Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (4,154)

Search Parameters:
Keywords = TiO2 surface

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 3619 KB  
Article
Influence of Na Additives on the Characteristics of Titania-Based Humidity Sensing Elements, Prepared via a Sol–Gel Method
by Zvezditza Nenova, Stephan Kozhukharov, Nedyu Nedev and Toshko Nenov
Sensors 2025, 25(19), 6075; https://doi.org/10.3390/s25196075 - 2 Oct 2025
Abstract
Humidity sensing elements based on sodium-doped titanium dioxide (Na-doped TiO2) were prepared using a sol–gel method in the presence of cerium ions and sintered at 400 °C and 800 °C. Titanium (IV) n-butoxide and a saturated solution of diammonium hexanitratocerate in [...] Read more.
Humidity sensing elements based on sodium-doped titanium dioxide (Na-doped TiO2) were prepared using a sol–gel method in the presence of cerium ions and sintered at 400 °C and 800 °C. Titanium (IV) n-butoxide and a saturated solution of diammonium hexanitratocerate in isobutanol served as starting materials. Sodium hydroxide and sodium tert-butoxide were used as inorganic and organometallic sodium sources, respectively. The influence of sodium additives on the properties of the humidity sensing elements was systematically investigated. The surface morphologies of the obtained layers were examined by scanning electron microscopy (SEM). Elemental mapping was conducted by energy-dispersive X-ray (EDX) spectroscopy, and structural characterization was performed using X-ray diffractometry (XRD). Electrical properties were studied for samples sintered at different temperatures over a relative humidity range of 15% to 95% at 20 Hz and 25 °C. Experimental results indicate that sodium doping enhances humidity sensitivity compared to undoped reference samples. Incorporation of sodium additives increases the resistance variation range of the sensing elements, reaching over five orders of magnitude for samples sintered at 400 °C and four orders of magnitude for those sintered at 800 °C. Full article
(This article belongs to the Special Issue Feature Papers in Smart Sensing and Intelligent Sensors 2025)
Show Figures

Figure 1

20 pages, 6891 KB  
Article
Influence of TiO2 Nanoparticle Concentration on Micro-Arc Oxidized Calcium–Phosphate Coatings: Corrosion Resistance and Biological Response
by Ainur Zhassulan, Bauyrzhan Rakhadilov, Daryn Baizhan, Aidar Kengesbekov, Dauir Kakimzhanov and Nazira Musataeva
Coatings 2025, 15(10), 1142; https://doi.org/10.3390/coatings15101142 - 2 Oct 2025
Abstract
Titanium and its alloys are widely used in biomedical implants due to their favorable mechanical properties and corrosion resistance; however, their natural surface lacks sufficient bioactivity and antibacterial performance. Micro-arc oxidation is a promising approach to producing bioactive coatings, and the incorporation of [...] Read more.
Titanium and its alloys are widely used in biomedical implants due to their favorable mechanical properties and corrosion resistance; however, their natural surface lacks sufficient bioactivity and antibacterial performance. Micro-arc oxidation is a promising approach to producing bioactive coatings, and the incorporation of nanoparticles such as TiO2 may further improve their functionality. This study aimed to determine the optimal TiO2 nanoparticle concentration in the micro-arc oxidation electrolyte that ensures coating stability and biological safety. Calcium–phosphate coatings were fabricated on commercially pure titanium using micro-arc oxidation with two TiO2 concentrations: 0.5 wt.% (MAO 1) and 1 wt.% (MAO 2). Surface morphology, porosity, and phase composition were analyzed by scanning electron microscopy, energy-dispersive spectroscopy, and X-ray diffraction. Corrosion resistance was evaluated via potentiodynamic polarization in NaCl and Ringer’s solutions, while biocompatibility was assessed in vitro using HOS human osteosarcoma cells and MTT assays. Increasing the TiO2 content to 1% decreased coating porosity (13.7% vs. 26.3% for MAO 1), enhanced corrosion protection, and reduced the friction coefficient compared to bare titanium. However, MAO 2 exhibited high cytotoxicity (81% cell death) and partial structural degradation in the biological medium. MAO 1 maintained integrity and showed no toxic effects (3% cell death). These results suggest that 0.5% TiO2 is the optimal concentration, providing a balance between corrosion resistance, mechanical stability, and biocompatibility, supporting the development of safer implant coatings. Full article
Show Figures

