Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (686)

Search Parameters:
Keywords = UV photodegradation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 8010 KiB  
Article
Mono-(Ni, Au) and Bimetallic (Ni-Au) Nanoparticles-Loaded ZnAlO Mixed Oxides as Sunlight-Driven Photocatalysts for Environmental Remediation
by Monica Pavel, Liubovi Cretu, Catalin Negrila, Daniela C. Culita, Anca Vasile, Razvan State, Ioan Balint and Florica Papa
Molecules 2025, 30(15), 3249; https://doi.org/10.3390/molecules30153249 - 2 Aug 2025
Viewed by 204
Abstract
A facile and versatile strategy to obtain NPs@ZnAlO nanocomposite materials, comprising controlled-size nanoparticles (NPs) within a ZnAlO matrix is reported. The mono-(Au, Ni) and bimetallic (Ni-Au) NPs serving as an active phase were prepared by the polyol-alkaline method, while the ZnAlO support was [...] Read more.
A facile and versatile strategy to obtain NPs@ZnAlO nanocomposite materials, comprising controlled-size nanoparticles (NPs) within a ZnAlO matrix is reported. The mono-(Au, Ni) and bimetallic (Ni-Au) NPs serving as an active phase were prepared by the polyol-alkaline method, while the ZnAlO support was obtained via the thermal decomposition of its corresponding layered double hydroxide (LDH) precursors. X-ray diffraction (XRD) patterns confirmed the successful fabrication of the nanocomposites, including the synthesis of the metallic NPs, the formation of LDH-like structure, and the subsequent transformation to ZnO phase upon LDH calcination. The obtained nanostructures confirmed the nanoplate-like morphology inherited from the original LDH precursors, which tended to aggregate after the addition of gold NPs. According to the UV-Vis spectroscopy, loading NPs onto the ZnAlO support enhanced the light absorption and reduced the band gap energy. ATR-DRIFT spectroscopy, H2-TPR measurements, and XPS analysis provided information about the functional groups, surface composition, and reducibility of the materials. The catalytic performance of the developed nanostructures was evaluated by the photodegradation of bisphenol A (BPA), under simulated solar irradiation. The conversion of BPA over the bimetallic Ni-Au@ZnAlO reached up to 95% after 180 min of irradiation, exceeding the monometallic Ni@ZnAlO and Au@ZnAlO catalysts. Its enhanced activity was correlated with good dispersion of the bimetals, narrower band gap, and efficient charge carrier separation of the photo-induced e/h+ pairs. Full article
Show Figures

Graphical abstract

29 pages, 42729 KiB  
Article
Sustainable and Functional Polymeric Coating for Wood Preservation
by Ramona Marina Grigorescu, Rodica-Mariana Ion, Lorena Iancu, Sofia Slamnoiu-Teodorescu, Anca Irina Gheboianu, Elvira Alexandrescu, Madalina Elena David, Mariana Constantin, Iuliana Raut, Celina Maria Damian, Cristian-Andi Nicolae and Bogdan Trica
Coatings 2025, 15(8), 875; https://doi.org/10.3390/coatings15080875 - 25 Jul 2025
Viewed by 345
Abstract
The development of sustainable and functional nanocomposites has attracted considerable attention in recent years due to their broad spectrum of potential applications, including wood preservation. Also, a global goal is to reuse the large volumes of waste for environmental issues. In this context, [...] Read more.
The development of sustainable and functional nanocomposites has attracted considerable attention in recent years due to their broad spectrum of potential applications, including wood preservation. Also, a global goal is to reuse the large volumes of waste for environmental issues. In this context, the aim of the study was to obtain soda lignin particles, to graft ZnO nanoparticles onto their surface and to apply these hybrids, embedded into a biodegradable polymer matrix, as protection/preservation coating for oak wood. The organic–inorganic hybrids were characterized in terms of compositional, structural, thermal, and morphological properties that confirm the efficacy of soda lignin extraction and ZnO grafting by physical adsorption onto the decorating support and by weak interactions and coordination bonding between the components. The developed solution based on poly(3-hydroxybutyrate-co-3-hydroxyvalerate) and lignin-ZnO was applied to oak wood specimens by brushing, and the improvement in hydrophobicity (evaluated by water absorption that decreased by 48.8% more than wood, humidity tests where the treated sample had a humidity of 4.734% in comparison with 34.911% for control, and contact angle of 97.8° vs. 80.5° for untreated wood) and UV and fungal attack protection, while maintaining the color and aspect of specimens, was sustained. L.ZnO are well dispersed into the polymer matrix, ensuring a smooth and less porous wood surface. According to the results, the obtained wood coating using both a biodegradable polymeric matrix and a waste-based preservative can be applied for protection against weathering degradation factors, with limited water uptake and swelling of the wood, UV shielding, reduced wood discoloration and photo-degradation, effective protection against fungi, and esthetic quality. Full article
Show Figures

