Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,769)

Search Parameters:
Keywords = TiO2-P25

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 4144 KiB  
Article
Analysis and Application of UV-LED Photoreactors for Phenol Removal
by Betsabé Ildefonso-Ojeda, Macaria Hernández-Chávez, Mayra A. Álvarez-Lemus, Rosendo López-González, José R. Contreras-Bárbara, Karen Roa-Tort, Josué D. Rivera-Fernández and Diego A. Fabila-Bustos
Catalysts 2025, 15(8), 748; https://doi.org/10.3390/catal15080748 (registering DOI) - 5 Aug 2025
Abstract
The development of three types of UV radiation-based photoreactors using light-emitting diodes (LEDs) is presented. In this work, three pattern irradiation arrangements, direct radiation, internal radiation, and external radiation, were tested for deactivation of a typical model contaminant in wastewater under the same [...] Read more.
The development of three types of UV radiation-based photoreactors using light-emitting diodes (LEDs) is presented. In this work, three pattern irradiation arrangements, direct radiation, internal radiation, and external radiation, were tested for deactivation of a typical model contaminant in wastewater under the same conditions. All photoreactors allow the adjustment of optical power and irradiation time and include a sensor for temperature monitoring in the solution. In this case, phenol was used as a model contaminant with TiO2 as a photocatalyst in a batch-type reactor at pH 7. The results showed that the highest degradation efficiency was achieved after 120 min, reaching 97.79% for the internal-radiation photoreactor, followed by 90.17% when the direct-radiation photoreactor was used, and 85.24% for the external-radiation photoreactor. Phenol degradation served as the basis for validating reactor performance, given its persistence and relevance as an indicator in advanced oxidation processes. It was concluded that the arrangement of LEDs in each photoreactor significantly influences phenol degradation under the same reaction conditions. Full article
(This article belongs to the Special Issue Remediation of Natural Waters by Photocatalysis)
Show Figures

Figure 1

26 pages, 5007 KiB  
Article
Copper-Enhanced NiMo/TiO2 Catalysts for Bifunctional Green Hydrogen Production and Pharmaceutical Pollutant Removal
by Nicolás Alejandro Sacco, Fernanda Albana Marchesini, Ilaria Gamba and Gonzalo García
Catalysts 2025, 15(8), 737; https://doi.org/10.3390/catal15080737 (registering DOI) - 1 Aug 2025
Viewed by 175
Abstract
This study presents the development of Cu-doped NiMo/TiO2 photoelectrocatalysts for simultaneous green hydrogen production and pharmaceutical pollutant removal under simulated solar irradiation. The catalysts were synthesized via wet impregnation (15 wt.% total metal loading with 0.6 wt.% Cu) and thermally treated at [...] Read more.
This study presents the development of Cu-doped NiMo/TiO2 photoelectrocatalysts for simultaneous green hydrogen production and pharmaceutical pollutant removal under simulated solar irradiation. The catalysts were synthesized via wet impregnation (15 wt.% total metal loading with 0.6 wt.% Cu) and thermally treated at 400 °C and 900 °C to investigate structural transformations and catalytic performance. Comprehensive characterization (XRD, BET, SEM, XPS) revealed phase transitions, enhanced crystallinity, and redistribution of redox states upon Cu incorporation, particularly the formation of NiTiO3 and an increase in oxygen vacancies. Crystallite sizes for anatase, rutile, and brookite ranged from 21 to 47 nm at NiMoCu400, while NiMoCu900 exhibited only the rutile phase with 55 nm crystallites. BET analysis showed a surface area of 44.4 m2·g−1 for NiMoCu400, and electrochemical measurements confirmed its higher electrochemically active surface area (ECSA, 2.4 cm2), indicating enhanced surface accessibility. In contrast, NiMoCu900 exhibited a much lower BET surface area (1.4 m2·g−1) and ECSA (1.4 cm2), consistent with its inferior photoelectrocatalytic performance. Compared to previously reported binary NiMo/TiO2 systems, the ternary NiMoCu/TiO2 catalysts demonstrated significantly improved hydrogen production activity and more efficient photoelectrochemical degradation of paracetamol. Specifically, NiMoCu400 showed an anodic peak current of 0.24 mA·cm−2 for paracetamol oxidation, representing a 60% increase over NiMo400 and a cathodic current of −0.46 mA·cm−2 at −0.1 V vs. RHE under illumination, nearly six times higher than the undoped counterpart (–0.08 mA·cm−2). Mott–Schottky analysis further revealed that NiMoCu400 retained n-type behavior, while NiMoCu900 exhibited an unusual inversion to p-type, likely due to Cu migration and rutile-phase-induced realignment of donor states. Despite its higher photosensitivity, NiMoCu900 showed negligible photocurrent, confirming that structural preservation and surface redox activity are critical for photoelectrochemical performance. This work provides mechanistic insight into Cu-mediated photoelectrocatalysis and identifies NiMoCu/TiO2 as a promising bifunctional platform for integrated solar-driven water treatment and sustainable hydrogen production. Full article
(This article belongs to the Section Electrocatalysis)
Show Figures