Figure 1

21 pages, 5821 KB  
Article
Systematic Study of Gold Nanoparticle Effects on the Performance and Stability of Perovskite Solar Cells
by Sofia Rubtsov, Akshay Puravankara, Edi L. Laufer, Alexander Sobolev, Alexey Kosenko, Vasily Shishkov, Mykola Shatalov, Victor Danchuk, Michael Zinigrad, Albina Musin and Lena Yadgarov
Nanomaterials 2025, 15(19), 1501; https://doi.org/10.3390/nano15191501 - 1 Oct 2025
Abstract
We explore a plasmonic interface for perovskite solar cells (PSCs) by integrating inkjet-printed TiO2-AuNP microdot arrays (MDA) into the electron transport layer. This systematic study examines how the TiO2 blocking layer (BL) surface conditioning, AuNP layer positioning, and nanoparticle loading [...] Read more.
We explore a plasmonic interface for perovskite solar cells (PSCs) by integrating inkjet-printed TiO2-AuNP microdot arrays (MDA) into the electron transport layer. This systematic study examines how the TiO2 blocking layer (BL) surface conditioning, AuNP layer positioning, and nanoparticle loading collectively influence device performance. Pre-annealing the BL increases its hydrophobicity, yielding smaller and denser AuNP microdots with an enhanced localized surface plasmon resonance (LSPR). Positioning the AuNP MDA at the BL/perovskite interface (above the BL) maximizes near-field plasmonic coupling to the absorber, resulting in higher photocurrent and power conversion devices; these trends are corroborated by finite-difference time-domain (FDTD) simulations. Moreover, these devices demonstrate better stability over time compared to those with AuNPs at the transparent electrode (under BL). Although higher AuNP concentrations improve dispersion stability, preserve MAPI crystallinity, and yield more uniform nanoparticle sizes, device measurements showed no performance gains. After annealing, the samples with the Au content of 23 wt% relative to TiO2 achieved optimal PSC efficiency by balancing plasmonic enhancement and charge transport without the increased resistance and recombination losses seen at higher loadings. Importantly, X-ray diffraction (XRD) confirms that introducing the TiO2-AuNP MDA at the interface does not disrupt the perovskite’s crystal structure, underscoring the structural compatibility of this plasmonic enhancement. Overall, our findings highlight a scalable strategy to boost PSC efficiency via engineered light-matter interactions at the nanoscale without compromising the perovskite’s structural integrity. Full article
(This article belongs to the Special Issue Photochemical Frontiers of Noble Metal Nanomaterials)
Show Figures

Figure 1

17 pages, 2176 KB  
Article
A Study on Maximizing the Performance of a Concrete-Based TiO2 Photocatalyst Using Hydrophilic Polymer Dispersion
by Jung Soo Kim, Kanghyeon Song, Jiwon Kim, Hyun-Ju Kang, Dayoung Yu, Hong Gun Kim and Young Soon Kim
Catalysts 2025, 15(10), 935; https://doi.org/10.3390/catal15100935 - 1 Oct 2025
Abstract
This study investigated the correlation between the dispersion stability and photocatalytic efficiency of titanium dioxide (TiO2) nanoparticles for the development of self-cleaning functional concrete. After pretreatment of P25 TiO2 with aqueous solutions of polyvinyl alcohol (PVA), polyethylene glycol (PEG), and [...] Read more.
This study investigated the correlation between the dispersion stability and photocatalytic efficiency of titanium dioxide (TiO2) nanoparticles for the development of self-cleaning functional concrete. After pretreatment of P25 TiO2 with aqueous solutions of polyvinyl alcohol (PVA), polyethylene glycol (PEG), and polyethylene glycol methyl ether (PEGME), dynamic light scattering (DLS) and zeta potential measurements were performed, and as a result, a 0.1 wt% PVA solution was optimal for inhibiting aggregation, with an average hydrodynamic diameter of 1.4 µm and a zeta potential of −11 mV. In methylene blue photolysis, the reaction rate constant (k_app) was 1.71 × 10−2 min−1 (R2 = 0.98), which was improved by 11.4 times compared to the control group, and was about twice as high in the concrete specimen experiment. X-ray diffraction (XRD), scanning electron microscopy (SEM), and Brunauer–Emmett–Teller (BET) analyses confirmed an anatase-to-rutile ratio of 81:19 particle sizes of 10–30 nm, and a specific surface area of 58.985 m2·g−1. As a result, it is suggested that PVA pretreatment is a practical method to effectively improve the photocatalytic performance of TiO2-based self-cleaning concrete. Full article
(This article belongs to the Special Issue Catalysis Accelerating Energy and Environmental Sustainability)
Show Figures

