Mercury Removal Using Sulfur-Decorated Chitosan Polymer Nanocomposites: Adsorption Performance and Mechanisms
Abstract
1. Introduction
2. Materials and Methods
2.1. Synthesis of pCh-MWCNTs@Ag-TiO2/S Biopolymer Based Nanocomposite
2.1.1. Functionalization of MWCNTs
2.1.2. Phosphorylation of Chitosan
2.1.3. Synthesis of Sulfur (S) Nanoparticles
2.2. Synthesis of Biopolymer: Cross-Linking Polymerization of Phosphorylated Chitosan with Oxi-MWCNTs Following by Decoration with Metal Nanoparticles
2.3. Characterization Studies
2.3.1. Fourier Transform Infrared Spectroscopy
2.3.2. Scanning Electron Microscope–Energy Dispersive Spectroscopy (SEM-EDS)
2.3.3. Thermo Gravimetric Analysis (TGA)
2.3.4. Dynamic Light Scattering (DLS): Surface Charge Analysis
2.3.5. Brunauer–Emmett–Teller (BET) Surface Area Analysis
2.4. Hg Adsorption Studies
2.5. Adsorption Isotherms
2.6. Kinetics Modelling
2.7. Elovich Model
2.8. Intraparticle Diffusion
2.9. Thermodynamics
3. Results and Discussions
3.1. Characterization of the Adsorbents
3.1.1. SEM-EDS
3.1.2. Fourier Transform Infrared (FT-IR) Spectroscopy
3.1.3. Thermal Decomposition Studies
3.1.4. Surface Area and Pore Sizes Analysis
3.1.5. Dynamic Light Spectroscopy (DLS)
3.2. Adsorption Studies
3.2.1. Point of Zero Charge for Adsorbents
3.2.2. Effect of Solution pH
3.2.3. Effect of Adsorbent Dosage
3.2.4. Effect of Initial Concentration on Hg2+ Adsorption
3.2.5. Effect of Contact Time
3.2.6. Effect of Temperature
3.3. Adsorption Isotherm Modelling
3.3.1. Langmuir and Freundlich Isotherms
3.3.2. Adsorption Kinetics
Pseudo-First Order and Second Order
Elovich Model
Intraparticle Diffusion (IPD)
3.3.3. Thermodynamics Studies
4. Conclusions
5. Recommendations/Future Work
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Driscoll, C.T.; Mason, R.P.; Chan, H.M.; Jacob, D.J.; Pirrone, N. Mercury as a Global Pollutant: Sources, Pathways, and Effects. Environ. Sci. Technol. 2013, 47, 4967–4983. [Google Scholar] [CrossRef] [PubMed]
- Laurier, F.J.G.; Mason, R.P.; Whalin, L.; Kato, S. Reactive gaseous mercury formation in the North Pacific Ocean’s marine boundary layer: A potential role of halogen chemistry. J. Geophys. Res. Atmos. 2003, 108, 4529. [Google Scholar] [CrossRef]
- Ebinghaus, R.; Kock, H.H.; Coggins, A.M.; Spain, T.G.; Jennings, S.G.; Temme, C. Long-term measurements of atmospheric mercury at Mace Head, Irish west coast, between 1995 and 2001. Atmos. Environ. 2002, 36, 5267–5276. [Google Scholar] [CrossRef]
- Fang, G.C.; Wu, Y.S.; Chang, T.H. Comparison of atmospheric mercury (Hg) among Korea, Japan, China and Taiwan during 2000–2008. J. Hazard. Mater. 2009, 162, 607–615. [Google Scholar] [CrossRef]
- Lyman, S.N.; Gustin, M.S.; Prestbo, E.M. A passive sampler for ambient gaseous oxidized mercury concentrations. Atmos. Environ. 2010, 44, 246–252. [Google Scholar] [CrossRef]
