Influence of Na Additives on the Characteristics of Titania-Based Humidity Sensing Elements, Prepared via a Sol–Gel Method
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials and Sample Preparation
- -
- Titanium (IV) n-butoxide with CAS 5593-70-4, product of Thermo Fisher Scientific Inc.—Waltham, MA, USA with purity grade above 99%. It was used as precursor for the basic TiO2 matrix formation.
- -
- Isobuthanol, with CAS: 78-83-1, produced by Thermo Fisher Scientific Inc.—Waltham, MA, USA with a purity grade higher than 99%. This compound was used for dissolving of all rest sol–gel system ingredients.
- -
- Diammonium hexanitrocerate with CAS 16774-21-3, produced by Fluka Chemie GmbH—Buchs, Switzerland. It is sold under the commercial name “Ceric ammonium nitrate”, with 99% purity. It serves simultaneously as hydrolysis initiator and source of Ce4+-ions. This compound supplies rather strong acidic conditions during the sol–gel synthesis and provides CeO2 content in the final layers after sintering.
- -
- Sodium hydroxide with CAS 1310-73-2, produced by Merck KGaA—Darmstadt, Germany with 98–99% of purity. The determination of the impacts of its addition to the primary sol is directly related to the object of the present study.
- -
- Sodium tert-butoxide with CAS 865-48-5, produced by Alfa Aesar GmbH—Karlsruhe, Germany, with 97% purity grade. The definition of the effects of its addition to the primary sol is also directly related to the object of the present study.
- Preparation of the sol–gel systems
- (1)
- Without Na precursor (reference);
- (2)
- Inorganic additive—sodium hydroxide (NaOH);
- (3)
- Organometallic additive—sodium tert-butoxide ((CH3)3CONa).
- Film deposition and sintering
2.2. Surface Morphology and Structural Characterization
2.3. Electrical Measurements
3. Results and Discussion
3.1. SEM and EDX Analyses
3.2. XRD Analysis
- -
- For samples, sintered at 400 °C: TC_REF_400—anatase 12.3 nm; TC_NOH_400—anatase 9.5 nm; TC_STB_400—anatase 9.9 nm;
- -
- For samples, sintered at 800 °C: TC_REF_800—anatase 31.8 nm, rutile 69.1 nm, and cerium dioxide 56.1 nm; TC_NOH_800—anatase 53.2 nm, rutile 93.8 nm, and cerium dioxide 43.9 nm; TC_STB_800—anatase 132.4 nm, rutile 89.8 nm, and cerium dioxide 25.7 nm.
3.3. Electrical Characteristics
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Lee, C.-Y.; Lee, G.-B. Humidity sensors: A review. Sens. Lett. 2005, 3, 1–15. [Google Scholar] [CrossRef]
- Wernecke, R.; Wernecke, J. Industrial Moisture and Humidity Measurement: A Practical Guide; Wiley-VCH Verlag GmbH & Co.: Weinheim, Germany, 2014; pp. 183–454. [Google Scholar]
- Ku, C.-A.; Chung, C.-K. Advances in Humidity Nanosensors and Their Application: Review. Sensors 2023, 23, 2328. [Google Scholar] [CrossRef]
- Faharani, H.; Wagiran, W.; Hamida, M.N. Humidity sensors principle, mechanism and fabrication technologies: A comprehensive review. Sensors 2014, 14, 7881–7939. [Google Scholar] [CrossRef]
- Blank, T.A.; Eksperiandova, L.P.; Belikov, K.N. Recent trends of ceramic humidity sensors development: A review. Sens. Actuators B Chem. 2016, 228, 416–442. [Google Scholar] [CrossRef]
- Korotcenkov, G. Handbook of Humidity Measurement, Volume 2: Electronic and Electrical Humidity Sensors; CRC Press: Boca Raton, FL, USA, 2021; pp. 79–314. [Google Scholar]