Figure 1

14 pages, 6773 KiB  
Article
MoTiCo Conversion Coating on 7075 Aluminium Alloy Surface: Preparation, Corrosion Resistance Analysis, and Application in Outdoor Sports Equipment Trekking Poles
by Yiqun Wang, Feng Huang and Xuzheng Qian
Metals 2025, 15(8), 864; https://doi.org/10.3390/met15080864 (registering DOI) - 1 Aug 2025
Viewed by 117
Abstract
The problem of protecting 7075 Al alloy trekking poles from corrosion in complex outdoor environments was addressed using a composite conversion coating system. This system comprised Na2MoO4, NaF, CoSO4·7H2O, ethylenediaminetetraacetic acid-2Na, and H2(TiF [...] Read more.
The problem of protecting 7075 Al alloy trekking poles from corrosion in complex outdoor environments was addressed using a composite conversion coating system. This system comprised Na2MoO4, NaF, CoSO4·7H2O, ethylenediaminetetraacetic acid-2Na, and H2(TiF6). The influences of this system on the properties of the coating layer were systematically studied by adjusting the pH of the coating solution. The conversion temperature and pH were the pivotal parameters influencing the formation of the conversion coating. The pH substantially influenced the compactness of the coating layer, acting as a regulatory agent of the coating kinetics. When the conversion temperature and pH were set to 40 °C and 3.8, respectively, the prepared coating layer displayed optimal performance in terms of compactness and protective properties. Therefore, this parameter combination favours the synthesis of high-performance conversion coatings. Microscopy confirmed the formation of a continuous, dense composite oxide film structure under these conditions, effectively blocking erosion in corrosive media. Furthermore, the optimised process led to substantial enhancements in the environmental adaptabilities and service lives of the components of trekking poles, thus establishing a theoretical foundation and technical reference for use in the surface protection of outdoor equipment. Full article
Show Figures

Figure 1

21 pages, 2582 KiB  
Article
Photolysis, Photocatalysis, and Sorption of Caffeine in Aqueous Media in the Presence of Chitosan Membrane and Chitosan/TiO2 Composite Membrane
by Juliana Prando, Ingrid Luíza Reinehr, Luiz Jardel Visioli, Alexandre Tadeu Paulino and Heveline Enzweiler
Processes 2025, 13(8), 2439; https://doi.org/10.3390/pr13082439 - 1 Aug 2025
Viewed by 219
Abstract
Sorption and advanced oxidative processes (AOPs) are potential strategies for the removal of organic compounds, such as caffeine, from aqueous media. Such strategies tend to be more promising when combined with biopolymeric membranes as sorbents and photocatalyst supports. Therefore, the aim of the [...] Read more.
Sorption and advanced oxidative processes (AOPs) are potential strategies for the removal of organic compounds, such as caffeine, from aqueous media. Such strategies tend to be more promising when combined with biopolymeric membranes as sorbents and photocatalyst supports. Therefore, the aim of the present study was to investigate sorption and AOP parameters in the performance of chitosan membranes and chitosan/TiO2 composite membranes in individual and hybrid systems involving the photolysis, photocatalysis, and sorption of caffeine. Caffeine degradation by photolysis was 19.51 ± 1.14, 28.61 ± 0.05, and 30.64 ± 6.32%, whereas caffeine degradation by photocatalysis with catalytic membrane was 18.33 ± 2.20, 20.83 ± 1.49, and 31.41 ± 3.08% at pH 6, 7, and 8, respectively. In contrast, photocatalysis with the dispersed catalyst achieved degradation of 93.56 ± 2.12, 36.42 ± 2.59, and 31.41 ± 1.07% at pH 6, 7, and 8, respectively. These results indicate that ions present in the buffer solutions affect the net electrical charge on the surface of the composite biomaterial with the change in pH variation, occupying active sorption sites in the structure of the biomaterial, which was characterized by Fourier transform infrared spectrometry, thermogravimetric analysis, differential scanning thermogravimetry, and X-ray diffraction. Thus, it is verified that in a combined process of caffeine removal under UV irradiation and use of chitosan/TiO2 composite membranes in phosphate-buffered medium, the photolysis mechanism is predominant, with little or no contribution from sorption, and that the TiO2 catalyst promotes a significant reduction in the percentage of pollutant in the medium only when used dispersed and at low pH. Full article
Show Figures