- Benis, K.Z.; McPhedran, K.N.; Soltan, J. Selenium removal from water using adsorbents: A critical review. J. Hazard. Mater. 2022, 424, 127603. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Xu, H.; Zhang, Y.; Zhang, H.; Hu, X.; Sun, Y.; Gu, X.; Luo, J.; Zhou, D.; Gao, B. Treatment technologies for selenium contaminated water: A critical review. Environ. Pollut. 2022, 299, 118858. [Google Scholar] [CrossRef]
- Dungeni, M.; van Der Merwe, R.R.; Momba, M. Abundance of pathogenic bacteria and viral indicators in chlorinated effluents produced by four wastewater treatment plants in the Gauteng Province, South Africa. Water SA 2010, 36, 607–614. [Google Scholar] [CrossRef]
- Bora, T.; Dutta, J. Applications of Nanotechnology in Wastewater Treatment—A Review. J. Nanosci. Nanotechnol. 2014, 14, 613–626. [Google Scholar] [CrossRef]
- Amin, M.T.; Alazba, A.A.; Manzoor, U. A Review of Removal of Pollutants from Water/Wastewater Using Different Types of Nanomaterials. Adv. Mater. Sci. Eng. 2014, 2014, 825910. [Google Scholar] [CrossRef]
- Faizan, M.; Saad, M.; Javed, M.; Fatima, M.; Khalid, B.; Iqbal, S.; Mahmood, S.; Alotaibi, M.T.; Akhter, T. Enhanced photocatalytic degradation and synergistic effects of Tin-Doped zinc oxide nanoparticles for environmental remediation. Mater. Sci. Eng. B 2024, 308, 117551. [Google Scholar] [CrossRef]
- Nasrollahzadeh, M.; Sajjadi, M.; Iravani, S.; Varma, R.S. Starch, cellulose, pectin, gum, alginate, chitin and chitosan derived (nano)materials for sustainable water treatment: A review. Carbohydr. Polym. 2021, 251, 116986. [Google Scholar] [CrossRef] [PubMed]
- Ren, G.; Wan, K.; Kong, H.; Guo, L.; Wang, Y.; Liu, X.; Wei, G. Recent advance in biomass membranes: Fabrication, functional regulation, and antimicrobial applications. Carbohydr. Polym. 2023, 305, 120537. [Google Scholar] [CrossRef]
- Upadhyay, U.; Sreedhar, I.; Singh, S.A.; Patel, C.M.; Anitha, K.L. Recent advances in heavy metal removal by chitosan based adsorbents. Carbohydr. Polym. 2021, 251, 117000. [Google Scholar] [CrossRef] [PubMed]
- Bi, C.; Zhang, C.; Ma, F.; Zhu, L.; Zhu, R.; Qi, Q.; Liu, L.; Dong, H. Development of 3D porous Ag+ decorated PCN-222@ graphene oxide-chitosan foam adsorbent with antibacterial property for recovering U (VI) from seawater. Sep. Purif. Technol. 2022, 281, 119900. [Google Scholar] [CrossRef]
- Paul, J.; Qamar, A.; Ahankari, S.S.; Thomas, S.; Dufresne, A. Chitosan-based aerogels: A new paradigm of advanced green materials for remediation of contaminated water. Carbohydr. Polym. 2024, 338, 122198. [Google Scholar] [CrossRef]
- You, J.; Liu, C.; Feng, X.; Lu, B.; Xia, L.; Zhuang, X. In situ synthesis of ZnS nanoparticles onto cellulose/chitosan sponge for adsorption–photocatalytic removal of Congo red. Carbohydr. Polym. 2022, 288, 119332. [Google Scholar] [CrossRef]
- Ihsanullah; Abbas, A.; Al-Amer, A.M.; Laoui, T.; Al-Marri, M.J.; Nasser, M.S.; Khraisheh, M.; Atieh, M.A. Heavy metal removal from aqueous solution by advanced carbon nanotubes: Critical review of adsorption applications. Sep. Purif. Technol. 2016, 157, 141–161. [Google Scholar] [CrossRef]