Figure 1

15 pages, 3673 KiB  
Article
Photodegradation Assessment of Calcipotriol in the Presence of UV Absorbers by UHPLC/MSE
by Małgorzata Król, Paweł Żmudzki, Adam Bucki and Agata Kryczyk-Poprawa
Appl. Sci. 2025, 15(15), 8124; https://doi.org/10.3390/app15158124 - 22 Jul 2025
Viewed by 367
Abstract
Calcipotriol, a synthetic vitamin D3 analogue widely used in psoriasis treatment, requires a detailed stability assessment due to its topical application and potential exposure to UV radiation. As a drug applied directly to the skin, calcipotriol is particularly susceptible to photodegradation, which [...] Read more.
Calcipotriol, a synthetic vitamin D3 analogue widely used in psoriasis treatment, requires a detailed stability assessment due to its topical application and potential exposure to UV radiation. As a drug applied directly to the skin, calcipotriol is particularly susceptible to photodegradation, which may affect its therapeutic efficacy and safety profile. The present study focuses on the analysis of calcipotriol photostability. An advanced UHPLC/MSE method was employed for the precise determination of calcipotriol and its degradation products. Particular attention was given to the effects of commonly used organic UV filters—approved for use in cosmetic products in both Europe and the USA (benzophenone-3, dioxybenzone, meradimate, sulisobenzone, homosalate, and avobenzone)—on the stability of calcipotriol. Unexpected degradation of calcipotriol was observed in the presence of sulisobenzone. Importantly, this effect was consistently detected in methanolic solution and in the pharmaceutical formulation containing calcipotriol and betamethasone, which is particularly significant from a practical perspective. This finding underscores the necessity of evaluating photostability under real-life conditions, as cosmetic ingredients, when co-applied with topical drugs on the skin, may substantially influence the stability profile of the pharmaceutical active ingredient. The research resulted in the first-time characterization of four degradation products of calcipotriol. The degradation process was found to primarily affect the E-4-cyclopropyl-4-hydroxy-1-methylbut-2-en-1-yl moiety, causing its isomerization to the Z isomer and the formation of diastereomers with either the R or S configuration. Computational analyses using the OSIRIS Property Explorer indicated that none of the five degradation products exhibit a toxicity effect, whereas molecular docking studies suggested possible binding of two of the five degradation products of calcipotriol with the VDR. Full article
(This article belongs to the Section Chemical and Molecular Sciences)
Show Figures

