZnO NPs collaboration and infrared shielding through the induced pitch gradient. This work presents a scalable strategy for energy-saving smart windows. Full article
(This article belongs to the Special Issue Liquid Crystals in Photonics II)
Show Figures

Figure 1

14 pages, 2187 KiB  
Article
UV-Shielding Biopolymer Coatings Loaded with Bioactive Compounds for Food Packaging Applications
by Matteo Gennaro, Duygu Büyüktaş, Daniele Carullo, Andrea Pinto, Sabrina Dallavalle and Stefano Farris
Coatings 2025, 15(7), 741; https://doi.org/10.3390/coatings15070741 - 21 Jun 2025
Viewed by 544
Abstract
Four natural bioactive compounds with UV-absorbing properties—curcumin, quercetin, caffeic acid, and hymecromone—were incorporated into pectin-based coatings deposited on oriented polypropylene (OPP) to develop packaging films with UV-shielding capabilities. The effects of both bioactive compounds (used individually or in combination) and coating thickness (δ [...] Read more.
Four natural bioactive compounds with UV-absorbing properties—curcumin, quercetin, caffeic acid, and hymecromone—were incorporated into pectin-based coatings deposited on oriented polypropylene (OPP) to develop packaging films with UV-shielding capabilities. The effects of both bioactive compounds (used individually or in combination) and coating thickness (δ = 0.12–1.2 μm) on the optical properties (UV-Vis transmittance and haze) of the coated OPP samples were investigated. Coating deposition enhanced the UV-barrier properties in relation to the type of bioactive compound, following the order of caffeic acid > hymecromone > curcumin > quercetin. Regardless of the type of bioactive compound used, no significant changes were observed in clarity, haze, and tensile parameters of OPP, whereas the pectin coatings dramatically improved the oxygen barrier performance of the plastic substrate. Additionally, a greater coating thickness resulted in a lower UV-light transmittance of coated PP films. Although the combination of hymecromone and caffeic acid did not exhibit a synergistic effect, it demonstrated an additive benefit, effectively broadening the wavelength range of UV protection in the final packaging materials. While this study highlights that a performance gap remains compared to commercially available UV-shielding materials, it underscores the potential of replacing synthetic UV-absorbing additives with natural compounds through coating technologies rather than masterbatch incorporation. Full article
Show Figures

Graphical abstract

25 pages, 3882 KiB  
Article
Graphene Nanoplatelets Reinforced ABS Nanocomposite Films by Sonication-Assisted Cast Film Technique for Emission Shielding Application
by Mohammed Iqbal Shueb, Noraiham Mohamad, Syarfa Zahirah Sapuan, Yee See Khee, Dewi Suriyani Che Halin, Andrei Victor Sandu and Petrica Vizureanu
Materials 2025, 18(11), 2645; https://doi.org/10.3390/ma18112645 - 5 Jun 2025
Viewed by 603
Abstract
The rapid proliferation of electronic devices has heightened the demand for efficient electromagnetic interference (EMI) shielding materials, as conventional alternatives increasingly fall short in mitigating harmful electromagnetic radiation. In this study, we report the fabrication of acrylonitrile butadiene styrene (ABS) nanocomposite films reinforced [...] Read more.
The rapid proliferation of electronic devices has heightened the demand for efficient electromagnetic interference (EMI) shielding materials, as conventional alternatives increasingly fall short in mitigating harmful electromagnetic radiation. In this study, we report the fabrication of acrylonitrile butadiene styrene (ABS) nanocomposite films reinforced with graphene nanoplatelets (GNPs), offering a promising solution to this growing challenge. A persistent issue in incorporating GNPs into the ABS matrix is their poor wettability, which impedes uniform dispersion. To overcome this, a sonication-assisted casting technique was employed, enabling effective integration of GNPs at loadings of 1, 3, and 5 wt%. The resulting nanocomposite films exhibit uniform dispersion and enhanced functional properties. Comprehensive characterization using FESEM, UV-Vis spectroscopy, TGA, DSC, FTIR, and dielectric/EMI analyses revealed significant improvements in thermal stability, UV absorption, and dielectric behavior. Notably, the films demonstrated moderate EMI shielding effectiveness, reaching 0.0064 dB at 4 MHz. These findings position the developed GNP-reinforced ABS nanocomposites as promising candidates for advanced applications in the automotive, aerospace, and electronics industries. Full article
(This article belongs to the Special Issue Obtaining and Characterization of New Materials (5th Edition))
Show Figures