- Keshvardoostchokami, M.; Babaei, S.; Piri, F.; Zamani, A. Nitrate removal from aqueous solutions by ZnO nanoparticles and chitosan-polystyrene–Zn nanocomposite: Kinetic, isotherm, batch and fixed-bed studies. Int. J. Biol. Macromol. 2017, 101, 922–930. [Google Scholar] [CrossRef]
- Taka, A.L.; Pillay, K.; Mbianda, X.Y. Nanosponge cyclodextrin polyurethanes and their modification with nanomaterials for the removal of pollutants from waste water: A review. Carbohydr. Polym. 2017, 159, 94–107. [Google Scholar] [CrossRef]
- Chao, T.C.; Chen, H.L.; Chen, S.G.; Chang, C.C. Functionalization of Multi-Walled Carbon Nanotubes by Acid Treatment for Enhanced Mercury Adsorption. J. Colloid Interface Sci. 2005, 288, 444–450. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, X. Phosphorylation of Chitosan for Enhanced Heavy Metal Adsorption: Characterization and Applications. Carbohydr. Polym. 2014, 113, 654–661. [Google Scholar] [CrossRef]
- Taka, A.L.; Klink, M.J.; Mbianda, X.Y.; Naidoo, E.B. Chitosan nanocomposites for water treatment by fixed-bed continuous flow column adsorption: A review. Carbohydr. Polym. 2021, 255, 117398. [Google Scholar] [CrossRef] [PubMed]
- Chiban, M.; Soudani, A.; Sinan, F.; Persin, M. Wastewater treatment by batch adsorption method onto micro-particles of dried Withania frutescens plant as a new adsorbent. J. Environ. Manag. 2012, 95, S61–S65. [Google Scholar] [CrossRef]
- Banaei, A.; Samadi, S.; Karimi, S.; Vojoudi, H.; Pourbasheer, E.; Badiei, A. Synthesis of silica gel modified with 2,2′-(hexane-1,6-diylbis(oxy)) dibenzaldehyde as a new adsorbent for the removal of Reactive Yellow 84 and Reactive Blue 19 dyes from aqueous solutions: Equilibrium and thermodynamic studies. Powder Technol. 2017, 319, 60–70. [Google Scholar] [CrossRef]
- Dada, A.O.; Olalekan, A.P.; Olatunya, A.M.; Dada, O. Langmuir, Freundlich, Temkin and Dubinin–Radushkevich isotherms studies of equilibrium sorption of Zn2+ unto phosphoric acid modified rice husk. J. Appl. Chem. 2012, 3, 38–45. [Google Scholar] [CrossRef]
- Wu, F.C.; Tseng, R.L.; Juang, R.S. Characteristics of Elovich equation used for the analysis of adsorption kinetics in dye-chitosan systems. Chem. Eng. J. 2009, 150, 366–373. [Google Scholar] [CrossRef]
- Weber, W.J.; Morris, J.C. Kinetics of Adsorption on Carbon from Solution. J. Sanit. Eng. Div. Am. Soc. Civ. Eng. 1963, 89, 60. [Google Scholar] [CrossRef]
- Tran, H.N.; You, S.J.; Hosseini-Bandegharaei, A.; Chao, H.P. Mistakes and inconsistencies regarding adsorption of contaminants from aqueous solutions: A critical review. Water Res. 2017, 120, 88–116. [Google Scholar] [CrossRef]
- Mubarak, N.M.; Sahu, J.N.; Abdullah, E.C.; Jayakumar, N.S.; Ganesan, P. Single stage production of carbon nanotubes using microwave technology. Diam. Relat. Mater. 2014, 48, 52–59. [Google Scholar] [CrossRef]
- Avilés, F.; Cauich-Rodríguez, J.V.; Moo-Tah, L.; May-Pat, A.; Vargas-Coronado, R. Evaluation of mild acid oxidation treatments for MWCNT functionalization. Carbon 2009, 47, 2970–2975. [Google Scholar] [CrossRef]