Graphical abstract

21 pages, 2152 KiB  
Article
Effect of 2000-Hour Ultraviolet Irradiation on Surface Degradation of Glass and Basalt Fiber-Reinforced Laminates
by Irina G. Lukachevskaia, Aisen Kychkin, Anatoly K. Kychkin, Elena D. Vasileva and Aital E. Markov
Polymers 2025, 17(14), 1980; https://doi.org/10.3390/polym17141980 - 18 Jul 2025
Viewed by 393
Abstract
This study focuses on the influence of prolonged ultraviolet (UV) irradiation on the mechanical properties and surface microstructure of glass fiber-reinforced plastics (GFRPs) and basalt fiber-reinforced plastics (BFRPs), which are widely used in construction and transport infrastructure. The relevance of the research lies [...] Read more.
This study focuses on the influence of prolonged ultraviolet (UV) irradiation on the mechanical properties and surface microstructure of glass fiber-reinforced plastics (GFRPs) and basalt fiber-reinforced plastics (BFRPs), which are widely used in construction and transport infrastructure. The relevance of the research lies in the need to improve the reliability of composite materials under extended exposure to harsh climatic conditions. Experimental tests were conducted in a laboratory UV chamber over 2000 h, simulating accelerated weathering. Mechanical properties were evaluated using three-point bending, while surface conditions were assessed via profilometry and microscopy. It was shown that GFRPs exhibit a significant reduction in flexural strength—down to 59–64% of their original value—accompanied by increased surface roughness and microdefect depth. The degradation mechanism of GFRPs is attributed to the photochemical breakdown of the polymer matrix, involving free radical generation, bond scission, and oxidative processes. To verify these mechanisms, FTIR spectroscopy was employed, which enabled the identification of structural changes in the polymer phase and the detection of mass loss associated with matrix decomposition. In contrast, BFRP retained up to 95% of their initial strength, demonstrating high resistance to UV-induced aging. This is attributed to the shielding effect of basalt fibers and their ability to retain moisture in microcavities, which slows the progress of photo-destructive processes. Comparison with results from natural exposure tests under extreme climatic conditions (Yakutsk) confirmed the reliability of the accelerated aging model used in the laboratory. Full article
Show Figures

Figure 1

12 pages, 2424 KiB  
Article
Comparison of Quantification Using UV-Vis, NMR, and HPLC Methods of Retinol-Like Bakuchiol Present in Cosmetic Products
by Matylda Grzelecka, Paweł Siudem, Natalia Tyburc, Liling Triyasmono, Ulrike Holzgrabe and Katarzyna Paradowska
Int. J. Mol. Sci. 2025, 26(14), 6638; https://doi.org/10.3390/ijms26146638 - 10 Jul 2025
Viewed by 347
Abstract
Retinoids are used in cosmetics as anti-aging ingredients, along with other substances. However, due to limitations in use (such as photodegradation), it seems necessary to look for retinoid alternatives to be applied in cosmetic products. Bakuchiol, a natural alternative of retinoids, isolated from [...] Read more.
Retinoids are used in cosmetics as anti-aging ingredients, along with other substances. However, due to limitations in use (such as photodegradation), it seems necessary to look for retinoid alternatives to be applied in cosmetic products. Bakuchiol, a natural alternative of retinoids, isolated from Psolarea corylifolia, is one such compound. It has great cosmetic potential and its mechanism of action is not yet fully explored. From the point of view of the bioactive compound, it is also essential to develop a method for rapid quality control of cosmetic preparations containing bakuchiol. The aim of this study was to apply and compare methods for the quantification of bakuchiol in cosmetic products using UV-Vis, 1H qNMR, and HPLC. The results show the possibility of using the 1H NMR method in the routine quality control of cosmetics with bakuchiol because of its comparable results with HPLC analysis and significantly shorter analysis time. Full article
(This article belongs to the Special Issue Extraction, Identification and Quantification of Bioactive Molecules)
Show Figures