Graphical abstract

27 pages, 2749 KB  
Article
Biogenic TiO2–ZnO Nanocoatings: A Sustainable Strategy for Visible-Light Self-Sterilizing Surfaces in Healthcare
by Ali Jabbar Abd Al-Hussain Alkawaz, Maryam Sabah Naser and Ali Jalil Obaid
Micro 2025, 5(4), 45; https://doi.org/10.3390/micro5040045 - 30 Sep 2025
Abstract
Introduction: Hospital-acquired infections remain a significant healthcare concern due to the persistence of pathogens such as Staphylococcus aureus and Escherichia coli on frequently touched surfaces. Conventional TiO2 coatings are limited to UV activation, which restricts their application under normal indoor light. Combining [...] Read more.
Introduction: Hospital-acquired infections remain a significant healthcare concern due to the persistence of pathogens such as Staphylococcus aureus and Escherichia coli on frequently touched surfaces. Conventional TiO2 coatings are limited to UV activation, which restricts their application under normal indoor light. Combining TiO2 with ZnO and employing green synthesis methods may overcome these limitations. Methodology: Biogenic TiO2 and ZnO nanoparticles were synthesized using Bacillus subtilis under mild aqueous conditions. The nanoparticles were characterized by SEM, XRD, UV-Vis, and FTIR, confirming nanoscale size, crystalline phases, and organic capping. A multilayer TiO2/ZnO coating was fabricated on glass substrates through layer-by-layer deposition. Antibacterial activity was tested against S. aureus and E. coli using disk diffusion, direct contact assays, ROS quantification (FOX assay), and scavenger experiments. Statistical significance was evaluated using ANOVA. Results: The TiO2/ZnO multilayer exhibited superior antibacterial activity under visible light, with inhibition zones of ~15 mm (S. aureus) and ~12 mm (E. coli), significantly outperforming single-component coatings. Direct contact assays confirmed strong bactericidal effects, while scavenger tests verified ROS-mediated mechanisms. FOX assays detected elevated H2O2 generation, correlating with antibacterial performance. Discussion: Synergistic effects of band-gap narrowing, Zn2+ release, and ROS generation enhanced visible-light photocatalysis. The multilayer structure improved light absorption and charge separation, providing higher antimicrobial efficacy than individual oxides. Conclusion: Biogenic TiO2/ZnO multilayers represent a sustainable, visible-light-activated antimicrobial strategy with strong potential for reducing nosocomial infections on hospital surfaces and surgical instruments. Future studies should assess long-term durability and clinical safety. Full article
(This article belongs to the Topic Antimicrobial Agents and Nanomaterials—2nd Edition)
Show Figures