- Saleh, T.A. The influence of treatment temperature on the acidity of MWCNT oxidized by HNO3 or a mixture of HNO3/H2SO4. Appl. Surf. Sci. 2011, 257, 7746–7751. [Google Scholar] [CrossRef]
- Zawawi, N.A.; Majid, Z.A.; Aini, N.; Rashid, A.; Bahru, J. Effect of acid oxidation methods on multi-walled carbon nanotubes (MWCNT) for drug delivery application. Int. J. Adv. Sci. Res. Manag. 2016, 1, 14–22. [Google Scholar]
- Zhao, D.; Gao, X.; Wu, C.; Xie, R.; Feng, S.; Chen, C. Facile preparation of amino functionalized graphene oxide decorated with Fe3O4 nanoparticles for the adsorption of Cr(VI). Appl. Surf. Sci. 2016, 384, 1–9. [Google Scholar] [CrossRef]
- Cai, W.; Li, Z.; Wei, J.; Liu, Y. Synthesis of peanut shell based magnetic activated carbon with excellent adsorption performance towards electroplating wastewater. Chem. Eng. Res. Des. 2018, 140, 23–32. [Google Scholar] [CrossRef]
- Hamilton, R.F., Jr.; Xiang, C.; Li, M.; Ka, I.; Yang, F.; Ma, D.; Porter, D.W.; Wu, N.; Holian, A. Purification and sidewall functionalization of multiwalled carbon nanotubes and resulting bioactivity in two macrophage models. Inhal. Toxicol. 2013, 25, 199–210. [Google Scholar] [CrossRef]
- Kanbur, Y.; Küçükyavuz, Z. Surface Modification and Characterization of Multi-Walled Carbon Nanotube. Fuller. Nanotub. Carbon Nanostruct. 2011, 19, 497–504. [Google Scholar] [CrossRef]
- Okoli, C.P.; Diagboya, P.N.; Anigbogu, I.O.; Olu-Owolabi, B.I.; Adebowale, K. Competitive biosorption of Pb (II) and Cd (II) ions from aqueous solutions using chemically modified moss biomass (Barbula lambarenensis). Environ. Earth Sci. 2017, 76, 33. [Google Scholar] [CrossRef]
- Parashar, K.; Ballav, N.; Debnath, S.; Pillay, K.; Maity, A. Rapid and efficient removal of fluoride ions from aqueous solution using a polypyrrole coated hydrous tin oxide nanocomposite. J. Colloid Interface Sci. 2016, 476, 103–118. [Google Scholar] [CrossRef]
- Fosso-Kankeu, E.; Mittal, H.; Waanders, F.; Ray, S.S. Thermodynamic properties and adsorption behaviour of hydrogel nanocomposites for cadmium removal from mine effluents. J. Ind. Eng. Chem. 2017, 48, 151–161. [Google Scholar] [CrossRef]
- Haug, A. The Affinity of Some Algins for Divalent Metal Cations. Acta Chem. Scand. 1961, 15, 1794–1795. [Google Scholar] [CrossRef]
- Zhang, W.; Fang, T.; Lei, W.; Feng, Y.; Tang, X.; Ding, Z.; Liu, X.; Qi, P.; Wang, Y. A mechanically robust chitosan-based macroporous foam for sustainable Se(IV) elimination from wastewater. Carbohydr. Polym. 2025, 352, 123238. [Google Scholar] [CrossRef] [PubMed]
- Asuquo, E.; Martin, A.; Nzerem, P.; Siperstein, F.; Fan, X. Adsorption of Cd(II) and Pb(II) ions from aqueous solutions using mesoporous activated carbon adsorbent: Equilibrium, kinetics and characterisation studies. J. Environ. Chem. Eng. 2017, 5, 679–698. [Google Scholar] [CrossRef]
- Pourshaban, Z.; Shabanpour, F.; Eisazadeh, H. Studying the Removal of Co (II) from Aqueous Solution by Using Conducting Polypyrrole. Adv. Polym. Technol. 2013, 32, 21328. [Google Scholar] [CrossRef]