Figure 1

15 pages, 2314 KiB  
Article
Effect of the nematic liquid crystal on the dye sensitized solar cell performance
by Paweł Szubert and Stanisław A. Różański
Crystals 2025, 15(8), 705; https://doi.org/10.3390/cryst15080705 - 31 Jul 2025
Viewed by 100
Abstract
The motivation for increasing the efficiency of renewable energy sources is the basic problem of ongoing research. Currently, intensive research is underway in technology based on the use of dye-sensitized solar cells (DSSCs). The aim of this work is to investigate the effect [...] Read more.
The motivation for increasing the efficiency of renewable energy sources is the basic problem of ongoing research. Currently, intensive research is underway in technology based on the use of dye-sensitized solar cells (DSSCs). The aim of this work is to investigate the effect of modifying the iodide electrolyte with liquid crystals (LCs) known for the self-organization of molecules into specific mesophases. The current–voltage (I-V) and power–voltage (P-V) characteristics were determined for the ruthenium-based dyes N3, Z907, and N719 to investigate the influence of their structure and concentration on the efficiency of DSSCs. The addition of a nematic LC of 4-n-pentyl-4-cyanobiphenyl (5CB) to the iodide electrolyte influences the I-V and P-V characteristics. A modification of the I-V characteristics was found, especially a change in the values of short circuit current (ISC) and open circuit voltage (VOC). The conversion efficiency for cells with modified electrolyte shows a complex dependence that first increases and then decreases with increasing LC concentration. It may be caused by the orientational interaction of LC molecules with the titanium dioxide (TiO2) layer on the photoanode. A too high concentration of LC may lead to a reduction in total ionic conductivity due to the insulating effect of the elongated polar molecules. Full article
(This article belongs to the Collection Liquid Crystals and Their Applications)
Show Figures

Figure 1

29 pages, 14906 KiB  
Article
Hydrothermal Engineering of Ferroelectric PZT Thin Films Tailoring Electrical and Ferroelectric Properties via TiO2 and SrTiO3 Interlayers for Advanced MEMS
by Chun-Lin Li and Guo-Hua Feng
Micromachines 2025, 16(8), 879; https://doi.org/10.3390/mi16080879 - 29 Jul 2025
Viewed by 207
Abstract
This work presents an innovative hydrothermal approach for fabricating flexible piezoelectric PZT thin films on 20 μm titanium foil substrates using TiO2 and SrTiO3 (STO) interlayers. Three heterostructures (Ti/PZT, Ti/TiO2/PZT, and Ti/TiO2/STO/PZT) were synthesized to enable low-temperature [...] Read more.
This work presents an innovative hydrothermal approach for fabricating flexible piezoelectric PZT thin films on 20 μm titanium foil substrates using TiO2 and SrTiO3 (STO) interlayers. Three heterostructures (Ti/PZT, Ti/TiO2/PZT, and Ti/TiO2/STO/PZT) were synthesized to enable low-temperature growth and improve ferroelectric performance for advanced flexible MEMS. Characterizations including XRD, PFM, and P–E loop analysis evaluated crystallinity, piezoelectric coefficient d33, and polarization behavior. The results demonstrate that the multilayered Ti/TiO2/STO/PZT structure significantly enhances performance. XRD confirmed the STO buffer layer effectively reduces lattice mismatch with PZT to ~0.76%, promoting stable morphotropic phase boundary (MPB) composition formation. This optimized film exhibited superior piezoelectric and ferroelectric properties, with a high d33 of 113.42 pm/V, representing an ~8.65% increase over unbuffered Ti/PZT samples, and displayed more uniform domain behavior in PFM imaging. Impedance spectroscopy showed the lowest minimum impedance of 8.96 Ω at 10.19 MHz, indicating strong electromechanical coupling. Furthermore, I–V measurements demonstrated significantly suppressed leakage currents in the STO-buffered samples, with current levels ranging from 10−12 A to 10−9 A over ±3 V. This structure also showed excellent fatigue endurance through one million electrical cycles, confirming its mechanical and electrical stability. These findings highlight the potential of this hydrothermally engineered flexible heterostructure for high-performance actuators and sensors in advanced MEMS applications. Full article
(This article belongs to the Special Issue Manufacturing and Application of Advanced Thin-Film-Based Device)
Show Figures