Figure 1

14 pages, 5326 KB  
Article
Microstructure, Hardness, and Corrosion Behavior of Oxidized AA6061 Using Potentiostatic Plasma Electrolytic Oxidation
by Salvacion B. Orgen and Eden May B. Dela Peña
Coatings 2025, 15(10), 1129; https://doi.org/10.3390/coatings15101129 - 29 Sep 2025
Abstract
Aluminum and its alloys are widely used in aerospace and industrial sectors due to their high specific strength, low density, and abundance. However, their low hardness, high corrosion susceptibility, and poor wear resistance limit broader applications. Surface treatments such as electroplating, PVD/CVD, and [...] Read more.
Aluminum and its alloys are widely used in aerospace and industrial sectors due to their high specific strength, low density, and abundance. However, their low hardness, high corrosion susceptibility, and poor wear resistance limit broader applications. Surface treatments such as electroplating, PVD/CVD, and anodizing have been used to enhance surface properties. Plasma electrolytic oxidation (PEO), also known as micro-arc oxidation (MAO), has emerged as a promising technique for producing durable ceramic coatings on light metals like Al, Mg, and Ti alloys. In this study, PEO was applied to AA6061 aluminum alloy using an AC power source in potentiostatic mode at 350 V and 400 V, 1000 Hz, and 80% duty cycle for 30 min in a silicate-based electrolyte (5 g/L Na2SiO3 + 5 g/L KOH) maintained at 25–40 °C. The effect of voltage on the coating morphology, thickness, and corrosion resistance was investigated. The coatings exhibited porous structures with pancake-like, crater, and nodular features, and thicknesses ranged from 0.053 to 83.64 µm. XRD analysis confirmed the presence of Al, α-Al2O3, Ƴ-Al2O3, and mullite. The 400 V-coated sample showed superior corrosion resistance ( Ecorr= 0.77 V; icorr=0.28 μA/cm2) and improved hardness (up to 233 HV), compared to 89 HV for the bare AA6061. Full article
Show Figures

Figure 1

31 pages, 10779 KB  
Review
MXene-Polymer Nanocomposites for High-Efficiency Photocatalytic Antibiotic Degradation Review: Microstructure Control, Environmental Adaptability and Future Prospects
by Zhenfei Chen, Zhifei Meng, Zhongguo Zhang and Weifang Ma
Polymers 2025, 17(19), 2630; https://doi.org/10.3390/polym17192630 - 28 Sep 2025
Abstract
The efficient degradation of antibiotics in pharmaceutical wastewater remains a critical challenge against environmental contaminants. Conventional photocatalysts face potential limitations such as narrow visible-light absorption, rapid carrier recombination, and reliance on precious metal cocatalysts. This review investigates the coordination structure of MXene as [...] Read more.
The efficient degradation of antibiotics in pharmaceutical wastewater remains a critical challenge against environmental contaminants. Conventional photocatalysts face potential limitations such as narrow visible-light absorption, rapid carrier recombination, and reliance on precious metal cocatalysts. This review investigates the coordination structure of MXene as a cocatalyst to synergistically enhance photocatalytic antibiotic degradation efficiency and the coordination structure modification mechanisms. MXene’s tunable bandgap (0.92–1.75 eV), exceptional conductivity (100–20,000 S/cm), and abundant surface terminations (-O, -OH, -F) enable the construction of Schottky or Z-scheme heterojunctions with semiconductors (Cu2O, TiO2, g-C3N4), achieving 50–70% efficiency improvement compared to pristine semiconductors. The “electron sponge” effect of MXene suppresses electron-hole recombination by 3–5 times, while its surface functional groups dynamically optimize pollutant adsorption. Notably, MXene’s localized surface plasmon resonance extends light harvesting from visible (400–800 nm) to near-infrared regions (800–2000 nm), tripling photon utilization efficiency. Theoretical simulations demonstrate that d-orbital electronic configurations and terminal groups cooperatively regulate catalytic active sites at atomic scales. The MXene composites demonstrate remarkable environmental stability, maintaining over 90% degradation efficiency of antibiotic under high salinity (2 M NaCl) and broad pH range (4–10). Future research should prioritize green synthesis protocols and mechanistic investigations of interfacial dynamics in multicomponent wastewater systems to facilitate engineering applications. This work provides fundamental insights into designing MXene-based photocatalysts for sustainable water purification. Full article
(This article belongs to the Special Issue Photoelectrocatalytic Polymer Materials)
Show Figures