Figure 1

18 pages, 5167 KiB  
Article
Highly Efficient Photocatalytic Degradation of Tetracycline Antibiotics by BiPO4/g-C3N4: A Novel Heterojunction Nanocomposite with Nanorod/Stacked-like Nanosheets Structure
by Xin Zhu, Moye Luo, Cheng Sun, Jinlin Jiang and Yang Guo
Molecules 2025, 30(14), 2905; https://doi.org/10.3390/molecules30142905 - 9 Jul 2025
Viewed by 260
Abstract
The use of semiconductors for photocatalytic degradation of organic pollutants has garnered considerable attention as a promising solution to environmental challenges. Compared to TiO2, BiPO4 exhibits superior photocatalytic activity. However, its large band gap restricts its light absorption to the [...] Read more.
The use of semiconductors for photocatalytic degradation of organic pollutants has garnered considerable attention as a promising solution to environmental challenges. Compared to TiO2, BiPO4 exhibits superior photocatalytic activity. However, its large band gap restricts its light absorption to the UV region. One effective technique for extending BiPO4’s absorption wavelength into the visible spectrum is the construction of the heterostructure. This study aimed to synthesize monodisperse BiPO4 nanorods via a solvothermal approach and fabricate BiPO4/g-C3N4 heterojunctions with varying loadings through in situ deposition. Tetracyclines were employed as the target pollutant to evaluate the photocatalytic performance and stability of the prepared materials. The results indicated that 5 wt% of composite exhibited better photocatalytic performance than single catalysts, which showed the highest photodegradation efficiency of approximately 98% for tetracyclines. The prepared bi-photocatalyst presented favorable stability under sunlight irradiation, the photocatalytic activity of which remained almost unchanged after four cycles. The enhanced photocatalytic activity was attributed to the synergistic effect. Additionally, the possible degradation mechanism was elucidated utilizing the semiconductor energy band theory. Overall, this work presents new perspectives on synthesizing innovative and efficient visible-light-driven photocatalysts. It also offers a mechanistic analysis approach by integrating theoretical calculations with experimental observations. Full article
(This article belongs to the Special Issue Advances in Photocatalytic Degradation of Organic Pollutants)
Show Figures

Figure 1

27 pages, 7247 KiB  
Article
Layered Perovskite La2Ti2O7 Obtained by Sol–Gel Method with Photocatalytic Activity
by Alexandra Ilie, Luminița Predoană, Crina Anastasescu, Silviu Preda, Ioana Silvia Hosu, Ruxandra M. Costescu, Daniela C. Culiță, Veronica Brătan, Ioan Balint and Maria Zaharescu
Appl. Sci. 2025, 15(14), 7665; https://doi.org/10.3390/app15147665 - 8 Jul 2025
Viewed by 312
Abstract
This paper presents the synthesis of La2Ti2O7 nanoparticles by the sol–gel method starting from lanthanum nitrate and titanium alkoxide (noted as LTA). Subsequently, the lanthanum titanium oxide nanoparticles are modified with noble metals (platinum) using the chemical impregnation [...] Read more.
This paper presents the synthesis of La2Ti2O7 nanoparticles by the sol–gel method starting from lanthanum nitrate and titanium alkoxide (noted as LTA). Subsequently, the lanthanum titanium oxide nanoparticles are modified with noble metals (platinum) using the chemical impregnation method, followed by a reduction process with NaBH4. The comparative analysis of the structure and surface characteristics of the nanopowders subjected to thermal treatment at 900 °C is conducted using Fourier transform infrared spectroscopy (FT-IR), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) with energy-dispersive X-ray spectroscopy (EDX), transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray fluorescence (XRF), ultraviolet-visible (UV–Vis) spectroscopy, as well as specific surface area and porosity measurements. The photocatalytic activity is evaluated in the oxidative photodegradation of ethanol (CH3CH2OH) under simulated solar irradiation. The modified sample shows higher specific surfaces areas and improved photocatalytic properties, proving the better conversion of CH3CH2OH than the pure sample. The highest conversion of ethanol (29.75%) is obtained in the case of LTA-Pt after 3 h of simulated solar light irradiation. Full article
(This article belongs to the Special Issue Application of Nanomaterials in the Field of Photocatalysis)
Show Figures

Figure 1

28 pages, 6926 KiB  
Article
Effect of Recycling and UV Ageing on the Properties of PLA-Based Materials Used in Additive Manufacturing
by Petr Jirků, Miroslav Muller, Rajesh Kumar Mishra and Jaroslava Svobodová
Polymers 2025, 17(13), 1862; https://doi.org/10.3390/polym17131862 - 3 Jul 2025
Viewed by 586
Abstract
This article focuses on the possibility of using biodegradable polymer-composite materials in additive manufacturing via fused deposition modelling (FDM) 3D printing. The main objective was to experimentally verify the technical feasibility of the repeated use of recycled PLA and PLA composites containing 10% [...] Read more.
This article focuses on the possibility of using biodegradable polymer-composite materials in additive manufacturing via fused deposition modelling (FDM) 3D printing. The main objective was to experimentally verify the technical feasibility of the repeated use of recycled PLA and PLA composites containing 10% natural coffee-ground (CG) filler in a print–degradation–recycling–print cycle. Special attention was paid to simulated ultraviolet radiation as a degradation factor affecting the materials’ mechanical properties. Pure PLA and PLA_CG were compared at four levels of degradation time and after subsequent recycling. The results show that the inclusion of coffee-ground filler slightly reduces the initial strength but enhances the 3D-printed material’s resistance to UV degradation and thus extends its functional service life. Unlike pure PLA, which loses its processability after 12 weeks, PLA_CG retains structural integrity and mechanical functionality. The research confirms the potential of recycled PLA composites with natural fillers for sustainable manufacturing and supports their use within a circular economy framework. Full article
(This article belongs to the Special Issue Physicochemical Properties of Polymer Composites)
Show Figures