Figure 1

23 pages, 4900 KiB  
Article
Degradation of Glyphosate in Water by Electro-Oxidation on Magneli Phase: Application to a Nanofiltration Concentrate
by Wiyao Maturin Awesso, Ibrahim Tchakala, Sophie Tingry, Geoffroy Lesage, Julie Mendret, Akpénè Amenuvevega Dougna, Eddy Petit, Valérie Bonniol, Mande Seyf-Laye Alfa-Sika and Marc Cretin
Molecules 2025, 30(15), 3153; https://doi.org/10.3390/molecules30153153 - 28 Jul 2025
Viewed by 295
Abstract
This study evaluates the efficiency of sub-stoichiometric Ti4O7 titanium oxide anodes for the electrochemical degradation of glyphosate, a persistent herbicide classified as a probable carcinogen by the World Health Organization. After optimizing the process operating parameters (pH and current density), [...] Read more.
This study evaluates the efficiency of sub-stoichiometric Ti4O7 titanium oxide anodes for the electrochemical degradation of glyphosate, a persistent herbicide classified as a probable carcinogen by the World Health Organization. After optimizing the process operating parameters (pH and current density), the mineralization efficiency and fate of degradation by-products of the treated solution were determined using a total organic carbon (TOC) analyzer and HPLC/MS, respectively. The results showed that at pH = 3, glyphosate degradation and mineralization are enhanced by the increased generation of hydroxyl radicals (OH) at the anode surface. A current density of 14 mA cm2 enables complete glyphosate removal with 77.8% mineralization. Compared with boron-doped diamond (BDD), Ti4O7 shows close performance for treatment of a concentrated glyphosate solution (0.41 mM), obtained after nanofiltration of a synthetic ionic solution (0.1 mM glyphosate), carried out using an NF-270 membrane at a conversion rate (Y) of 80%. At 10 mA cm2 for 8 h, Ti4O7 achieved 81.3% mineralization with an energy consumption of 6.09 kWh g1 TOC, compared with 90.5% for BDD at 5.48 kWh g1 TOC. Despite a slight yield gap, Ti4O7 demonstrates notable efficiency under demanding conditions, suggesting its potential as a cost-effective alternative to BDD for glyphosate electro-oxidation. Full article
(This article belongs to the Special Issue Advanced Oxidation Processes (AOPs) in Treating Organic Pollutants)
Show Figures

Figure 1

18 pages, 2518 KiB  
Article
NiO/TiO2 p-n Heterojunction Induced by Radiolysis for Photocatalytic Hydrogen Evolution
by Ana Andrea Méndez-Medrano, Xiaojiao Yuan, Diana Dragoe, Christophe Colbeau-Justin, José Luis Rodríguez López and Hynd Remita
Materials 2025, 18(15), 3513; https://doi.org/10.3390/ma18153513 - 26 Jul 2025
Viewed by 399
Abstract
Titanium dioxide (TiO2), a widely used semiconductor in photocatalysis owing to its adequate potential for water hydrolysis, chemical stability, low toxicity, and low cost. However, its efficiency is limited by fast charge-carrier recombination and poor visible light absorption. Coupling TiO2 [...] Read more.
Titanium dioxide (TiO2), a widely used semiconductor in photocatalysis owing to its adequate potential for water hydrolysis, chemical stability, low toxicity, and low cost. However, its efficiency is limited by fast charge-carrier recombination and poor visible light absorption. Coupling TiO2 with a p-type semiconductor, such as nickel oxide (NiO), forming a p-n heterojunction, decreases the recombination of charge carriers and increases photocatalytic activity. In this work, the surface of TiO2 modified with NiO nanoparticles (NPs) induced by radiolysis for photocatalytic hydrogen production was studied. The photocatalytic activity of NiO/TiO2 was evaluated using methanol as a hole scavenger under UV–visible light. All modified samples presented superior photocatalytic activity compared to bare TiO2. The dynamics of the charge carriers, a key electronic phenomenon in photocatalysis, was investigated by time-resolved microwave conductivity (TRMC). The results highlight the crucial role of Ni-based NPs modification in enhancing the separation of the charge carrier and activity under UV–visible irradiation. Furthermore, the results revealed that under visible irradiation, NiO-NPs inject electrons into the conduction band of titanium dioxide. Full article
(This article belongs to the Section Advanced Nanomaterials and Nanotechnology)
Show Figures