Graphical abstract

18 pages, 3046 KB  
Article
Simultaneous Photocatalytic CO2 Reduction and Methylene Blue Degradation over TiO2@(Pt, Au, or Pd)
by Elisenda Pulido-Melián, Cristina Valeria Santana-Fleitas, Javier Araña and Óscar Manuel González-Díaz
Photochem 2025, 5(4), 30; https://doi.org/10.3390/photochem5040030 - 28 Sep 2025
Abstract
In this work, the photocatalytic reduction of CO2 was innovatively tested with the simultaneous removal and mineralization of a textile contaminant, methylene blue (MB), which acts as a sacrificial agent. The process was carried out in a flow regime under atmospheric conditions, [...] Read more.
In this work, the photocatalytic reduction of CO2 was innovatively tested with the simultaneous removal and mineralization of a textile contaminant, methylene blue (MB), which acts as a sacrificial agent. The process was carried out in a flow regime under atmospheric conditions, using a liquid-phase photoreactor under UVA illumination with a duration of 24 h per test. Two commercial TiO2-based photocatalysts, P25 and P90 from Evonik, were used and surface modified through the photodeposition of metallic nanoparticles of Pt, Au, and Pd, as they did not show gas-phase products from CO2 reduction on their own. The optimal pH was 5, the decreasing order of activity by metal was Pt > Au > Pd, and the optimal MB concentration was 20 ppm. The major products were CH4 and H2 in the gas phase. The presence of CH4 was only detected in the presence of a CO2 flow. In the liquid phase, carboxylic acids were also detected in small amounts, and in the test, 100 ppm of MB ethanol was additionally detected. A 100% degradation of MB and 72.5% mineralization was achieved under the conditions of highest CH4 production (20 ppm MB at pH 5 with 4 g·L−1 P25-0.70%Pt). Full article
Show Figures

Graphical abstract

15 pages, 3022 KB  
Article
Preparation and Performance of 3D-Printed TiO2-Supported TPMS Structures for Photocatalytic Applications
by Xi Chen, Chenxi Zhang, Xiao Chen and Ningning Li
Molecules 2025, 30(19), 3891; https://doi.org/10.3390/molecules30193891 - 26 Sep 2025
Abstract
This study addresses critical bottlenecks in photocatalytic water treatment technologies, including difficulties in recovering traditional powdered catalysts, low mass transfer efficiency in immobilized reactors, and limited structural diversity. By integrating topology optimization with 3D printing technology, we designed and fabricated five types of [...] Read more.
This study addresses critical bottlenecks in photocatalytic water treatment technologies, including difficulties in recovering traditional powdered catalysts, low mass transfer efficiency in immobilized reactors, and limited structural diversity. By integrating topology optimization with 3D printing technology, we designed and fabricated five types of triply periodic minimal surface photocatalytic reactors (TPMS-PCRs) with hierarchical porous structures—Fischer-Radin-Dunn (FRD), Neovius (N), Diamond (D), I-graph Wrapped Package (IWP) and Gyroid (G). Using fused deposition modeling (FDM), these TPMS configurations were manufactured from polylactic acid (PLA), 1.5 wt% TiO2/PLA, and 2.5 wt% TiO2/PLA. The catalytic degradation performance of these structurally distinct reactors for organic pollutants varied significantly. Notably, the FRD-type TPMS-PCR loaded with 2.5 wt% TiO2 achieved a methylene blue (MB) degradation rate of 93.4% within 2.5 h under rotational flow conditions, compared to 87.5% under horizontal flow conditions. Full article
(This article belongs to the Special Issue New Research on Novel Photo-/Electrochemical Materials)
Show Figures