Graphical abstract

21 pages, 7450 KiB  
Article
Degradation of Folic Acid in the Composition of a Conjugate with Polyvinylpyrrolidone and Fullerene C60 Under UV and E-Beam Irradiation
by Alina A. Borisenkova, Dmitriy V. Baykov, Anna V. Titova, Vadim V. Bakhmetyev, Maria A. Markova, Zhanna B. Lyutova, Anton V. Popugaev, Vladislav S. Khaleev and Victor P. Sedov
Molecules 2025, 30(13), 2718; https://doi.org/10.3390/molecules30132718 - 24 Jun 2025
Viewed by 409
Abstract
Folic acid (FA) is used as a targeting ligand for targeted drug delivery to tumor cells, some types of which overexpress folate receptors on their surface. However, while the preparation of conjugates containing FA may comprise a multi-step process, FA presents low photostability [...] Read more.
Folic acid (FA) is used as a targeting ligand for targeted drug delivery to tumor cells, some types of which overexpress folate receptors on their surface. However, while the preparation of conjugates containing FA may comprise a multi-step process, FA presents low photostability under UV irradiation. In addition, FA undergoes radiolysis under the action of ionizing radiation, which is utilized for drug sterilization. In this study, we investigate the stability of FA in a conjugate (FA-PVP-C60) with fullerene C60 and polyvinylpyrrolidone under the action of UV (205–400 nm) and electron irradiation (doses from 2 to 8 kGy) at different pH (4.5, 7.2, 10.7). The degradation of FA is studied using fluorescence and UV–Vis spectroscopy. It is found that the fullerene C60 in the FA-PVP-C60 conjugate suppresses the degradation of FA during both photolysis and radiolysis, which is confirmed by the decrease in the quantum yield of fluorescence and the radiation chemical yield of FA destruction accompanied by increasing fullerene content in the conjugate (from 2.8 to 10 wt.%). Full article
(This article belongs to the Special Issue Nanomaterials for Biomedicine: Innovations and Challenges)
Show Figures

Figure 1

18 pages, 3862 KiB  
Article
Synthesis and Photocatalytic Application of Hydrotalcites as an Environmentally Friendly Catalyst for the Elimination of Dye
by Sarra Hamouda, Nourredine Bettahar, Miloud Aissat, Mika Sillanpää, Saleh AL-Farraj and Abdellah Bahmani
Catalysts 2025, 15(7), 616; https://doi.org/10.3390/catal15070616 - 22 Jun 2025
Viewed by 559
Abstract
Layered double hydroxide Ti-Zn-CO3 was synthesized by the co-precipitation method with a molar ratio of 2. The synthesized material was characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), thermal analysis (TGA/DTG), UV–vis diffuse reflection spectroscopy (DRS), and Scanning Electron Microscopy [...] Read more.
Layered double hydroxide Ti-Zn-CO3 was synthesized by the co-precipitation method with a molar ratio of 2. The synthesized material was characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), thermal analysis (TGA/DTG), UV–vis diffuse reflection spectroscopy (DRS), and Scanning Electron Microscopy (SEM). The photocatalytic degradation of Trypan Blue (TB) and Naphthol Green B (NGB) dyes from aqueous solutions under UV irradiation was investigated. The effects of contact time, photocatalyst dose, dye concentration, solution pH, scavenger effect, and regeneration of catalyst were investigated. The kinetic study showed that the equilibrium was reached within 30 min and 40 min for TB and NGB dyes, respectively, with photodegradation efficiency of around 91% and 83% for TB and NGB dyes, respectively, for dye concentration of 25 mg∙L−1, and the pseudo-first order showed good agreement with the reaction. The optimum photocatalyst dose is 20 mg (1 g∙L−1) and 30 mg (1.5 g∙L−1) for TB and NGB dyes, respectively, and the optimal pH of reaction was found to be 7 for both TB and NGB dyes. This study was established to highlight the photodegradation performance of the prepared catalyst Ti-Zn-CO3 for the degradation of (TB and NGB) dyes chosen as pollutants, and the fact that it can be used many times, which has an economical effect. This mean that the prepared sample is a potential catalyst with good photocatalytic activity, stability, and reusability. Full article
(This article belongs to the Section Photocatalysis)
Show Figures

