Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (146)

Search Parameters:
Keywords = UAV swarm networks

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 1714 KiB  
Article
A Kalman Filter-Based Localization Calibration Method Optimized by Reinforcement Learning and Information Matrix Fusion
by Zijia Huang, Qiushi Xu, Menghao Sun and Xuzhen Zhu
Entropy 2025, 27(8), 821; https://doi.org/10.3390/e27080821 - 1 Aug 2025
Viewed by 222
Abstract
To address the degradation in localization accuracy caused by insufficient robustness of filter parameters and inefficient multi-trajectory data fusion in dynamic environments, this paper proposes a Kalman filter-based localization calibration method optimized by reinforcement learning and information matrix fusion (RL-IMKF). An actor–critic reinforcement [...] Read more.
To address the degradation in localization accuracy caused by insufficient robustness of filter parameters and inefficient multi-trajectory data fusion in dynamic environments, this paper proposes a Kalman filter-based localization calibration method optimized by reinforcement learning and information matrix fusion (RL-IMKF). An actor–critic reinforcement learning network is designed to adaptively adjust the state covariance matrix, enhancing the Kalman filter’s adaptability to environmental changes. Meanwhile, a multi-trajectory information matrix fusion strategy is introduced, which aggregates multiple trajectories in the information domain via weighted inverse covariance matrices to suppress error propagation and improve system consistency. Experiments using both simulated and real-world sensor data demonstrate that the proposed method outperforms traditional extended Kalman filter approaches in terms of localization accuracy and stability, providing a novel solution for cooperative localization calibration of unmanned aerial vehicle (UAV) swarms in dynamic environments. Full article
(This article belongs to the Special Issue Complexity, Entropy and the Physics of Information II)
Show Figures

Figure 1

20 pages, 1609 KiB  
Article
Research on Networking Protocols for Large-Scale Mobile Ultraviolet Communication Networks
by Leitao Wang, Zhiyong Xu, Jingyuan Wang, Jiyong Zhao, Yang Su, Cheng Li and Jianhua Li
Photonics 2025, 12(7), 710; https://doi.org/10.3390/photonics12070710 - 14 Jul 2025
Viewed by 234
Abstract
Ultraviolet (UV) communication, characterized by non-line-of-sight (NLOS) scattering, holds substantial potential for enabling communication networking in unmanned aerial vehicle (UAV) formations within strong electromagnetic interference environments. This paper proposes a networking protocol for large-scale mobile ultraviolet communication networks (LSM-UVCN). In large-scale networks, the [...] Read more.
Ultraviolet (UV) communication, characterized by non-line-of-sight (NLOS) scattering, holds substantial potential for enabling communication networking in unmanned aerial vehicle (UAV) formations within strong electromagnetic interference environments. This paper proposes a networking protocol for large-scale mobile ultraviolet communication networks (LSM-UVCN). In large-scale networks, the proposed protocol establishes multiple non-interfering transmission paths based on a connection matrix simultaneously, ensuring reliable space division multiplexing (SDM) and optimizing the utilization of network channel resources. To address frequent network topology changes in mobile scenarios, the protocol employs periodic maintenance of the connection matrix, significantly reducing the adverse impacts of node mobility on network performance. Simulation results demonstrate that the proposed protocol achieves superior performance in large-scale mobile UV communication networks. By dynamically adjusting the connection matrix update frequency, it adapts to varying node mobility intensities, effectively minimizing control overhead and data loss rates while enhancing network throughput. This work underscores the protocol’s adaptability to dynamic network environments, providing a robust solution for high-reliability communication requirements in complex electromagnetic scenarios, particularly for UAV swarm applications. The integration of SDM and adaptive matrix maintenance highlights its scalability and efficiency, positioning it as a viable technology for next-generation wireless communication systems in challenging operational conditions. Full article
(This article belongs to the Special Issue Free-Space Optical Communication and Networking Technology)
Show Figures