Graphical abstract

23 pages, 2297 KB  
Article
Nanofibrous Polymer Filters for Removal of Metal Oxide Nanoparticles from Industrial Processes
by Andrzej Krupa, Arkadiusz Tomasz Sobczyk and Anatol Jaworek
Membranes 2025, 15(10), 291; https://doi.org/10.3390/membranes15100291 - 25 Sep 2025
Abstract
Filtration of submicron particles and nanoparticles is an important problem in nano-industry and in air conditioning and ventilation systems. The presence of submicron particles comprising fungal spores, bacteria, viruses, microplastic, and tobacco-smoke tar in ambient air is a severe problem in air conditioning [...] Read more.
Filtration of submicron particles and nanoparticles is an important problem in nano-industry and in air conditioning and ventilation systems. The presence of submicron particles comprising fungal spores, bacteria, viruses, microplastic, and tobacco-smoke tar in ambient air is a severe problem in air conditioning systems. Many nanotechnology material processes used for catalyst, solar cells, gas sensors, energy storage devices, anti-corrosion and hydrophobic surface coating, optical glasses, ceramics, nanocomposite membranes, textiles, and cosmetics production also generate various types of nanoparticles, which can retain in a conveying gas released into the atmosphere. Particles in this size range are particularly difficult to remove from the air by conventional methods, e.g., electrostatic precipitators, conventional filters, or cyclones. For these reasons, nanofibrous filters produced by electrospinning were developed to remove fine particles from the post-processing gases. The physical basis of electrospinning used for nanofilters production is an employment of electrical forces to create a tangential stress on the surface of a viscous liquid jet, usually a polymer solution, flowing out from a capillary nozzle. The paper presents results for investigation of the filtration process of metal oxide nanoparticles: TiO2, MgO, and Al2O3 by electrospun nanofibrous filter. The filter was produced from polyvinylidene fluoride (PVDF). The concentration of polymer dissolved in dimethylacetamide (DMAC) and acetone mixture was 15 wt.%. The flow rate of polymer solution was 1 mL/h. The nanoparticle aerosol was produced by the atomization of a suspension of these nanoparticles in a solvent (methanol) using an aerosol generator. The experimental results presented in this paper show that nanofilters made of PVDF with surface density of 13 g/m2 have a high filtration efficiency for nano- and microparticles, larger than 90%. The gas flow rate through the channel was set to 960 and 670 l/min. The novelty of this paper was the investigation of air filtration from various types of nanoparticles produced by different nanotechnology processes by nanofibrous filters and studies of the morphology of nanoparticle deposited onto the nanofibers. Full article
11 pages, 18277 KB  
Article
Experimental Study on Electric Separation of Ti/Zr-Bearing Minerals in Gravity Separation Concentrate After Thermal Activation Roasting
by Yang Wang, Yongxing Zheng, Hua Zhang, Xiang Huang, Xiangding Wang and Zhenxing Wang
Metals 2025, 15(10), 1072; https://doi.org/10.3390/met15101072 - 25 Sep 2025
Abstract
To solve the problem of purifying concentrates of rutile and zircon, a new method of electric separation after thermal activation roasting at 800 °C was proposed to strengthen the separation of Ti/Zr-bearing minerals. The results showed that the grade of TiO2 in [...] Read more.
To solve the problem of purifying concentrates of rutile and zircon, a new method of electric separation after thermal activation roasting at 800 °C was proposed to strengthen the separation of Ti/Zr-bearing minerals. The results showed that the grade of TiO2 in the conductor increased by 2.55~6.45% and the content of ZrO2 decreased by 0.83~2.60% after thermal activation roasting and electronic separation, in contrast with electronic separation without roasting. To further explore the mechanism of activation roasting, the electrical conductivity, the phase evolution, and the microstructure of the gravity separation concentrate (GSC), pure rutile and pure zircon before and after roasting were investigated. The results of conductivity testing showed that the roasting pretreatment significantly improved the conductive difference between rutile and zircon, thus strengthening their separation performance. The XRD results revealed that the thermal activation roasting made the anatase in the GSC transform into rutile, thus enhancing the conductivity. Meanwhile, the crystallinity of both of the pure minerals was improved. The SEM results showed that the GSC particles formed loose and porous sinters, suggesting the reconstruction of the unstable anatase into rutile. Small amounts of cracks and protrusions occurred on the surface of both pure minerals, ascribed to the dehydration and deoxygenation at a high temperature. Full article
(This article belongs to the Special Issue Advances in Sustainable Utilization of Metals: Recovery and Recycling)
Show Figures