- Han, Y.C.; Kong, X.Y.; Wu, W.; Li, J.S.; Yang, X.; Guo, Y.J.; Fu, Y.Q.; Torun, H.; Xiang, X.; Tang, Y.L.; et al. Environment-friendly surface acoustic wave humidity sensor with sodium alginate sensing layer. Micro Nano Eng. 2022, 15, 100127. [Google Scholar] [CrossRef]
- Yao, Y.; Huang, X.; Chen, Q.; Zhang, Z.; Ling, W. High Sensitivity and High Stability QCM Humidity Sensors Based on Polydopamine Coated Cellulose Nanocrystals/Graphene Oxide Nanocomposite. Nanomaterials 2020, 10, 2210. [Google Scholar] [CrossRef]
- Korotcenkov, G. Handbook of Humidity Measurement, Volume 3: Sensing Materials and Technologies; CRC Press: Boca Raton, FL, USA, 2020; pp. 23–34. [Google Scholar]
- Nenov, T.; Nenova, Z. Multi-Objective Optimization of the Parameters of TiO2-based Ceramic Humidity Sensors. Ceram. Int. 2013, 39, 4465–4473. [Google Scholar] [CrossRef]
- Musa, M.Z.; Mamat, M.H.; Vasimalai, N.; Subki, A.S.R.A.; Hassan, H.; Malek, M.F.; Ahmad, M.Y.; Rusop, M. Recent Progress on Titanium Dioxide-Based Humidity Sensor: Structural Modification, Doping, and Composite Approach. In Enabling Industry 4.0 Through Advances in Manufacturing and Materials. Lecture Notes in Mechanical Engineering; Springer: Singapore, 2022; pp. 507–516. [Google Scholar]
- Zahidi, M.M.; Mamat, M.H.; Malek, M.F.; Yaakob, M.K.; Ahmad, M.K.; Bakar, S.A.; Mohamed, A.; Subki, A.S.R.A.; Mahmood, M.R. Evaluating Different TiO2 Nanoflower-Based Composites for Humidity Detection. Sensors 2022, 22, 5794. [Google Scholar] [CrossRef]
- Kozhukharov, S.; Nenova, Z.; Nenov, T.; Nedev, N.; Machkova, M. Humidity sensing elements based on cerium doped titania-silica thin films prepared via a sol–gel method. Sens. Actuators B Chem. 2015, 210, 676–684. [Google Scholar] [CrossRef]
- Solanki, M.; Parihar, U.; Patel, K.; Jain, V.; Sharma, S.S.; Ray, J. Titanium dioxide (TiO2) as a potential material in memristor for gamma (γ) ray detection. Chem. Phys. Impact 2025, 10, 100781. [Google Scholar] [CrossRef]
- Yu, S.; Zhang, H.; Chen, C.; Lin, C. Investigation of humidity sensor based on Au modified ZnO nanosheets via hydrothermal method and first principle. Sens. Actuators B Chem. 2019, 287, 526–534. [Google Scholar] [CrossRef]
- Akçay, N.; Algün, G.; Öztel, H.O. Fabrication of ultra-sensitive humidity sensors based on Ce-doped ZnO nanostructure with superfast response and recovery time. J. Mater. Sci. 2023, 34, 1565. [Google Scholar] [CrossRef]
- Modaresinezhad, E.; Darbari, S. Realization of a room-temperature/self-powered humidity sensor, based on ZnO nanosheets. Sens. Actuators B Chem. 2019, 237, 358–366. [Google Scholar] [CrossRef]
- Pan, S.; Gayathri, G.; Reshma, T.S.; Mangamma, G.; Prasad, A.K.; Das, A. A sensitive humidity sensor at low pressure with SnO2 QDs. Sens. Actuators A Phys. 2022, 346, 113835. [Google Scholar] [CrossRef]
- Kumar, A.; Kumari, P.; Kumar, M.S.; Gupta, G.; Shivagan, D.D.; Bapna, K. SnO2 nanostructured thin film as humidity sensor and its application in breath monitoring. Ceram. Int. 2023, 49, 24911–24921. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, H.; Man, J.; Chen, C. Preparation of high performance Fe-doped SnO2 humidity sensor and its application in respiration detection. Sens. Actuators A Phys. 2023, 362, 114644. [Google Scholar] [CrossRef]