Figure 1

26 pages, 987 KiB  
Article
Traj-Q-GPSR: A Trajectory-Informed and Q-Learning Enhanced GPSR Protocol for Mission-Oriented FANETs
by Mingwei Wu, Bo Jiang, Siji Chen, Hong Xu, Tao Pang, Mingke Gao and Fei Xia
Drones 2025, 9(7), 489; https://doi.org/10.3390/drones9070489 - 10 Jul 2025
Viewed by 360
Abstract
Routing in flying ad hoc networks (FANETs) is hindered by high mobility, trajectory-induced topology dynamics, and energy constraints. Conventional topology-based or position-based protocols often fail due to stale link information and limited neighbor awareness. This paper proposes a trajectory-informed routing protocol enhanced by [...] Read more.
Routing in flying ad hoc networks (FANETs) is hindered by high mobility, trajectory-induced topology dynamics, and energy constraints. Conventional topology-based or position-based protocols often fail due to stale link information and limited neighbor awareness. This paper proposes a trajectory-informed routing protocol enhanced by Q-learning: Traj-Q-GPSR, tailored for mission-oriented UAV swarm networks. By leveraging mission-planned flight trajectories, the protocol builds time-aware two-hop neighbor tables, enabling routing decisions based on both current connectivity and predicted link availability. This spatiotemporal information is integrated into a reinforcement learning framework that dynamically optimizes next-hop selection based on link stability, queue length, and node mobility patterns. To further enhance adaptability, the learning parameters are adjusted in real time according to network dynamics. Additionally, a delay-aware queuing model is introduced to forecast optimal transmission timing, thereby reducing buffering overhead and mitigating redundant retransmissions. Extensive ns-3 simulations across diverse mobility, density, and CBR connections demonstrate that the proposed protocol consistently outperforms GPSR, achieving up to 23% lower packet loss, over 80% reduction in average end-to-end delay, and improvements of up to 37% and 52% in throughput and routing efficiency, respectively. Full article
(This article belongs to the Section Drone Communications)
Show Figures

Figure 1

22 pages, 3045 KiB  
Article
Optimization of RIS-Assisted 6G NTN Architectures for High-Mobility UAV Communication Scenarios
by Muhammad Shoaib Ayub, Muhammad Saadi and Insoo Koo
Drones 2025, 9(7), 486; https://doi.org/10.3390/drones9070486 - 10 Jul 2025
Viewed by 495
Abstract
The integration of reconfigurable intelligent surfaces (RISs) with non-terrestrial networks (NTNs), particularly those enabled by unmanned aerial vehicles (UAVs) or drone-based platforms, has emerged as a transformative approach to enhance 6G connectivity in high-mobility scenarios. UAV-assisted NTNs offer flexible deployment, dynamic altitude control, [...] Read more.
The integration of reconfigurable intelligent surfaces (RISs) with non-terrestrial networks (NTNs), particularly those enabled by unmanned aerial vehicles (UAVs) or drone-based platforms, has emerged as a transformative approach to enhance 6G connectivity in high-mobility scenarios. UAV-assisted NTNs offer flexible deployment, dynamic altitude control, and rapid network reconfiguration, making them ideal candidates for RIS-based signal optimization. However, the high mobility of UAVs and their three-dimensional trajectory dynamics introduce unique challenges in maintaining robust, low-latency links and seamless handovers. This paper presents a comprehensive performance analysis of RIS-assisted UAV-based NTNs, focusing on optimizing RIS phase shifts to maximize the signal-to-interference-plus-noise ratio (SINR), throughput, energy efficiency, and reliability under UAV mobility constraints. A joint optimization framework is proposed that accounts for UAV path loss, aerial shadowing, interference, and user mobility patterns, tailored specifically for aerial communication networks. Extensive simulations are conducted across various UAV operation scenarios, including urban air corridors, rural surveillance routes, drone swarms, emergency response, and aerial delivery systems. The results reveal that RIS deployment significantly enhances the SINR and throughput while navigating energy and latency trade-offs in real time. These findings offer vital insights for deploying RIS-enhanced aerial networks in 6G, supporting mission-critical drone applications and next-generation autonomous systems. Full article
(This article belongs to the Section Drone Communications)
Show Figures