Figure 1

17 pages, 2629 KiB  
Article
Recovery of High-Alkali-Grade Feldspar Substitute from Phonolite Tailings
by Savas Ozun, Semsettin Ulutas and Sema Yurdakul
Processes 2025, 13(8), 2334; https://doi.org/10.3390/pr13082334 - 23 Jul 2025
Viewed by 267
Abstract
Phonolite is a fine-grained, shallow extrusive rock rich in alkali minerals and containing iron/titanium-bearing minerals. This rock is widely used as a construction material for building exteriors due to its excellent abrasion resistance and insulation properties. However, during the cutting process, approximately 70% [...] Read more.
Phonolite is a fine-grained, shallow extrusive rock rich in alkali minerals and containing iron/titanium-bearing minerals. This rock is widely used as a construction material for building exteriors due to its excellent abrasion resistance and insulation properties. However, during the cutting process, approximately 70% of the rock is discarded as tailing. So, this study aims to repurpose tailings from a phonolite cutting and sizing plant into a high-alkali ceramic raw mineral concentrate. To enable the use of phonolite tailings in ceramic manufacturing, it is necessary to remove coloring iron/titanium-bearing minerals, which negatively affect the final product. To achieve this removal, dry/wet magnetic separation processes, along with flotation, were employed both individually and in combination. The results demonstrated that using dry high-intensity magnetic separation (DHIMS) resulted in a concentrate with an Fe2O3 + TiO2 grade of 0.95% and a removal efficiency of 85%. The wet high-intensity magnetic separation (WHIMS) process reduced the Fe2O3 + TiO2 grade of the concentrate to 1.2%, with 70% removal efficiency. During flotation tests, both pH levels and collector concentration impacted the efficiency and Fe2O3 + TiO2 grade (%) of the concentrate. The lowest Fe2O3 + TiO2 grade of 1.65% was achieved at a pH level of 10 with a collector concentration of 2000 g/t. Flotation concentrates processed with DHIMS achieved a minimum Fe2O3 + TiO2 grade of 0.90%, while those processed with WHIMS exhibited higher Fe2O3 + TiO2 grades (>1.1%) and higher recovery rates (80%). Additionally, studies on flotation applied to WHIMS concentrates showed that collector concentration, pulp density, and conditioning time significantly influenced the Fe2O3 + TiO2 grade of the final concentrate. Full article
(This article belongs to the Section Separation Processes)
Show Figures