Figure 1

21 pages, 1220 KiB  
Review
Spirulina as a Key Ingredient in the Evolution of Eco-Friendly Cosmetics
by Sergiana dos Passos Ramos, Monize Bürck, Stephanie Fabrícia Francisco da Costa, Marcelo Assis and Anna Rafaela Cavalcante Braga
BioTech 2025, 14(2), 41; https://doi.org/10.3390/biotech14020041 - 30 May 2025
Cited by 2 | Viewed by 1897
Abstract
Limnospira spp., commercially known as spirulina, is widely recognized for its remarkable benefits due to its rich composition of bioactive compounds like phycobiliproteins, carotenoids, and phenolic compounds. These natural bioactive compounds not only serve as colorants but also offer potent antioxidant, anti-inflammatory, immunomodulatory, [...] Read more.
Limnospira spp., commercially known as spirulina, is widely recognized for its remarkable benefits due to its rich composition of bioactive compounds like phycobiliproteins, carotenoids, and phenolic compounds. These natural bioactive compounds not only serve as colorants but also offer potent antioxidant, anti-inflammatory, immunomodulatory, anticancer, antimicrobial, and anti-aging properties. As a result, spirulina and its components are increasingly used in cosmetic formulations to promote skin hydration, reduce wrinkles, and protect against UV radiation damage. Its bioactive components enhance fibroblast growth, boost collagen production, and prevent premature skin aging by inhibiting enzymes responsible for elastin degradation. Additionally, spirulina-based cosmetics have demonstrated wound-healing properties without genotoxic effects, with formulations containing C-phycocyanin particularly effective in shielding skin cells from UV-induced apoptosis. Despite these well-established benefits, there remains significant potential for the cosmetic industry to harness spirulina’s capabilities further. Research into the molecular mechanisms underlying its bioactive compounds in cosmetic formulations is still in its early stages, offering many opportunities for innovation. Emerging fields of biotechnology, such as nanotechnology and biocosmetics, could enhance the stability, efficacy, and delivery of spirulina-based ingredients, unlocking new possibilities for skin protection and rejuvenation. Furthermore, its proven biological properties align perfectly with the increasing consumer demand for safe, sustainable, and nature-inspired skincare solutions. Full article
Show Figures

Figure 1

15 pages, 3357 KiB  
Article
Delivery Systems for Curcumin Derivatives Based on Calcium Carbonate Structures for Biomedical Applications
by Alina Raditoiu, Valentin Raditoiu, Maria Grapin, Radu Claudiu Fierascu, Cristian Andi Nicolae and Monica Florentina Raduly
Crystals 2025, 15(6), 508; https://doi.org/10.3390/cryst15060508 - 26 May 2025
Viewed by 447
Abstract
One of the most researched minerals in terms of how to produce it and the range of uses for it is calcium carbonate. This work describes how to generate hybrid materials by co-precipitating calcium carbonate loaded with either bis-dehydroxycurcumin (CCOH) or the calcium [...] Read more.
One of the most researched minerals in terms of how to produce it and the range of uses for it is calcium carbonate. This work describes how to generate hybrid materials by co-precipitating calcium carbonate loaded with either bis-dehydroxycurcumin (CCOH) or the calcium complex of bis-dehydroxycurcumin (Ca(CCOH)2). Composite materials with various morphologies were produced when calcium carbonate and different amounts of curcumin derivatives were precipitated in alcoholic media. Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and scanning electron microscopy (SEM) were used for structural and morphologic characterization of the materials, while thermal stability was verified by thermal-gravimetric analysis (TGA), and porosity analysis was performed to evaluate surfaces and pore sizes. The hybrid materials were embedded in a cosmetic matrix lacking a sun protective effect in order to assess the UV-shielding properties. The transmittance spectra were subsequently measured in the 290–400 nm region, and the sun protection factor (SPF) was calculated. Thus, the co-precipitation approach produced hybrid materials loaded with curcumin derivatives, which were further evaluated for possible applications in the medical field for the delivery of drugs or in skincare products. Full article
Show Figures