Figure 1

18 pages, 769 KiB  
Article
Optimization of Transmission Power in a 3D UAV-Enabled Communication System
by Jorge Carvajal-Rodríguez, David Vega-Sánchez, Christian Tipantuña, Luis Felipe Urquiza, Felipe Grijalva and Xavier Hesselbach
Drones 2025, 9(7), 485; https://doi.org/10.3390/drones9070485 - 10 Jul 2025
Viewed by 226
Abstract
Unmanned Aerial Vehicles (UAVs) are increasingly used in the new generation of communication systems. They serve as access points, base stations, relays, and gateways to extend network coverage, enhance connectivity, or offer communications services in places lacking telecommunication infrastructure. However, optimizing UAV placement [...] Read more.
Unmanned Aerial Vehicles (UAVs) are increasingly used in the new generation of communication systems. They serve as access points, base stations, relays, and gateways to extend network coverage, enhance connectivity, or offer communications services in places lacking telecommunication infrastructure. However, optimizing UAV placement in three-dimensional (3D) environments with diverse user distributions and uneven terrain conditions is a crucial challenge. Therefore, this paper proposes a novel framework to minimize UAV transmission power while ensuring a guaranteed data rate in realistic and complex scenarios. To this end, using the particle swarm optimization evolution (PSO-E) algorithm, this paper analyzes the impact of user-truncated distribution models for suburban, urban and dense urban environments. Extensive simulations demonstrate that dense urban environments demand higher power than suburban and urban environments, with uniform user distributions requiring the most power in all scenarios. Conversely, Gaussian and exponential distributions exhibit lower power requirements, particularly in scenarios with concentrated user hotspots. The proposed model provides insight into achieving efficient network deployment and power optimization, offering practical solutions for future communication networks in complex 3D scenarios. Full article
(This article belongs to the Section Drone Communications)
Show Figures

Figure 1

29 pages, 19381 KiB  
Article
Error-Constrained Entropy-Minimizing Strategies for Multi-UAV Deception Against Networked Radars
by Honghui Ban, Jifei Pan, Zheng Wang, Rui Cui, Yuting Ming and Qiuxi Jiang
Entropy 2025, 27(6), 653; https://doi.org/10.3390/e27060653 - 18 Jun 2025
Viewed by 621
Abstract
In complex electromagnetic environments, spatial coupling uncertainties—position errors and timing jitter—increase false target information entropy, reducing strategy effectiveness and posing challenges for robust UAV swarm track deception. This paper proposes an error-constrained entropy-minimizing compensation framework to model radar/UAV errors and their spatial coupling. [...] Read more.
In complex electromagnetic environments, spatial coupling uncertainties—position errors and timing jitter—increase false target information entropy, reducing strategy effectiveness and posing challenges for robust UAV swarm track deception. This paper proposes an error-constrained entropy-minimizing compensation framework to model radar/UAV errors and their spatial coupling. The framework establishes closed-form gate association conditions based on the principle of entropy minimization, ensuring mutual consistency of false target measurements across multiple radars. Two strategies are proposed to reduce false target information entropy: 1. Zonal track compensation forms dense “information entropy bands” around each preset false target by inserting auxiliary deception echoes, enhancing mutual information concentration in the measurement space; 2. Formation jamming compensation adaptively reshapes the UAV swarm into regular polygons, leveraging geometric symmetry to suppress spatial diffusion of position errors. Simulation results show that compared with traditional methods, the proposed approach reduces the spatial inconsistency entropy by 50%, improving false target consistency and radar deception reliability. Full article
(This article belongs to the Section Multidisciplinary Applications)
Show Figures