Figure 1

29 pages, 4070 KB  
Article
Mercury Removal Using Sulfur-Decorated Chitosan Polymer Nanocomposites: Adsorption Performance and Mechanisms
by Mvula Confidence Goci, Anny Leudjo Taka, Lynwill Garth Martin, Vernon Sydwill Somerset and Michael John Klink
Polymers 2025, 17(19), 2585; https://doi.org/10.3390/polym17192585 - 24 Sep 2025
Viewed by 43
Abstract
In this work, pCh-MWCNTs@Ag-TiO2/S and pCh-MWCNTs@Ag-TiO2 nanocomposites were synthesized through a combined phosphorylation and cross-linked polymerization method. The materials were thoroughly characterized using several analytical techniques, including SEM/EDS, FTIR, TGA, and BET analysis. SEM images revealed that the pCh-MWCNTs@Ag-TiO2 [...] Read more.
In this work, pCh-MWCNTs@Ag-TiO2/S and pCh-MWCNTs@Ag-TiO2 nanocomposites were synthesized through a combined phosphorylation and cross-linked polymerization method. The materials were thoroughly characterized using several analytical techniques, including SEM/EDS, FTIR, TGA, and BET analysis. SEM images revealed that the pCh-MWCNTs@Ag-TiO2/S nanocomposite displayed a smooth, flake-like morphology with spherical, dark greenish particles. EDS analysis confirmed the presence of Si, S, P, and Ag as prominent elements, with Ti, C, and O showing the most intense peaks. The TGA curves indicated significant weight loss between 250–610 °C for pCh-MWCNTs@Ag-TiO2 and 210–630 °C for pCh-MWCNTs@Ag-TiO2/S, corresponding to the decomposition of organic components. FTIR spectra validated the existence of functional groups such as hydroxyl (-OH), carboxyl (-COOH), and carbonyl (-C=O) on the surface of the nanocomposites. Following characterization, the materials were evaluated for their capacity to adsorb Hg2+ at parts-per-billion (ppb) concentrations in contaminated water. Batch adsorption experiments identified optimal conditions for mercury removal. For pCh-MWCNTs@Ag-TiO2, the best performance was observed at pH 4, with an adsorbent dose of 4.0 mg, initial mercury concentration of 16 ppb, and a contact time of 90 min. For pCh-MWCNTs@Ag-TiO2/S, optimal conditions were at pH 6, a dosage of 3.5 mg, the same initial concentration, and a contact time of 100 min. Each parameter was optimized to determine the most effective conditions for Hg2+ removal. The nanocomposites showed high efficiency, achieving more than 95% mercury removal under these conditions. Kinetic studies indicated that the adsorption process followed a pseudo-second-order model, while the equilibrium data aligned best with the Langmuir isotherm, suggesting monolayer adsorption behavior. Overall, this research highlights the effectiveness of sulfur-modified chitosan-based nanocomposites as eco-friendly and efficient adsorbents for the removal of mercury from aqueous systems, offering a promising solution for water purification and environmental protection. Full article
Show Figures

Figure 1

15 pages, 23278 KB  
Article
Assessing the Influence of Inorganic Nanoparticles on the Mechanical and Tribological Performance of PPS-Based Composites: A Comparative Study
by Jixiang Li, Mei Liang, Xiaowen Zhao, Shengtai Zhou and Huawei Zou
Polymers 2025, 17(19), 2573; https://doi.org/10.3390/polym17192573 - 23 Sep 2025
Viewed by 67
Abstract
In this work, γ-irradiated poly(tetrafluoroethylene) (i-PTFE) and short carbon fibre (SCF) along with different types of ceramic inorganic nanoparticles (i.e., SiC, SiO2, ZnO, TiO2, and CaCO3) were employed to improve the mechanical and tribological performance of polyphenylene [...] Read more.
In this work, γ-irradiated poly(tetrafluoroethylene) (i-PTFE) and short carbon fibre (SCF) along with different types of ceramic inorganic nanoparticles (i.e., SiC, SiO2, ZnO, TiO2, and CaCO3) were employed to improve the mechanical and tribological performance of polyphenylene sulphide (PPS) composites. The results showed that the flexural strength and modulus of PPS composites increased with the addition of inorganic nanoparticles. Moreover, the inorganic nanoparticles not only exhibited a ‘micro-bearing’ effect during friction tests, but also promoted the formation of high-quality transfer film on the surface of a friction pair, significantly improving the self-lubricating performance of PPS composites. XPS analysis confirmed the occurrence of friction-induced chemical reactions during the friction process in nanoparticle-containing PPS/i-PTFE/SCF composites, which was helpful in improving the tribological performance. PPS/i-PTFE/SCF/SiC composite demonstrated an average friction coefficient of 0.083 and specific wear rate of 9.04 × 10−6 mm3/Nm, which was the best among the studied systems. This work provided valuable insights for developing high-performance self-lubricating polymer composites that can be applied in high-end engineering sectors. Full article
Show Figures