Figure 1

23 pages, 8611 KiB  
Article
Tailoring CuO/Polyaniline Nanocomposites for Optoelectronic Applications: Synthesis, Characterization, and Performance Analysis
by Fedda Alzoubi, Mahmoud Al-Gharram, Tariq AlZoubi, Hasan Al-Khateeb, Mohammed Al-Qadi, Osamah Abu Noqta, Ghaseb Makhadmeh, Omar Mouhtady, Mohannad Al-Hmoud and Jestin Mandumpal
Polymers 2025, 17(10), 1423; https://doi.org/10.3390/polym17101423 - 21 May 2025
Cited by 1 | Viewed by 624
Abstract
This research focuses on creating CuO/PANI nanocomposite films by electrodepositing copper oxide nanoparticles into a polyaniline matrix on ITO substrates. The CuO nanoparticle content was adjusted between 7% and 21%. These nanocomposites are promising for various applications, such as optoelectronic devices, gas sensors, [...] Read more.
This research focuses on creating CuO/PANI nanocomposite films by electrodepositing copper oxide nanoparticles into a polyaniline matrix on ITO substrates. The CuO nanoparticle content was adjusted between 7% and 21%. These nanocomposites are promising for various applications, such as optoelectronic devices, gas sensors, electromagnetic interference shielding, and electrochromic devices. We utilized UV-Vis spectroscopy to examine the nanocomposites’ interaction with light, allowing us to ascertain their refractive indices and absorption coefficients. The Scherrer formula facilitated the determination of the average crystallite size, shedding light on the material’s internal structure. Tauc plots indicated a reduction in the energy-band gap from 3.36 eV to 3.12 eV as the concentration of CuO nanoparticles within the PANI matrix increased, accompanied by a rise in electrical conductivity. The incorporation of CuO nanoparticles into the polyaniline matrix appears to enhance the conjugation length of PANI chains, as evidenced by shifts in the quinoid and benzenoid ring vibrations in FTIR spectra. SEM analysis indicates that the nanocomposite films possess a relatively smooth and homogeneous surface. Additionally, FTIR and XRD analyses demonstrate an increasing degree of interaction between CuO nanoparticles and PANI chains with higher CuO concentrations. At lower concentrations, interactions were minimal. In contrast, at higher concentrations, more significant interactions were observed, which facilitated the stretching of polymer chains, improved molecular packing, and facilitated the formation of larger crystalline structures within the PANI matrix. The incorporation of CuO nanoparticles resulted in nanocomposites with electrical conductivities ranging from 1.2 to 17.0 S cm−1, which are favorable for optimum performance in optoelectronic devices. These results confirm that the nanocomposite films combine pronounced crystallinity, markedly enhanced electrical conductivity, and tunable band-gap energies, positioning them as versatile candidates for next-generation optoelectronic devices. Full article
(This article belongs to the Section Polymer Analysis and Characterization)
Show Figures

Figure 1

21 pages, 11976 KiB  
Article
Fabrication of Antibacterial and Ultraviolet Protective Wool Fabric Using Multi-Walled Carbon Nanotubes Functionalized with Guanidinylated Hyperbranched Polyethyleneimine Derivative
by Nikolaos S. Heliopoulos, Kyriaki-Marina Lyra, Aggeliki Papavasiliou, Fotios K. Katsaros, Kostas Stamatakis, Sergios K. Papageorgiou and Zili Sideratou
Materials 2025, 18(9), 1993; https://doi.org/10.3390/ma18091993 - 28 Apr 2025
Viewed by 440
Abstract
Wool textiles with multifunctional properties such as self-cleaning, antibacterial, electrical conductivity, UV blocking etc. have recently attracted interest. Among the materials employed towards their development, carbon nanotubes (CNTs) have been widely investigated due to their unique chemical, mechanical and electrical properties, exhibiting also [...] Read more.
Wool textiles with multifunctional properties such as self-cleaning, antibacterial, electrical conductivity, UV blocking etc. have recently attracted interest. Among the materials employed towards their development, carbon nanotubes (CNTs) have been widely investigated due to their unique chemical, mechanical and electrical properties, exhibiting also notable UV-blocking properties. However, their limited dispersibility in solvents, particularly in water, has hindered their extensive industrial application and diminished their significant potential. In this work, two guanidinylated derivatives of hyperbranched polyethyleneimine (GPEI5k and PEI 25K) functionalized oxCNTs (oxCNTs@GPEI5K and oxCNTs@GPEI5K), with exceptional aqueous compatibility and colloidal stability, developed in our recent publication, were evaluated as to their antibacterial activity on Gram (-) Escherichia coli and Gram (+) Staphylococcus aureus bacteria and their cytotoxicity against mammalian cells, and the most promising, i.e., oxCNTs@GPEI5K, was subsequently used as finishing agent of wool fabric. The resulting wool textiles were evaluated for color, wash fastness, antibacterial properties, and UV-blocking performance. The GPEI-functionalized oxCNTs derivative, exhibited uniform distribution and good adhesion onto the wool fabrics yielding multifunctional wool fabrics with sustained antibacterial properties even after multiple washing cycles. Additionally, the modified textiles exhibited improved ultraviolet protection, highlighting their potential for multifunctional applications in antibacterial and UV-shielding textiles. Full article
Show Figures