Figure 1

21 pages, 1560 KiB  
Article
Energy-Efficient Deployment Simulator of UAV-Mounted Base Stations Under Dynamic Weather Conditions
by Gyeonghyeon Min and Jaewoo So
Sensors 2025, 25(12), 3648; https://doi.org/10.3390/s25123648 - 11 Jun 2025
Viewed by 356
Abstract
In unmanned aerial vehicle (UAV)-mounted base station (MBS) networks, user equipment (UE) experiences dynamic channel variations because of the mobility of the UAV and the changing weather conditions. In order to overcome the degradation in the quality of service (QoS) of the UE [...] Read more.
In unmanned aerial vehicle (UAV)-mounted base station (MBS) networks, user equipment (UE) experiences dynamic channel variations because of the mobility of the UAV and the changing weather conditions. In order to overcome the degradation in the quality of service (QoS) of the UE due to channel variations, it is important to appropriately determine the three-dimensional (3D) position and transmission power of the base station (BS) mounted on the UAV. Moreover, it is also important to account for both geographical and meteorological factors when deploying UAV-MBSs because they service ground UE in various regions and atmospheric environments. In this paper, we propose an energy-efficient UAV-MBS deployment scheme in multi-UAV-MBS networks using a hybrid improved simulated annealing–particle swarm optimization (ISA-PSO) algorithm to find the 3D position and transmission power of each UAV-MBS. Moreover, we developed a simulator for deploying UAV-MBSs, which took the dynamic weather conditions into consideration. The proposed scheme for deploying UAV-MBSs demonstrated superior performance, where it achieved faster convergence and higher stability compared with conventional approaches, making it well suited for practical deployment. The developed simulator integrates terrain data based on geolocation and real-time weather information to produce more practical results. Full article
(This article belongs to the Special Issue Energy-Efficient Communication Networks and Systems: 2nd Edition)
Show Figures

Figure 1

18 pages, 2241 KiB  
Article
ICSO: A Novel Hybrid Evolutionary Approach with Crisscross and Perturbation Mechanisms for Optimizing Generative Adversarial Network Latent Space
by Zhihui Chen, Ting Lan, Zhanchuan Cai, Zonglin Liu and Renzhang Chen
Appl. Sci. 2025, 15(10), 5228; https://doi.org/10.3390/app15105228 - 8 May 2025
Viewed by 402
Abstract
Hybrid evolutionary approaches have gained significant attention for solving complex optimization problems, but their potential for optimizing the low-dimensional latent space of generative adversarial networks (GANs) remains underexplored. This paper proposes a novel improved crisscross optimization (ICSO) algorithm, a hybrid evolutionary approach that [...] Read more.
Hybrid evolutionary approaches have gained significant attention for solving complex optimization problems, but their potential for optimizing the low-dimensional latent space of generative adversarial networks (GANs) remains underexplored. This paper proposes a novel improved crisscross optimization (ICSO) algorithm, a hybrid evolutionary approach that integrates crisscross optimization and perturbation mechanisms to find the suitable latent vector. The ICSO algorithm treats the quality and diversity as separate objectives, balancing them through a normalization strategy, while a gradient regularization term (i.e., GP) is introduced into the discriminator’s objective function to stabilize training and mitigate gradient-related issues. By combining the global and local search capabilities of particle swarm optimization (PSO) with the rapid convergence of crisscross optimization, ICSO efficiently explores and exploits the latent space. The extensive experiments demonstrate that ICSO outperforms state-of-the-art algorithms in optimizing the latent space of various classical GANs across multiple datasets. Furthermore, the practical applicability of ICSO is validated through its integration with StyleGAN3 for generating unmanned aerial vehicle (UAV) images, showcasing its effectiveness in real-world engineering applications. This work not only advances the field of GAN optimization but also provides a robust framework for applying hybrid evolutionary algorithms to complex generative modeling tasks. Full article
Show Figures

Figure 1

22 pages, 3708 KiB  
Article
A Hybrid Optimization Framework for Dynamic Drone Networks: Integrating Genetic Algorithms with Reinforcement Learning
by Mustafa Ulaş, Anıl Sezgin and Aytuğ Boyacı
Appl. Sci. 2025, 15(9), 5176; https://doi.org/10.3390/app15095176 - 6 May 2025
Viewed by 1038
Abstract
The growing use of unmanned aerial vehicles (UAVs) in diverse fields such as disaster recovery, rural regions, and smart cities necessitates effective dynamic drone network establishment techniques. Conventional optimization techniques like genetic algorithms (GAs) and particle swarm optimization (PSO) are weak when it [...] Read more.
The growing use of unmanned aerial vehicles (UAVs) in diverse fields such as disaster recovery, rural regions, and smart cities necessitates effective dynamic drone network establishment techniques. Conventional optimization techniques like genetic algorithms (GAs) and particle swarm optimization (PSO) are weak when it comes to real-time adjustment to the environment and multi-objective constraints. This paper proposes a hybrid optimization framework combining genetic algorithms and reinforcement learning (RL) to improve the deployment of drone networks. We integrate Q-learning into the GA mutation process to allow drones to adaptively adjust locations in real time under coverage, connectivity, and energy constraints. In the scenario of large-scale simulations for wildfire tracking, disaster response, and urban monitoring tasks, the hybrid approach performs better than GA and PSO. The greatest enhancements are 6.7% greater coverage, 7.5% less average link distance, and faster convergence to optimal deployment. The proposed framework allows drones to establish strong and stable networks that are dynamic in nature and adapt to dynamic mission demands with efficient real-time coordination. This research has important applications in autonomous UAV systems for mission-critical applications where adaptability and robustness are essential. Full article
Show Figures