Figure 1

20 pages, 2048 KiB  
Article
Photocatalytic Degradation of Oxytetracycline and Imidacloprid Under Visible Light with Sr0.95Bi0.05TiO3: Influence of Aqueous Matrix
by Maria J. Nunes, Ana Lopes, Maria J. Pacheco, Paulo T. Fiadeiro, Guilherme J. Inacio, Jefferson E. Silveira, Alyson R. Ribeiro, Wendel S. Paz and Lurdes Ciríaco
Water 2025, 17(15), 2177; https://doi.org/10.3390/w17152177 - 22 Jul 2025
Viewed by 197
Abstract
In this study, Sr0.95Bi0.05TiO3 was synthesized via solid state reaction, characterized, and applied as a visible-light-active photocatalyst for the degradation of oxytetracycline, imidacloprid, and their mixture. To evaluate the influence of the aqueous matrix on pollutant degradation, photocatalytic [...] Read more.
In this study, Sr0.95Bi0.05TiO3 was synthesized via solid state reaction, characterized, and applied as a visible-light-active photocatalyst for the degradation of oxytetracycline, imidacloprid, and their mixture. To evaluate the influence of the aqueous matrix on pollutant degradation, photocatalytic experiments were carried out in both distilled water and a real environmental sample (surface water). The Sr0.95Bi0.05TiO3 perovskite showed high photocatalytic performance under visible light, achieving nearly complete degradation of oxytetracycline after 2 h, and significant removal of imidacloprid in river water (60% after 3 h). Enhanced degradation in surface water was attributed to favorable ionic composition and pH. The perovskite oxide maintained its photocatalytic performance over five consecutive cycles, with no significant loss in photocatalytic activity or structural and morphological stability. Ecotoxicological assessment using Daphnia magna confirmed that the treated water was non-toxic, indicating that no harmful byproducts were formed. Complementary Density Functional Theory calculations were conducted to complement experimental findings, providing insights into the structural, electronic, and optical properties of the photocatalyst, enhancing the understanding of the degradation mechanisms involved. This integrated approach, combining experimental photocatalytic performance evaluation in different matrices, ecotoxicity testing, and theoretical modeling, highlights Sr0.95Bi0.05TiO3 as a promising, stable, and environmentally safe photocatalyst for practical wastewater treatment applications. Full article
(This article belongs to the Section Wastewater Treatment and Reuse)
Show Figures

Figure 1

11 pages, 1012 KiB  
Article
Quantification of Ultra-Trace Lead in Water After Preconcentration on Nano-Titanium Oxide Using the Slurry Sampling ETAAS Method
by Lucia Nemček and Ingrid Hagarová
Toxics 2025, 13(8), 610; https://doi.org/10.3390/toxics13080610 - 22 Jul 2025
Viewed by 275
Abstract
A simple and efficient dispersive micro solid-phase extraction (DMSPE) method using nano-TiO2 as a sorbent was developed for the separation and preconcentration of (ultra) trace levels of lead in water samples prior to quantification by electrothermal atomic absorption spectrometry (ETAAS). Key experimental [...] Read more.
A simple and efficient dispersive micro solid-phase extraction (DMSPE) method using nano-TiO2 as a sorbent was developed for the separation and preconcentration of (ultra) trace levels of lead in water samples prior to quantification by electrothermal atomic absorption spectrometry (ETAAS). Key experimental parameters affecting the DMSPE process, including pH, ionic strength, sorbent dosage, and preconcentration factor, were optimized. The optimized method demonstrated a preconcentration factor of 20, a relative standard deviation below 4.5%, and a detection limit of 0.11 µg/L. The procedure was validated using certified reference material (CRM TM-25.5) and applied to real water samples from a lake, a residential well, and industrial wastewater. Satisfactory recoveries (89–103%) confirmed the reliability of the method for the determination of low lead concentrations in complex matrices. Full article
Show Figures