Figure 1

17 pages, 4448 KiB  
Article
Flame-Retardant Ionic Conductive Elastomers with Multiple Hydrogen Bonds: Synthesis, Characterization, and Strain Sensing Applications
by Sen Li, Hao Chen, Chen Zhao, Jinlin He and Lijing Zhang
Molecules 2025, 30(8), 1810; https://doi.org/10.3390/molecules30081810 - 17 Apr 2025
Viewed by 396
Abstract
Flammability is a significant challenge in polymer-based strain sensing applications. In addition, the existing intrinsic flame retardant is not elastic at room temperature, which may potentially damage the flexible equipment. This study presents a series of flame-retardant ionic conductive elastomers (ICEs) (denoted as [...] Read more.
Flammability is a significant challenge in polymer-based strain sensing applications. In addition, the existing intrinsic flame retardant is not elastic at room temperature, which may potentially damage the flexible equipment. This study presents a series of flame-retardant ionic conductive elastomers (ICEs) (denoted as PCAIPx) containing phosphorus from phytic acid (PA) and nitrogen from choline chloride (ChCl) with multiple hydrogen bonds synthesized using a simple and efficient one-pot UV-initiated radical copolymerization of a polymerizable deep eutectic solvent (PDES). The limiting oxygen index (LOI) value increased from 24.1% for the pure PCAI without PA to 38.3% for PCAIP7.5. The SEM analysis of the residual char shows that the formation of the dense and continuous char layer effectively worked as a shield, preventing further decomposition of the undecomposed polymer inside while hindering the transmission of heat and mass and isolating the oxygen required for combustion. The hydrogen bonds’ cross-linked structure and phosphorus-containing elastomer demonstrate a superior elasticity (elongation at break of up to 2109%), durability, and tear resistance and excellent adhesive properties. Application of PCAIPX in strain sensors showed that the elastomer has excellent cyclic stability and exhibited repeatable and stable resistance change signals in response to repetitive bending motions of the wrist, fingers, elbow, and knee. Consequently, this study provides a simple strategy for the development of a flame-retardant ICE which can effectively reduce fire hazards and potentially be applied in other fire-risk fields such as personal protection, firefighting, and sports equipment. Full article
(This article belongs to the Special Issue Molecular Insights into Soft Materials)
Show Figures