Figure 1

62 pages, 10751 KiB  
Review
Unmanned Aerial Vehicles (UAV) Networking Algorithms: Communication, Control, and AI-Based Approaches
by Mien L. Trinh, Dung T. Nguyen, Long Q. Dinh, Mui D. Nguyen, De Rosal Ignatius Moses Setiadi and Minh T. Nguyen
Algorithms 2025, 18(5), 244; https://doi.org/10.3390/a18050244 - 24 Apr 2025
Cited by 1 | Viewed by 2071
Abstract
This paper focuses on algorithms and technologies for unmanned aerial vehicles (UAVs) networking across different fields of applications. Given the limitations of UAVs in both computations and communications, UAVs usually need algorithms for either low latency or energy efficiency. In addition, coverage problems [...] Read more.
This paper focuses on algorithms and technologies for unmanned aerial vehicles (UAVs) networking across different fields of applications. Given the limitations of UAVs in both computations and communications, UAVs usually need algorithms for either low latency or energy efficiency. In addition, coverage problems should be considered to improve UAV deployment in many monitoring or sensing applications. Hence, this work firstly addresses common applications of UAV groups or swarms. Communication routing protocols are then reviewed, as they can make UAVs capable of supporting these applications. Furthermore, control algorithms are examined to ensure UAVs operate in optimal positions for specific purposes. AI-based approaches are considered to enhance UAV performance. We provide either the latest work or evaluations of existing results that can suggest suitable solutions for specific practical applications. This work can be considered as a comprehensive survey for both general and specific problems associated with UAVs in monitoring and sensing fields. Full article
(This article belongs to the Collection Feature Papers in Algorithms for Multidisciplinary Applications)
Show Figures

Figure 1

21 pages, 821 KiB  
Article
Task Offloading and Data Compression Collaboration Optimization for UAV Swarm-Enabled Mobile Edge Computing
by Zhijuan Hu, Shuangyu Liu, Dongsheng Zhou, Chao Shen and Tingting Wang
Drones 2025, 9(4), 288; https://doi.org/10.3390/drones9040288 - 9 Apr 2025
Viewed by 622
Abstract
The combination of Unmanned Aerial Vehicles (UAVs) and Mobile Edge Computing (MEC) effectively meets the demands of user equipments (UEs) for high-quality computing services, low energy consumption, and low latency. However, in complex environments such as disaster rescue scenarios, a single UAV is [...] Read more.
The combination of Unmanned Aerial Vehicles (UAVs) and Mobile Edge Computing (MEC) effectively meets the demands of user equipments (UEs) for high-quality computing services, low energy consumption, and low latency. However, in complex environments such as disaster rescue scenarios, a single UAV is still constrained by limited transmission power and computing resources, making it difficult to efficiently complete computational tasks. To address this issue, we propose a UAV swarm-enabled MEC system that integrates data compression technology, in which the only swarm head UAV (USH) offloads the compressed computing tasks compressed by the UEs and partially distributes them to the swarm member UAV (USM) for collaborative processing. To minimize the total energy and time cost of the system, we utilize Markov Decision Process (MDP) for modeling and construct a deep deterministic policy gradient offloading algorithm with a prioritized experience replay mechanism (PER-DDPG) to jointly optimize compression ratio, task offloading rate, resource allocation and swarm positioning. Simulation results show that compared with deep Q-network (DQN) and deep deterministic policy gradient (DDPG) baseline algorithms, the proposed scheme performs excellently in terms of convergence and robustness, reducing system latency and energy consumption by about 32.7%. Full article
(This article belongs to the Special Issue Unmanned Aerial Vehicle Swarm-Enabled Edge Computing)
Show Figures