Graphical abstract

24 pages, 11397 KiB  
Article
Carbon-Rich Nanocomposites Based on Polyaniline/Titania Nanotubes Precursor: Synergistic Effect Between Surface Adsorption and Photocatalytic Activity
by Brankica Gajić, Milica Milošević, Dejan Kepić, Gordana Ćirić-Marjanović, Zoran Šaponjić and Marija Radoičić
Molecules 2025, 30(12), 2628; https://doi.org/10.3390/molecules30122628 - 17 Jun 2025
Viewed by 343
Abstract
Nowadays, there is an urgent need for efficient photocatalysts and adsorbents for environmentally relevant applications. This study investigates the effect of polyaniline (PANI) on the structure and performance of carbonized nanocomposites composed of PANI and TiO2 nanotubes (NTs), focusing on their photocatalytic [...] Read more.
Nowadays, there is an urgent need for efficient photocatalysts and adsorbents for environmentally relevant applications. This study investigates the effect of polyaniline (PANI) on the structure and performance of carbonized nanocomposites composed of PANI and TiO2 nanotubes (NTs), focusing on their photocatalytic degradation efficiency and dye adsorption capacity. The hypothesis was that PANI forms conductive carbon domains and stabilizes the anatase phase during thermal treatment, enhancing the performance of TiO2-NTs as photocatalysts. Nanocomposites based on PANI and TiO2-NTs (TTP) were synthesized through chemical oxidative polymerization of aniline (ANI) in the presence of TiO2-NTs using two TiO2/ANI molar ratios of 50 and 150 and subsequently carbonized at 650 °C, yielding CTTP-50 and CTTP-150. The novel CTTP composites and carbonized pristine TiO2-NTs (CTNT) were characterized by various techniques, including TEM, UV-Vis diffuse reflectance, Raman spectroscopy, XRD, and TGA. Their performance regarding dye adsorption and photocatalytic degradation under visible light was evaluated with Acid Orange 7, Methylene Blue, and Rhodamine B. CTTP-150 exhibited the highest adsorption capacity and photodegradation rate, attributed to the synergistic effect of PANI, which stabilizes the TiO2 phase and enhances visible-light absorption and adsorption. Full article
(This article belongs to the Special Issue Research on Heterogeneous Catalysis—2nd Edition)
Show Figures