Graphical abstract

13 pages, 2890 KiB  
Article
Resilience of Metabolically Active Biofilms of a Desert Cyanobacterium Capable of Far-Red Photosynthesis Under Mars-like Conditions
by Giorgia Di Stefano, Mickael Baqué, Stephen Garland, Andreas Lorek, Jean-Pierre de Vera, Manuele Ettore Michel Gangi, Micol Bellucci and Daniela Billi
Life 2025, 15(4), 622; https://doi.org/10.3390/life15040622 - 7 Apr 2025
Viewed by 1128
Abstract
The response of the desert cyanobacterium Chroococcidiopsis sp. CCMEE 010 was tested in Mars simulations to investigate the possibility of photosynthesis in near-surface protected niches. This cyanobacterium colonizes lithic niches enriched in far-red light (FRL) and depleted in visible light (VL) and is [...] Read more.
The response of the desert cyanobacterium Chroococcidiopsis sp. CCMEE 010 was tested in Mars simulations to investigate the possibility of photosynthesis in near-surface protected niches. This cyanobacterium colonizes lithic niches enriched in far-red light (FRL) and depleted in visible light (VL) and is capable of far-red light photoacclimation (FaRLiP). Biofilms were grown under FRL and VL and exposed in a hydrated state to a low-pressure atmosphere, variable humidity, and UV irradiation, as occur on the Martian surface. VL biofilms showed a maximum quantum efficiency that dropped after 1 h, whereas a slow reduction occurred in FRL biofilms up to undetectable after 8 h, indicating that UV irradiation was the primary cause of photoinhibition. Post-exposure analyses showed that VL and FRL biofilms were dehydrated, suggesting that they entered a dried, dormant state and that top-layer cells shielded bottom-layer cells from UV radiation. After Mars simulations, the survivors (12% in VL biofilms and few cells in FRL biofilms) suggested that, during the evolution of Mars habitability, near-surface niches could have been colonized by phototrophs utilizing low-energy light. The biofilm UV resistance suggests that, during the loss of surface habitability on Mars, microbial life-forms might have survived surface conditions by taking refuge in near-surface protected niches. Full article
(This article belongs to the Section Astrobiology)
Show Figures

Figure 1

16 pages, 4212 KiB  
Article
Enhancing Photostability of Prochloraz via Designing Natural Acid-Derived Prochloraz-Based Ionic Liquids
by Zhiqiang Gao, Fengmao Liu, Qingrong Peng and Wenzhuo Wang
Molecules 2025, 30(7), 1641; https://doi.org/10.3390/molecules30071641 - 7 Apr 2025
Viewed by 469
Abstract
Converting pesticides into ionic liquids by designing counterions can modulate their physicochemical properties, thus improving their efficacy and environmental safety. In this study, eight prochloraz-based ionic liquids (PILs) were synthesized using natural organic acids, and their physicochemical properties, toxicity, antifungal activity, and efficacy [...] Read more.
Converting pesticides into ionic liquids by designing counterions can modulate their physicochemical properties, thus improving their efficacy and environmental safety. In this study, eight prochloraz-based ionic liquids (PILs) were synthesized using natural organic acids, and their physicochemical properties, toxicity, antifungal activity, and efficacy in postharvest mango preservation were evaluated. The results showed that the physicochemical properties of propiconazole, including water solubility, logKow, surface activity, and light stability, could be adjusted by selecting counterions with varying structures. These properties were correlated with toxicity to zebrafish embryos and antifungal activity against Colletotrichum gloeosporioides. Notably, except for the benzoate PIL, the photostability of the other seven PILs was enhanced under UV irradiation, with the cinnamate PIL exhibiting a half-life 2.28 times longer than prochloraz. Spectral analysis indicated that the anions influenced photostability by shielding or interacting with the cations. Furthermore, the three selected PILs improved pesticide deposition on the mango surface during preservation, and the salicylate PIL enhanced pesticide penetration into the fruit, potentially contributing to its therapeutic activity. In conclusion, the ionic liquid strategy offers an effective method to modify pesticide properties, improve photostability, reduce losses, and optimize pesticide formulation. Full article
(This article belongs to the Special Issue 10th Anniversary of Green Chemistry Section)
Show Figures