- Tang, J.; Li, Y.; Wang, X.; Daroch, M. Effective adsorption of aqueous Pb2+ by dried biomass of Landoltia punctata and Spirodela polyrhiza. J. Clean. Prod. 2017, 145, 25–34. [Google Scholar] [CrossRef]
- Rao, R.A.K.; Kashifuddin, M.; Khan, M. Adsorption studies of Hg(II) from aqueous solution using activated carbon prepared 807 from Moringa oleifera bark. Desalin. Water Treat. 2016, 57, 21831–21845. [Google Scholar] [CrossRef]
- Snider, G.; Raofie, F.; Ariya, P.A. Effects of relative humidity and CO(g) on the O3-initiated oxidation reaction of Hg0(g): Kinetic & product studies. Phys. Chem. Chem. Phys. 2008, 10, 5616. [Google Scholar] [CrossRef]
- Ran, Q.; Sheng, F.; Chang, G.; Zhong, M.; Xu, S. Sulfur-doped reduced graphene oxide@chitosan composite for the selective and sensitive electrochemical detection of Hg2+ in fish muscle. Microchem. J. 2022, 175, 107138. [Google Scholar] [CrossRef]
- Sun, Q.; Wang, L.; Li, Y.; Li, L.; Li, S.; Zhu, G. Highly Efficient Removal of Mercury Ions from Aqueous Solutions by Thiol-Functionalized Graphene Oxide. Water 2023, 15, 2529. [Google Scholar] [CrossRef]
- Albatrni, H.; Qiblawey, H. A Novel Activated Carbon-Based Composite for Enhanced Mercury Removal. Water 2025, 17, 2035. [Google Scholar] [CrossRef]
- Al-Yaari, M.; Saleh, T.A. Mercury Removal from Water Using a Novel Composite of Polyacrylate-Modified Carbon. ACS Omega 2022, 7, 14820–14831. [Google Scholar] [CrossRef]
- Wang, H.; Duan, R.; Zhou, X.; Wang, J.; Liu, Y.; Xu, R.; Liao, Z. Efficient removal of mercury and chromium from wastewater via biochar fabricated with steel slag: Performance and mechanisms. Front. Bioeng. Biotechnol. 2022, 10, 961907. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Lv, X.; Meng, X.; Yu, G.; Wang, D. Removal of Pb(II) from aqueous solution using dithiocarbamate modified chitosan beads with Pb(II) as imprinted ions. Chem. Eng. J. 2013, 220, 412–419. [Google Scholar] [CrossRef]
- Madadrang, C.J.; Kim, H.Y.; Gao, G.; Wang, N.; Zhu, J.; Feng, H.; Hou, S. Adsorption behavior of EDTA-graphene oxide for Pb (II) removal. ACS Appl. Mater. Interfaces 2012, 4, 1186–1193. [Google Scholar] [CrossRef] [PubMed]
- Karthik, R.; Meenakshi, S. Removal of Pb(II) and Cd(II) ions from aqueous solution using polyaniline grafted chitosan. Chem. Eng. J. 2015, 263, 168–177. [Google Scholar] [CrossRef]
- Mamba, G.; Mbianda, X.Y.; Govender, P.P. Phosphorylated multiwalled carbon nanotube-cyclodextrin polymer: Synthesis, characterisation and potential application in water purification. Carbohydr. Polym. 2013, 98, 470–476. [Google Scholar] [CrossRef]
- Alkan, M.; Dogan, M. Adsorption kinetics of “yklan” yia blue onto perlite. Fresenius Environ. Bull. 2003, 12, 418–425. [Google Scholar]
- Patnukao, P.; Kongsuwan, A.; Pavasant, P. Batch studies of adsorption of copper and lead on activated carbon from Eucalyptus camaldulensis Dehn. bark. J. Environ. Sci. 2008, 20, 1028–1034. [Google Scholar] [CrossRef]
- Tan, I.A.W.; Hameed, B.H.; Ahmad, A. Equilibrium and kinetic studies on basic dye adsorption by oil palm fibre activated carbon. Chem. Eng. J. 2007, 127, 111–119. [Google Scholar] [CrossRef]