Figure 1

22 pages, 66134 KiB  
Article
Analysis of Regional Spatial Characteristics and Optimization of Tourism Routes Based on Point Cloud Data from Unmanned Aerial Vehicles
by Yu Chen, Hui Zhong and Jianglong Yu
ISPRS Int. J. Geo-Inf. 2025, 14(4), 145; https://doi.org/10.3390/ijgi14040145 - 27 Mar 2025
Viewed by 660
Abstract
In this study, we analyzed regional spatial features and optimized tourism routes based on point cloud data provided by unmanned aerial vehicles (UAVs) with the goal of developing the Xiaosongyuan Red Tourism Scenic Area in Kunming, Yunnan Province, China. We first proposed a [...] Read more.
In this study, we analyzed regional spatial features and optimized tourism routes based on point cloud data provided by unmanned aerial vehicles (UAVs) with the goal of developing the Xiaosongyuan Red Tourism Scenic Area in Kunming, Yunnan Province, China. We first proposed a novel method for UAV point cloud data coverage based on an irregular regional segmentation technique along with an optimized search path designed to minimize travel time within the specified area. Three DJI Phantom drones were employed to collect data over the designated region, and an improved progressive triangular irregular network densification filtering algorithm was used to extract ground points from the UAV-acquired point cloud data. DJI Terra software was used for image stitching to generate a comprehensive map of spatial features in the target area. Using this three-dimensional map of spatial features, we explored tourist routes in complex environments and applied an improved particle swarm optimization algorithm to identify optimal tourist routes characterized by safety, smoothness, and feasibility. The findings provide valuable technical support for enhancing tourism planning and management in scenic areas while maintaining a balance with conservation efforts. Full article
Show Figures

Figure 1

23 pages, 1454 KiB  
Article
Slot Allocation Protocol for UAV Swarm Ad Hoc Networks: A Distributed Coalition Formation Game Approach
by Liubin Song and Daoxing Guo
Entropy 2025, 27(3), 256; https://doi.org/10.3390/e27030256 - 28 Feb 2025
Viewed by 1245
Abstract
With the rapid development of unmanned aerial vehicle (UAV) manufacturing technology, large-scale UAV swarm ad hoc networks are becoming widely used in military and civilian spheres. UAV swarms equipped with ad hoc networks and satellite networks are being developed for 6G heterogeneous networks, [...] Read more.
With the rapid development of unmanned aerial vehicle (UAV) manufacturing technology, large-scale UAV swarm ad hoc networks are becoming widely used in military and civilian spheres. UAV swarms equipped with ad hoc networks and satellite networks are being developed for 6G heterogeneous networks, especially in offshore and remote areas. A key operational aspect in large-scale UAV swarm networks is slot allocation for large capacity and a low probability of conflict. Traditional methods typically form coalitions among UAVs that are in close spatial proximity to reduce internal network interference, thereby achieving greater throughput. However, significant internal interference still persists. Given that UAV networks are required to transmit a substantial amount of safety-related control information, any packet loss due to internal interference can easily pose potential risks. In this paper, we propose a distributed time coalition formation game algorithm that ensures the absence of internal interference and collisions while sharing time slot resources, thereby enhancing the network’s throughput performance. Instead of forming a coalition from UAVs within a contiguous block area as used in prior studies, UAV nodes with no interference from each other form a coalition that can be called a time coalition. UAVs belonging to one coalition share their transmitting slots with each other, and thus, every UAV node achieves the whole transmitting slots of coalition members. They can transmit data packets simultaneously with no interference. In addition, a distributed coalition formation game-based TDMA (DCFG-TDMA) protocol based on the distributed time coalition formation algorithm is designed for UAV swarm ad hoc networks. Our simulation results verify that the proposed algorithm can significantly improve the UAV throughput compared with that of the conventional TDMA protocol. Full article
(This article belongs to the Special Issue Space-Air-Ground-Sea Integrated Communication Networks)
Show Figures