Graphical abstract

18 pages, 5503 KiB  
Article
Enhancing Cotton Fabrics Through Grafting of Glycine-Based Polyamidoamine
by Matteo Arioli, Jenny Alongi, Claudia Forte, Silvia Pizzanelli and Elisabetta Ranucci
Polymers 2025, 17(12), 1676; https://doi.org/10.3390/polym17121676 - 17 Jun 2025
Viewed by 398
Abstract
Durable polyamidoamine (PAA) coatings were covalently grafted onto cotton by applying a water-soluble, glycine-based PAA (M-GLY) through a radical polymerization mechanism. M-GLY oligomers of different chain lengths, terminated with bisacrylamide groups, were synthesized via polyaddition of N,N′-methylenebisacrylamide and glycine at molar ratios of [...] Read more.
Durable polyamidoamine (PAA) coatings were covalently grafted onto cotton by applying a water-soluble, glycine-based PAA (M-GLY) through a radical polymerization mechanism. M-GLY oligomers of different chain lengths, terminated with bisacrylamide groups, were synthesized via polyaddition of N,N′-methylenebisacrylamide and glycine at molar ratios of 1:0.9, 1:0.85, and 1:0.8. Cotton strips were then impregnated with differently concentrated (10 and 20 wt.%) aqueous solutions of the M-GLY oligomers in the presence of potassium persulfate, which oxidized cellulose and generated radicals that initiated polymerization of the M-GLY terminals, thereby enabling covalent grafting onto cotton. This process yielded M-GLY-grafted cotton (COT-g-M-GLY) with 2–15% add-on levels. Scanning electron microscopy revealed uniform surface coverage and penetration of the coating into fiber interiors. Grafting did not alter cellulose crystallinity—65% vs. 64% for grafted and virgin cotton. However, thermogravimetric analysis showed that COT-g-M-GLY exhibited lower thermo-oxidative stability than M-GLY-adsorbed cotton (COT/M-GLY) at similar add-ons. Flame-retardancy tests indicated that COT-g-M-GLY reduced the burning rate (by 10% to 30%) but did not achieve self-extinguishing behavior, unlike COT/M-GLY. Despite this, COT-g-M-GLY provided good protection against UV-induced photodegradation. After accelerated UVA–UVB exposure, cotton samples with 10% M-GLY add-on showed a significantly reduced yellowing rate compared to untreated cotton, as confirmed by spectrophotometric analysis. Full article
(This article belongs to the Section Polymer Chemistry)
Show Figures

Graphical abstract

18 pages, 9850 KiB  
Article
Structural Water Content in Pigment-Grade TiO2 Particles Coated with Al2O3 and SiO2, and Their Effect on Polypropylene Photodegradation
by Edgar F. Armendáriz-Alonso, Nancy Rivera-García, J. Antonio Moreno-Razo, Luis Octavio Meza-Espinoza, Miguel A. Waldo-Mendoza and Elías Pérez
Coatings 2025, 15(6), 685; https://doi.org/10.3390/coatings15060685 - 6 Jun 2025
Viewed by 555
Abstract
The influence of structural water in alumina (Al2O3) and silica (SiO2) coated titanium dioxide (TiO2) pigments on the photodegradation behavior of polypropylene (PP) composites was investigated. Four commercial rutile TiO2 pigments with varying surface [...] Read more.
The influence of structural water in alumina (Al2O3) and silica (SiO2) coated titanium dioxide (TiO2) pigments on the photodegradation behavior of polypropylene (PP) composites was investigated. Four commercial rutile TiO2 pigments with varying surface inorganic coatings were incorporated into PP plaques and subjected to accelerated UV weathering to simulate outdoor exposure. Photodegradation was assessed through gloss retention measurements, the carbonyl index (CI), and stress at break retention, while pigment morphology and composition were analyzed using transmission electron microscopy (TEM) and energy-dispersive X-ray spectroscopy (EDS). Surface charge and water content were determined through the zeta potential (ζ), Karl Fischer titration, thermogravimetric analysis (TGA), and Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS). The results showed that low-alumina coating alone led to the lowest photodegradation resistance, the highest CI, and the lowest stress at break retention. In contrast, increasing alumina content enhanced photostability, reaching its maximum for combined alumina–silica coatings, which mitigated electron–hole pair migration. PP composites with high alumina–silica-coated TiO2 exhibited higher gloss retention (36%) compared to low-alumina samples (21%). Furthermore, statistical analysis using ANOVA revealed significant differences in coating content and ζ potential among the pigment grades. These findings provide novel insights into oxide-water interactions and the impact of structural water on the photodegradation of polymer composites. Full article
Show Figures