Figure 1

39 pages, 4341 KiB  
Article
Synergistic Effects of UVB and Ionizing Radiation on Human Non-Malignant Cells: Implications for Ozone Depletion and Secondary Cosmic Radiation Exposure
by Angeliki Gkikoudi, Gina Manda, Christina Beinke, Ulrich Giesen, Amer Al-Qaaod, Elena-Mihaela Dragnea, Maria Dobre, Ionela Victoria Neagoe, Traimate Sangsuwan, Siamak Haghdoost, Spyridon N. Vasilopoulos, Sotiria Triantopoulou, Anna Georgakopoulou, Ioanna Tremi, Paraskevi N. Koutsoudaki, Sophia Havaki, Vassilis G. Gorgoulis, Michael Kokkoris, Faton Krasniqi, Georgia I. Terzoudi and Alexandros G. Georgakilasadd Show full author list remove Hide full author list
Biomolecules 2025, 15(4), 536; https://doi.org/10.3390/biom15040536 - 6 Apr 2025
Cited by 1 | Viewed by 2363
Abstract
The ozone layer in the Earth’s atmosphere filters solar radiation and limits the unwanted effects on humans. A depletion of this ozone shield would permit hazardous levels of UV solar radiation, especially in the UVB range, to bombard Earth’s surface, resulting in potentially [...] Read more.
The ozone layer in the Earth’s atmosphere filters solar radiation and limits the unwanted effects on humans. A depletion of this ozone shield would permit hazardous levels of UV solar radiation, especially in the UVB range, to bombard Earth’s surface, resulting in potentially significant effects on human health. The concern for these adverse effects intensifies if we consider that the UVB solar radiation is combined with secondary cosmic radiation (SCR) components, such as protons and muons, as well as terrestrial gamma rays. This research aims to delve into the intricate interplay between cosmic and solar radiation on earth at the cellular level, focusing on their synergistic effects on human cell biology. Through a multidisciplinary approach integrating radiobiology and physics, we aim to explore key aspects of biological responses, including cell viability, DNA damage, stress gene expression, and finally, genomic instability. To assess the impact of the combined exposure, normal i.e., non-malignant human cells (skin fibroblasts, keratinocytes, monocytes, and lymphocytes) were exposed to high-energy protons or gamma rays in combination with UVB. Cellular molecular and cytogenetic biomarkers of radiation exposure, such as DNA damage (γH2AΧ histone protein and dicentric chromosomes), as well as the expression pattern of various stress genes, were analyzed. In parallel, the MTS reduction and lactate dehydrogenase assays were used as indicators of cell viability, proliferation, and cytotoxicity. Results reveal remaining DNA damage for the co-exposed samples compared to samples exposed to only one type of radiation in all types of cells, accompanied by increased genomic instability and distinct stress gene expression patterns detected at 24–48 h post-exposure. Understanding the impact of combined radiation exposures is crucial for assessing the health risks posed to humans if the ozone layer is partially depleted, with structural and functional damages inflicted by combined cosmic and UVB exposure. Full article
(This article belongs to the Special Issue Molecular Mechanisms in DNA and RNA Damage and Repair)
Show Figures

Figure 1

15 pages, 1760 KiB  
Review
Transparent Wood Fabrication and Applications: A Review
by Le Van Hai, Narayanan Srikanth, Tin Diep Trung Le, Seung Hyeon Park and Tae Hyun Kim
Molecules 2025, 30(7), 1506; https://doi.org/10.3390/molecules30071506 - 28 Mar 2025
Viewed by 2200
Abstract
Wood cellulose is an abundant bio-based resource with diverse applications in construction, cosmetics, packaging, and the pulp and paper industries. Transparent wood (TW) is a novel, high-quality wood material with several advantages over traditional transparent materials (e.g., glass and plastic). These benefits include [...] Read more.
Wood cellulose is an abundant bio-based resource with diverse applications in construction, cosmetics, packaging, and the pulp and paper industries. Transparent wood (TW) is a novel, high-quality wood material with several advantages over traditional transparent materials (e.g., glass and plastic). These benefits include renewability, UV shielding, lightweight properties, low thermal expansion, reduced glare, and improved mechanical strength. TW has significant potential for various applications, including transparent roofs, windows, home lighting structures, electronic devices, home decoration, solar cells, packaging, smart packaging materials, and other high-value-added products. The mechanical properties of TW, such as tensile strength and optical transmittance, are typically up to 500 MPa (Young’s modulus of 50 GPa) and 10–90%, respectively. Fabrication methods, wood types, and processing conditions significantly influence the mechanical and optical properties of TW. In addition, recent research has highlighted the feasibility of TW and large-scale production, making it an emerging research topic for future exploration. This review attempted to provide recent and updated manufacturing methods of TW as well as current and future applications. In particular, the effects of structural modification through various chemical pretreatment methods and impregnation methods using various polymers on the properties of TW biocomposites were also reviewed. Full article
(This article belongs to the Special Issue Advances in Polymer Materials Based on Lignocellulosic Biomass)
Show Figures

Figure 1

Back to TopTop