Graphical abstract

11 pages, 2008 KB  
Article
Corrosion-Resistant Plasma Electrolytic Oxidation Composite Coatings on Ti6Al4V for Harsh Acidic Environments
by Michael Garashchenko, Yuliy Yuferov and Konstantin Borodianskiy
J. Compos. Sci. 2025, 9(10), 515; https://doi.org/10.3390/jcs9100515 - 23 Sep 2025
Viewed by 166
Abstract
Titanium alloys are widely employed in structural and electrochemical applications owing to their excellent mechanical properties and inherent corrosion resistance. However, their stability in harsh acidic environments, such as those encountered in energy storage systems, remains a critical issue. In this study, composite [...] Read more.
Titanium alloys are widely employed in structural and electrochemical applications owing to their excellent mechanical properties and inherent corrosion resistance. However, their stability in harsh acidic environments, such as those encountered in energy storage systems, remains a critical issue. In this study, composite ceramic coatings were synthesized on a Ti6Al4V alloy using plasma electrolytic oxidation (PEO) in silicate-, phosphate-, and sulfate-based electrolytes, with and without the addition of α-alumina nanoparticles. The resulting coatings were comprehensively characterized to assess their surface morphology, chemical and phase compositions, and corrosion performance. Thus, the corrosion current density decreased from 9.7 × 104 for bare Ti6Al4V to 143 nA/cm2 for the coating fabricated in phosphate electrolyte with alumina nanoparticles, while the corrosion potential shifted anodically from –0.68 to +0.49 V vs. silver chloride electrode in 5 M H2SO4. Among the tested electrolytes, coatings produced in the phosphate-based electrolyte with Al2O3 showed the highest polarization resistance (113 kΩ·cm2), outperforming those fabricated in silicate- (71.6 kΩ·cm2) and sulfate-based (89.0 kΩ·cm2) systems. The composite coatings exhibited a multiphase structure with reduced surface porosity and the incorporation of crystalline oxide phases. Notably, titania–alumina nanoparticle composites demonstrated significantly enhanced corrosion resistance. These findings confirm that PEO-derived composite coatings provide an effective surface engineering strategy for enhancing the stability of the Ti6Al4V alloy in aggressive acidic environments relevant to advanced electrochemical systems. Full article
(This article belongs to the Special Issue Metal Composites, Volume II)
Show Figures

Figure 1

52 pages, 7168 KB  
Review
Binary Oxide Ceramics (TiO2, ZnO, Al2O3, SiO2, CeO2, Fe2O3, and WO3) for Solar Cell Applications: A Comparative and Bibliometric Analysis
by Yana Suchikova, Serhii Nazarovets, Marina Konuhova and Anatoli I. Popov
Ceramics 2025, 8(4), 119; https://doi.org/10.3390/ceramics8040119 - 23 Sep 2025
Viewed by 267
Abstract
Binary oxide ceramics have emerged as key materials in solar energy research due to their versatility, chemical stability, and tunable electronic properties. This study presents a comparative analysis of seven prominent oxides (TiO2, ZnO, Al2O3, SiO2 [...] Read more.
Binary oxide ceramics have emerged as key materials in solar energy research due to their versatility, chemical stability, and tunable electronic properties. This study presents a comparative analysis of seven prominent oxides (TiO2, ZnO, Al2O3, SiO2, CeO2, Fe2O3, and WO3), focusing on their functional roles in silicon, perovskite, dye-sensitized, and thin-film solar cells. A bibliometric analysis covering over 50,000 publications highlights TiO2 and ZnO as the most widely studied materials, serving as electron transport layers, antireflective coatings, and buffer layers. Al2O3 and SiO2 demonstrate highly specialized applications in surface passivation and interface engineering, while CeO2 offers UV-blocking capability and Fe2O3 shows potential as an absorber material in photoelectrochemical systems. WO3 is noted for its multifunctionality and suitability for scalable, high-rate processing. Together, these findings suggest that binary oxide ceramics are poised to transition from supporting roles to essential components of stable, efficient, and environmentally safer next-generation solar cells. Full article
Show Figures

Figure 1

Back to TopTop