Figure 1

17 pages, 725 KiB  
Article
Polar Code BP Decoding Optimization for Green 6G Satellite Communication: A Geometry Perspective
by Chuanji Zhu, Yuanzhi He and Zheng Dou
Axioms 2025, 14(3), 174; https://doi.org/10.3390/axioms14030174 - 27 Feb 2025
Cited by 1 | Viewed by 556
Abstract
The rapid evolution of mega-constellation networks and 6G satellite communication systems has ushered in an era of ubiquitous connectivity, yet their sustainability is threatened by the energy-computation dilemma inherent in high-throughput data transmission. Polar codes, as a coding scheme capable of achieving Shannon’s [...] Read more.
The rapid evolution of mega-constellation networks and 6G satellite communication systems has ushered in an era of ubiquitous connectivity, yet their sustainability is threatened by the energy-computation dilemma inherent in high-throughput data transmission. Polar codes, as a coding scheme capable of achieving Shannon’s limit, have emerged as one of the key candidate coding technologies for 6G networks. Despite the high parallelism and excellent performance of their Belief Propagation (BP) decoding algorithm, its drawbacks of numerous iterations and slow convergence can lead to higher energy consumption, impacting system energy efficiency and sustainability. Therefore, research on efficient early termination algorithms has become an important direction in polar code research. In this paper, based on information geometry theory, we propose a novel geometric framework for BP decoding of polar codes and design two early termination algorithms under this framework: an early termination algorithm based on Riemannian distance and an early termination algorithm based on divergence. These algorithms improve convergence speed by geometrically analyzing the changes in soft information during the BP decoding process. Simulation results indicate that, when Eb/N0 is between 1.5 dB and 2.5 dB, compared to three classical early termination algorithms, the two early termination algorithms proposed in this paper reduce the number of iterations by 4.7–11% and 8.8–15.9%, respectively. Crucially, while this work is motivated by the unique demands of satellite networks, the geometric characterization of polar code BP decoding transcends specific applications. The proposed framework is inherently adaptable to any communication system requiring energy-efficient channel coding, including 6G terrestrial networks, Internet of Things (IoT) edge devices, and unmanned aerial vehicle (UAV) swarms, thereby bridging theoretical coding advances with real-world scalability challenges. Full article
(This article belongs to the Special Issue Mathematical Modeling, Simulations and Applications)
Show Figures

Figure 1

22 pages, 1599 KiB  
Article
Airfoil Optimization and Analysis Using Global Sensitivity Analysis and Generative Design
by Pablo Rouco, Pedro Orgeira-Crespo, Guillermo David Rey González and Fernando Aguado-Agelet
Aerospace 2025, 12(3), 180; https://doi.org/10.3390/aerospace12030180 - 24 Feb 2025
Cited by 4 | Viewed by 1481
Abstract
This research investigates the optimization of airfoil design for fixed-wing drones, aiming to enhance aerodynamic efficiency and reduce drag. The research employs Kulfan CST and Bézier surface parameterization methods combined with global sensitivity analysis (GSA) and machine learning techniques to improve airfoil performance [...] Read more.
This research investigates the optimization of airfoil design for fixed-wing drones, aiming to enhance aerodynamic efficiency and reduce drag. The research employs Kulfan CST and Bézier surface parameterization methods combined with global sensitivity analysis (GSA) and machine learning techniques to improve airfoil performance under various operational conditions. Particle swarm optimization (PSO) is utilized to optimize the airfoil design, minimizing drag in cruise and ascent conditions while ensuring lift at takeoff. Computational fluid dynamics (CFD) simulations, primarily using XFOIL, validate the aerodynamic performance of the optimized airfoils. This study also explores the generative design approach using a neural network trained on 10 million airfoil simulations to predict airfoil geometry based on desired performance criteria. The results show important improvements in drag reduction, especially during low-speed cruise and ascent phases, contributing to extended flight endurance and efficiency. These results can be used for small unmanned aerial vehicles (UAVs) in real-world applications to develop better-performance UAVs under mission-specific constraints. Full article
(This article belongs to the Special Issue Aircraft Design and System Optimization)
Show Figures

Figure 1

Back to TopTop