Figure 1

28 pages, 5628 KiB  
Article
Rice Husks as a Biogenic Template for the Synthesis of Fe2O3/MCM-41 Nanomaterials for Polluted Water Remediation
by Tamara B. Benzaquén, Paola M. Carraro, Griselda A. Eimer, Julio Urzúa-Ahumada, Po S. Poon and Juan Matos
Molecules 2025, 30(12), 2484; https://doi.org/10.3390/molecules30122484 - 6 Jun 2025
Viewed by 496
Abstract
This work shows a sustainable methodology for the synthesis of biogenic materials designed for the removal and photodegradation of rhodamine B (RhB), a highly dangerous environmental pollutant that induces reproductive toxicity. The classical synthesis of MCM-41-ordered mesoporous materials was modified using biocompatible rice [...] Read more.
This work shows a sustainable methodology for the synthesis of biogenic materials designed for the removal and photodegradation of rhodamine B (RhB), a highly dangerous environmental pollutant that induces reproductive toxicity. The classical synthesis of MCM-41-ordered mesoporous materials was modified using biocompatible rice husk as the silica template. Iron was incorporated and the so-prepared biogenic photocatalysts were characterized by X-ray diffraction, N2 adsorption–desorption isotherms, transmission electron microscopy, diffuse reflectance UV-Vis, surface pH, cyclic voltammetry, and Fourier transform infrared spectral analysis of pyridine adsorption. The photocatalytic performance of the materials was evaluated following the removal by adsorption and the photon-driven degradation of RhB. The adsorption capacity and photocatalytic activity of the biogenic materials were correlated with their properties, including iron content, texture, surface content, and electrochemical properties. The best biogenic material boosted the degradation rates of RhB under UV irradiation up to 4.7 and 2.2 times greater than the direct photolysis and the benchmark semiconductor TiO2-P25. It can be concluded that the use of rice husks for the synthesis of biogenic Fe-modified mesoporous materials is a promising strategy for wastewater treatment applications, particularly in the removal of highly toxic organic dyes. Full article
(This article belongs to the Special Issue 30th Anniversary of Molecules: Recent Advances in Photochemistry)
Show Figures

Graphical abstract

16 pages, 3214 KiB  
Article
Tailoring β-Bi2O3 Nanoparticles via Mg Doping for Superior Photocatalytic Activity and Hydrogen Evolution
by Ibrahim M. Sharaf, Mohamed S. I. Koubisy, Fatemah H. Alkallas, Amira Ben Gouider Trabelsi and Abdelaziz Mohamed Aboraia
Catalysts 2025, 15(6), 519; https://doi.org/10.3390/catal15060519 - 24 May 2025
Viewed by 682
Abstract
Bismuth oxide (β-Bi2O3) is a promising visible-light-driven photocatalyst due to its narrow direct bandgap, but its practical application is hindered by rapid electron–hole recombination and limited surface active sites. This study demonstrates a sol-gel synthesis approach to tailor β-Bi [...] Read more.
Bismuth oxide (β-Bi2O3) is a promising visible-light-driven photocatalyst due to its narrow direct bandgap, but its practical application is hindered by rapid electron–hole recombination and limited surface active sites. This study demonstrates a sol-gel synthesis approach to tailor β-Bi2O3 nanoparticles through magnesium (Mg) doping, achieving remarkable enhancements in the photocatalytic degradation of organic pollutants and hydrogen evolution. The structural analysis through XRD, SEM, and EDX confirmed Mg-doping concentrations of 0.025 to 0.1 M led to crystallite size reduction from 79 nm to 13 nm, while the UV–Vis bandgap measurement showed it decreased from 3.8 eV to 3.08–3.3 eV. The photodegradation efficiency increased through Mg doping at a 0.1 M concentration, with the highest rate constant value of 0.0217 min−1. The doping process led to VB potential reduction between 3.37 V (pristine) and 2.78–2.91 V across the doped samples when referenced to SCE. The photocatalytic performance of Mg0.075Bi1.925O3 improved with its 3.2 V VB potential because the photoelectric band arrangement enhanced both light absorption and charge separation. The combination of modifications through Mg doping yielded an enhanced photocatalytic performance, which proves that magnesium doping is a pivotal approach to modifying β-Bi2O3 suitable for environmentally and energy-related applications. Full article
(This article belongs to the Special Issue Design and Application of Combined Catalysis)
Show Figures

Figure 1

Back to TopTop