- Geng, J.; Yin, Y.; Liang, Q.; Zhu, Z.; Luo, H. Polyethyleneimine cross-linked graphene oxide for removing hazardous hexavalent chromium: Adsorption performance and mechanism. Chem. Eng. J. 2019, 361, 1497–1510. [Google Scholar] [CrossRef]
- Wang, Y.; Yang, Q.; Chen, J.; Yang, J.; Zhang, Y.; Chen, Y.; Li, X.; Du, W.; Liang, A.; Ho, S.H.; et al. Adsorption behavior of Cr(VI) by magnetically modified Enteromorpha prolifera based biochar and the toxicity analysis. J. Hazard. Mater. 2020, 395, 122658. [Google Scholar] [CrossRef] [PubMed]
- Yuh-Shan, H. Citation review of Lagergren kinetic rate equation on adsorption reactions. Scientometrics 2004, 59, 171–177. [Google Scholar] [CrossRef]
- Qiu, H.; Lv, L.; Pan, B.; Zhang, Q.; Zhang, W.; Zhang, Q. Critical review in adsorption kinetic models. J. Zhejiang Univ.-Sci. A 2009, 10, 716–724. [Google Scholar] [CrossRef]
- Wang, J.; Guo, X. Adsorption kinetic models: Physical meanings, applications, and solving methods. J. Hazard. Mater. 2020, 390, 122156. [Google Scholar] [CrossRef]
- Mashile, G.P.; Mpupa, A.; Nqombolo, A.; Dimpe, K.M.; Nomngongo, P.N. Recyclable magnetic waste tyre activated carbon-chitosan composite as an effective adsorbent rapid and simultaneous removal of methylparaben and propylparaben from aqueous solution and wastewater. J. Water Process Eng. 2020, 33, 101011. [Google Scholar] [CrossRef]
- Bulut, Y.; Aydın, H. A kinetics and thermodynamics study of methylene blue adsorption on wheat shells. Desalination 2006, 194, 259–267. [Google Scholar] [CrossRef]
Chemicals | Purity | Supplier |
---|---|---|
Raw chitosan | ≥75% | Sigma Aldrich, Johannesburg, South Africa |
Pristine multiwalled carbon nanotubes | 90% | Sigma Aldrich, Johannesburg, South Africa |
Phosphoric acid (H3PO4) | 85% | Sigma Aldrich, Johannesburg, South Africa |
1-butanol | 99.8% | Sigma Aldrich, Johannesburg, South Africa |
Triethyl phosphate (Et3PO4) | 99.8% | Sigma Aldrich, Johannesburg, South Africa |
Phosphorous pentoxide (P2O5) | 99% | Sigma Aldrich, Johannesburg, South Africa |
Silver nitrate | 99.8 | Rochelle Chemicals, Johannesburg, South Africa |
Acetone | 99.5% | Sigma Aldrich, Johannesburg, South Africa |
Titanium isopropoxide (TTIP) | 97% | Sigma Aldrich, Johannesburg, South Africa |
N,N-Dimethylformamide (DMF) | 99.9% | Sigma Aldrich, Johannesburg, South Africa |
Hexamethylene diisocyanate (HMDI) | 98.0% | Sigma Aldrich, Johannesburg, South Africa |
Sulfuric acid (H2SO4) | 98.08% | Rochelle chemicals, Johannesburg, South Africa |
Nitric acid (HNO3) | 55% | Rochelle chemicals, Johannesburg, South Africa |
Mercury chloride (HgCl2) | 99.5% | Scharlau, Barcelona, Spain |
Hydrochloric acid | 33% | Glass world, Johannesburg, South Africa |
pCh-MWCNTs@Ag-TiO2/S | ||
---|---|---|
Elements | Weight (%) | Atomic (%) |
C | 74.19 | 82.59 |
O | 17.48 | 14.61 |
Si | 0.88 | 0.42 |
P | 1.06 | 0.46 |
S | 1.49 | 0.62 |
Ti | 4.46 | 1.25 |
Ag | 0.42 | 0.05 |
Total | 100 | - |
pCh-S | ||
C | 21.75 | 42.59 |