Graphical abstract

17 pages, 4345 KiB  
Article
Preparation of Superhydrophobic P-TiO2-SiO2/HDTMS Self-Cleaning Coatings with UV-Aging Resistance by Acid Precipitation Method
by Le Zhang, Ying Liu, Xuefeng Bai, Hao Ding, Xuan Wang, Daimei Chen and Yihe Zhang
Nanomaterials 2025, 15(14), 1127; https://doi.org/10.3390/nano15141127 - 20 Jul 2025
Viewed by 367
Abstract
The superhydrophobic coatings for outdoor use need to be exposed to sunlight for a long time; therefore, their UV-aging resistances are crucial in practical applications. In this study, the primary product of titanium dioxide (P-TiO2) was used as the raw material. [...] Read more.
The superhydrophobic coatings for outdoor use need to be exposed to sunlight for a long time; therefore, their UV-aging resistances are crucial in practical applications. In this study, the primary product of titanium dioxide (P-TiO2) was used as the raw material. Nano-silica (SiO2) was coated onto the surface of P-TiO2 by the acid precipitation method to prepare P-TiO2-SiO2 composite particles. Then, they were modified and sprayed simply to obtain a superhydrophobic P-TiO2-SiO2/HDTMS coating. The results indicated that amorphous nano-SiO2 was coated on the P-TiO2 surface, forming a micro–nano binary structure, which was the essential structure to form superhydrophobic coatings. Additionally, the UV-aging property of P-TiO2 was significantly enhanced after being coated with SiO2. After continuous UV irradiation for 30 days, the color difference (ΔE*) and yellowing index (Δb*) values of the coating prepared with P-TiO2-SiO2 increased from 0 to 0.75 and 0.23, respectively. In contrast, the ΔE* and Δb* of the coating prepared with P-TiO2 increased from 0 to 1.68 and 0.74, respectively. It was clear that the yellowing degree of the P-TiO2-SiO2 coating was lower than that of P-TiO2, and its UV-aging resistance was significantly improved. After modification with HDTMS, the P-TiO2-SiO2 coating formed a superhydrophobic P-TiO2-SiO2/HDTMS coating. The water contact angle (WCA) and water slide angle (WSA) on the surface of the coating were 154.9° and 1.3°, respectively. Furthermore, the coating demonstrated excellent UV-aging resistance. After continuous UV irradiation for 45 days, the WCA on the coating surface remained above 150°. Under the same conditions, the WCAs of the P-TiO2/HDTMS coating decreased from more than 150° to 15.3°. This indicated that the retention of surface hydrophobicity of the P-TiO2-SiO2/HDTMS coating was longer than that of P-TiO2/HDTMS, and the P-TiO2-SiO2/HDTMS coating’s UV-aging resistance was greater. The superhydrophobic P-TiO2-SiO2/HDTMS self-cleaning coating reported in this study exhibited outstanding UV-aging resistance, and it had the potential for long-term outdoor use. Full article
(This article belongs to the Section Nanocomposite Materials)
Show Figures

Figure 1

13 pages, 3049 KiB  
Article
Preparation of Foamed Ceramic from Cr Slag and MSWI Fly Ash and Its Cr Leaching Inhibition
by Hesong Li, Cheng Liu, Yikun Tang and Shilin Zhao
Materials 2025, 18(14), 3372; https://doi.org/10.3390/ma18143372 - 18 Jul 2025
Viewed by 232
Abstract
The sustainable utilization of solid waste is crucial for environmental protection. This work investigates the fabrication of foamed ceramics from Cr slag and municipal solid waste incineration (MSWI) fly ash, focusing on the effects of three inhibitors—NH2SO3H, ZnO·TiO2 [...] Read more.
The sustainable utilization of solid waste is crucial for environmental protection. This work investigates the fabrication of foamed ceramics from Cr slag and municipal solid waste incineration (MSWI) fly ash, focusing on the effects of three inhibitors—NH2SO3H, ZnO·TiO2, and (NH4)2HPO4—on material properties and Cr leaching behavior. Experimental analysis, chemical thermodynamic calculations, and material characterization were all employed. Results show that the prepared foamed ceramics meet the JG/T 511-2017 standard for building materials, exhibiting excellent physical properties but significant Cr leaching. Among the inhibitors, (NH4)2HPO4 with a molar ratio of n(P)/n(Cr) = 1 shows the best performance, achieving a bulk density of 205 kg/m3, compressive strength of 0.850 MPa, Cr leaching concentration of 188 μg/L, and a 70.0% of Cr leaching inhibition rate. The improvement is attributed to the AlPO4 formation that enhancing the strength, and Ca2P2O7 that stabilizing Cr during sintering. This work provides a feasible method for the safe resource utilization of Cr-containing waste. Full article
Show Figures

