polymers-logo

Journal Browser

Journal Browser

Photoelectrocatalytic Polymer Materials

A special issue of Polymers (ISSN 2073-4360). This special issue belongs to the section "Polymer Applications".

Deadline for manuscript submissions: 31 March 2026 | Viewed by 742

Special Issue Editors


E-Mail Website
Guest Editor
College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
Interests: carbon-based nano-materials; polymer synthesis; polymer characterization; water and wastewater treatment
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
Institute of Resources and Environment, Beijing Academy of Science and Technology, Beijing 100089, China
Interests: electrocatalysis; chemical wastewater treatment; catalytic materials
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Photoelectrocatalytic polymer materials play a pivotal role in the conversion of renewable energy and environmental science. They are a key component in a variety of energy-related applications, such as the photoelectric splitting of water for hydrogen production, the reduction of carbon dioxide to value-added chemicals, and the photoelectric degradation of pollutants. As the demand for clean and sustainable energy solutions continues to grow, the development of advanced photoelectrocatalytic polymer materials has become a crucial area of research.

This Special Issue is dedicated to the latest advancements in the field of photoelectrocatalytic polymer materials. We welcome original research papers and comprehensive reviews covering a wide range of topics, including the design and synthesis of novel photoelectrocatalytic polymer materials, such as semiconductor-based composites, metal–organic frameworks with enhanced photoelectrochemical performances,  and conjugated polymers with tunable bandgaps and supramolecular assemblies for improved charge separation. Papers on new preparation methods that can improve the structure and properties of photoelectrocatalytic polymers materials, like nanoscale engineering and surface modification techniques, are also highly encouraged. Moreover, we are interested in studies that explore the fundamental mechanisms underlying photoelectrocatalytic reactions, including charge generation, transfer, and recombination processes.

Prof. Dr. Weifang Ma
Prof. Dr. Zhongguo Zhang
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Polymers is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • photoelectrocatalysis
  • polymer catalyst
  • reaction mechanism
  • charge transfer
  • catalyst design
  • surface modification
  • pollutant degradation
  • environmental remediation
  • solar energy utilization

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:

Review

31 pages, 10779 KB  
Review
MXene-Polymer Nanocomposites for High-Efficiency Photocatalytic Antibiotic Degradation Review: Microstructure Control, Environmental Adaptability and Future Prospects
by Zhenfei Chen, Zhifei Meng, Zhongguo Zhang and Weifang Ma
Polymers 2025, 17(19), 2630; https://doi.org/10.3390/polym17192630 - 28 Sep 2025
Viewed by 536
Abstract
The efficient degradation of antibiotics in pharmaceutical wastewater remains a critical challenge against environmental contaminants. Conventional photocatalysts face potential limitations such as narrow visible-light absorption, rapid carrier recombination, and reliance on precious metal cocatalysts. This review investigates the coordination structure of MXene as [...] Read more.
The efficient degradation of antibiotics in pharmaceutical wastewater remains a critical challenge against environmental contaminants. Conventional photocatalysts face potential limitations such as narrow visible-light absorption, rapid carrier recombination, and reliance on precious metal cocatalysts. This review investigates the coordination structure of MXene as a cocatalyst to synergistically enhance photocatalytic antibiotic degradation efficiency and the coordination structure modification mechanisms. MXene’s tunable bandgap (0.92–1.75 eV), exceptional conductivity (100–20,000 S/cm), and abundant surface terminations (-O, -OH, -F) enable the construction of Schottky or Z-scheme heterojunctions with semiconductors (Cu2O, TiO2, g-C3N4), achieving 50–70% efficiency improvement compared to pristine semiconductors. The “electron sponge” effect of MXene suppresses electron-hole recombination by 3–5 times, while its surface functional groups dynamically optimize pollutant adsorption. Notably, MXene’s localized surface plasmon resonance extends light harvesting from visible (400–800 nm) to near-infrared regions (800–2000 nm), tripling photon utilization efficiency. Theoretical simulations demonstrate that d-orbital electronic configurations and terminal groups cooperatively regulate catalytic active sites at atomic scales. The MXene composites demonstrate remarkable environmental stability, maintaining over 90% degradation efficiency of antibiotic under high salinity (2 M NaCl) and broad pH range (4–10). Future research should prioritize green synthesis protocols and mechanistic investigations of interfacial dynamics in multicomponent wastewater systems to facilitate engineering applications. This work provides fundamental insights into designing MXene-based photocatalysts for sustainable water purification. Full article
(This article belongs to the Special Issue Photoelectrocatalytic Polymer Materials)
Show Figures

Graphical abstract

Back to TopTop