Si | 0.13 | 0.11 |
S | 78.12 | 57.30 |
Total | 100 | - |
S | ||
S | 100 | 100 |
Total | 100 | - |
Adsorbents | BET Surface Area (m2/g) | Pore Volume (cm3/g) | Pore Size (nm) |
---|---|---|---|
pCh-MWCNTs@Ag-TiO2 | 0.578 | 0.205 | 1811.71 |
pCh-MWCNTs@Ag-TiO2/S | 3.506 | 0.262 | 234.37 |
Adsorbents | Adsorption Capacity (mg/g) | References |
---|---|---|
pCh-MWCNTs@Ag-TiO2 | 117.97 | This work |
pCh-MWCNTs@Ag-TiO2/S | 135.93 | This work |
Sulfur-doped reduced graphene oxide@chitosan composite | 78.9 | [48] |
Thiol-Functionalized Graphene Oxide | 98 | [49] |
Novel Activated Carbon-Based Composite | 289 | [50] |
Novel Composite of Polyacrylate-Modified Carbon | 76.3 | [51] |
Biochar fabricated with steel slag | 283.24 | [52] |
Isotherms | Parameters | pCh-MWCNTs@Ag-TiO2 | pCh-MWCNTs@Ag-TiO2/S |
---|---|---|---|
Langmuir | qmax | 5.957 | 26.738 |
KL | −2.004 | −4.589 | |
RL | −0.032 | −0.014 | |
R2 | 0.517 | 0.725 | |
RSE | 0.013 | 0.09822 | |
Freundlich | nf | −1.689 | −1.314 |
kf | 0.825 | 0.981 | |
R2 | 0.529 | 0.677 | |
RSE | 0.519 | 0.397 |
Models | Parameters | pCh-MWCNTs@Ag-TiO2 | pCh-MWCNTs@Ag-TiO2/S |
---|---|---|---|
Pseudo-first order (PFO) | qe | 113.31 | 138.31 |
K1 | 0.0493 | 0.0277 | |
R2 | 0.964 | 0.978 | |
Pseudo-second order (PSO) | qe | 131.74 | 172.18 |
qe2 | 17,355.34 | 29,645.95 | |
K2 | 0.0449 | 0.0166 | |
R2 | 0.972 | 0.987 | |
Elovich | β | 0.037 | 0.027 |
α | 17.414 | 10.820 | |
R2 | 0.937 | 0.979 | |
Intraparticle diffusion (IPD) | Kd | 7.682 | 11.212 |
C | 33.547 | 12.016 | |
R2 | 0.766 | 0.898 |
Adsorbents | Temp (K) | (KJ/mol) | (KJ/mol) | (J/(k mol)) | ||
---|---|---|---|---|---|---|
pCh-MWCNTs@Ag-TiO2 | 298 | 83.7 | −10.9 | 17.3 | 94.3 | 0.87 |
308 | 91.7 | −11.6 | ||||
318 | 111.6 | −12.5 | ||||
328 | 160.3 | −13.8 | ||||
pCh-MWCNTs@Ag-TiO2/S | 298 | 67.0 | −10.4 | 15.8 | 88.0 | 0.98 |
308 | 81.4 | −11.3 | ||||
318 | 104.4 | −12.3 | ||||
328 | 117.8 | −13.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Goci, M.C.; Leudjo Taka, A.; Martin, L.G.; Somerset, V.S.; Klink, M.J. Mercury Removal Using Sulfur-Decorated Chitosan Polymer Nanocomposites: Adsorption Performance and Mechanisms. Polymers 2025, 17, 2585. https://doi.org/10.3390/polym17192585
Goci MC, Leudjo Taka A, Martin LG, Somerset VS, Klink MJ. Mercury Removal Using Sulfur-Decorated Chitosan Polymer Nanocomposites: Adsorption Performance and Mechanisms. Polymers. 2025; 17(19):2585. https://doi.org/10.3390/polym17192585
Chicago/Turabian StyleGoci, Mvula Confidence, Anny Leudjo Taka, Lynwill Garth Martin, Vernon Sydwill Somerset, and Michael John Klink. 2025. "Mercury Removal Using Sulfur-Decorated Chitosan Polymer Nanocomposites: Adsorption Performance and Mechanisms" Polymers 17, no. 19: 2585. https://doi.org/10.3390/polym17192585
APA StyleGoci, M. C., Leudjo Taka, A., Martin, L. G., Somerset, V. S., & Klink, M. J. (2025). Mercury Removal Using Sulfur-Decorated Chitosan Polymer Nanocomposites: Adsorption Performance and Mechanisms. Polymers, 17(19), 2585. https://doi.org/10.3390/polym17192585