Figure 1

23 pages, 25056 KiB  
Article
Mineral Chemistry and Whole-Rock Analysis of Magnesian and Ferroan Granitic Suites of Magal Gebreel, South Eastern Desert: Clues for Neoproterozoic Syn- and Post-Collisional Felsic Magmatism
by El Saeed R. Lasheen, Gehad M. Saleh, Amira El-Tohamy, Farrage M. Khaleal, Mabrouk Sami, Ioan V. Sanislav and Fathy Abdalla
Minerals 2025, 15(7), 751; https://doi.org/10.3390/min15070751 - 17 Jul 2025
Viewed by 387
Abstract
The article provides a comprehensive analysis of the Magal Gebreel granitic suites (MGGs) using petrological (fieldwork, petrography, mineral chemistry, and bulk rock analysis) aspects to infer their petrogenesis and emplacement setting. Our understanding of the development of the northern portion of the Arabian [...] Read more.
The article provides a comprehensive analysis of the Magal Gebreel granitic suites (MGGs) using petrological (fieldwork, petrography, mineral chemistry, and bulk rock analysis) aspects to infer their petrogenesis and emplacement setting. Our understanding of the development of the northern portion of the Arabian Nubian Shield is significantly improved by the Neoproterozoic granitic rocks of the seldom studied MGGs in Egypt’s south Eastern Desert. According to detailed field, mineralogical, and geochemical assessments, they comprise syn-collision (granodiorites) and post-collision (monzogranites, syenogranites, and alkali feldspar rocks). Granodiorite has strong positive Pb, notable negative P, Ti, and Nb anomalies, and is magnesian in composition. They have high content of LREEs (light rare-earth elements) compared to HREEs (heavy rare-earth elements) and clear elevation of LFSEs (low-field strength elements; K Rb, and Ba) compared to HFSEs (high-field strength elements; Zr and Nb), which are in accord with the contents of I-type granites from the Eastern Desert. In this context, the granodiorites are indicative of an early magmatic phase that probably resulted from the partial melting of high K-mafic sources in the subduction zone. Conversely, the post-collision rocks have low contents of Mg#, CaO, P2O5, MgO, Fe2O3, Sr, and Ti, and high SiO2, Fe2O3/MgO, Nb, Ce, and Ga/Al, suggesting A-type features with ferroan affinity. Their P, Nb, Sr, Ba, and Ti negative anomalies are in accord with the findings for Eastern Desert granites of the A2-type. Furthermore, they exhibit a prominent negative anomaly in Eu and a small elevation of LREEs in relation to HREEs. The oxygen fugacity (fO2) for the rocks under investigation can be calculated using the biotite chemistry. The narrow Fe/(Fe + Mg) ratio range (0.6–0.75) indicates that they crystallized under moderately oxidizing conditions between ~QFM +0.1 and QFM +1. The A-type rocks were formed by the partial melting of a tonalite source (underplating rocks) in a post-collisional environment during the late period of extension via slab delamination. The lithosphere became somewhat impregnated with particular elements as a result of the interaction between the deeper crust and the upwelling mantle. Full article
(This article belongs to the Section Mineral Geochemistry and Geochronology)
Show Figures

Figure 1

15 pages, 2469 KiB  
Review
Recent Developments of Nanomaterials in Crop Growth and Production: The Case of the Tomato (Solanum lycopersicum)
by Eric G. Echeverría-Pérez, Vianii Cruz-López, Rosario Herrera-Rivera, Mario J. Romellón-Cerino, Jesusita Rosas-Diaz and Heriberto Cruz-Martínez
Agronomy 2025, 15(7), 1716; https://doi.org/10.3390/agronomy15071716 - 16 Jul 2025
Viewed by 514
Abstract
Tomatoes are a fundamental part of the daily diet, rich in carbohydrates, vitamins, minerals, carotenoids, and polyphenols. Nonetheless, optimal fruit yield and quality typically depend on the application of synthetic agrochemicals. However, the irrational use of these agrochemicals has caused various environmental problems. [...] Read more.
Tomatoes are a fundamental part of the daily diet, rich in carbohydrates, vitamins, minerals, carotenoids, and polyphenols. Nonetheless, optimal fruit yield and quality typically depend on the application of synthetic agrochemicals. However, the irrational use of these agrochemicals has caused various environmental problems. Therefore, it is necessary to develop alternatives to conventional agrochemical products. Applying nanomaterials as fertilizers in tomato production is emerging as a promising approach, with documented improvements in germination, vegetative development, and fruit yield. Therefore, we present a comprehensive review of recent developments (2015–2024) in the application of nanomaterials in tomato crops, with a particular emphasis on the significance of nanomaterial characteristics in their role as fertilizers. Several types of nanomaterials, such as ZnO, Ag, TiO2, Si, hydroxyapatite, P, Zn, Se, CuO, Cu, Fe, Fe2O3, CaO, CaCO3, and S, have been evaluated as fertilizers for tomato crops, with ZnO nanoparticles being the most extensively studied. However, it is pertinent to conduct further research on the less-explored nanomaterials to gain a deeper understanding of their effects on seed germination, plant growth, and fruit quality and quantity. Full article
(This article belongs to the Special Issue Application of Nanotechnology in Agricultural Food Engineering)
Show Figures

Figure 1

Back to TopTop