- Lina, W.-D.; Hong, R.-Y.; Chuang, M.-H.; Wub, R.-J.; Chavali, M. Enhanced performance of humidity sensor based on Gr/hollow sphere ZrO2 nanocomposites. Sens. Actuators A Phys. 2021, 330, 112872. [Google Scholar] [CrossRef]
- Wang, J.; Su, M.Y.; Qi, J.-Q.; Chang, L.-Q. Sensitivity and complex impedance of nanometer zirconia thick humidity sensors. Sens. Actuators B Chem. 2009, 139, 418–424. [Google Scholar] [CrossRef]
- Manikandan, V. Real environment humidity-sensing ability of Nd-doped Fe2O3 sensor. Sens. Bio-Sens. Res. 2021, 33, 100439. [Google Scholar] [CrossRef]
- Khana, M.U.; Hassana, G.; Awais, M.; Bae, J. All printed full range humidity sensor based on Fe2O3. Sens. Actuators A Phys. 2020, 311, 112072. [Google Scholar] [CrossRef]
- Neri, G.; Bonavita, A.; Galvagno, S.; Donato, N.; Caddemi, A. Electrical characterization of Fe2O3 humidity sensors doped with Li+, Zn2+ and Au3+ ions. Sens. Actuators B Chem. 2005, 111, 71–77. [Google Scholar] [CrossRef]
- Zhao, H.; Zhang, T.; Qi, R.; Dai, J.; Liu, S.; Fei, T.; Lu, G. Humidity sensor based on solution processible microporous silica nanoparticles. Sens. Actuators B Chem. 2018, 266, 131–138. [Google Scholar] [CrossRef]
- Nenova, Z.; Nenov, T.; Kozhukharov, S.; Nedev, N. Humidity sensing elements based on Si-Bi-O surface layers prepared via a sol-gel method. IEEE Sens. J. 2018, 18, 6946–6953. [Google Scholar] [CrossRef]
- Nenova, Z.; Kozhukharov, S.; Nenov, T.; Nedev, N.; Machkova, M. Combined influence of titania and silica precursors on the properties of thin film humidity sensing elements prepared via a sol-gel method. Sens. Actuators B Chem. 2016, 224, 143–150. [Google Scholar] [CrossRef]
- Sberveglieri, G.; Anchisini, R.; Murri, R.; Ercoli, C.; Pinto, N. An Al2O3 sensor for low humidity content: Characterization by impedance spectroscopy. Sens. Actuators B Chem. 1996, 32, 1–5. [Google Scholar] [CrossRef]
- Cheng, B.; Tian, B.; Xie, C.; Xiao, Y.; Lei, S. Highly sensitive humidity sensor based on amorphous Al2O3 nanotubes. J. Mater. Chem. 2011, 21, 1907–1912. [Google Scholar] [CrossRef]
- Cheng, B.; Ouyang, Z.; Tian, B.; Xiao, Y.; Lei, S. Porous ZnAl2O4 spinel nanorods: High sensitivity humidity sensors. Ceram. Int. 2013, 39, 7379–7386. [Google Scholar] [CrossRef]
- Wang, W.; Virkar, A.V. A conductimetric humidity sensor based on proton conducting perovskite oxides. Sens. Actuators B Chem. 2004, 98, 282–290. [Google Scholar] [CrossRef]
- Thakur, S.; Patil, P. Rapid synthesis of cerium oxide nanoparticles with superior humidity-sensing performance. Sens. Actuators B Chem. 2014, 194, 260–268. [Google Scholar] [CrossRef]
- Biswas, P.; Kundu, S.; Banerji, P.; Bhunia, S. Super rapid response of humidity sensor based on MOCVD grown ZnO nanotips array. Sens. Actuators B Chem. 2013, 178, 331–338. [Google Scholar] [CrossRef]
- Cardoso, R.; Sarapajevaite, G.; Korsun, O.; Cardoso, S.; Ilharco, L. Microfabricated sol-gel relative humidity sensors for soil suction measurement during laboratory tests. Can. Geotech. J. 2017, 54, 1176–1183. [Google Scholar] [CrossRef]
- Cardoso, R.; Sarapajevaite, G.; Korsun, O.; Cardoso, S.; Ilharco, L. Sol-Gel Relative Humidity Sensors: Impact of electrode geometry on performance in soil suction measurements. J. Sens. Technol. 2017, 7, 1–23. [Google Scholar] [CrossRef]
- Gong, M.M.; Li, Y.S.; Guo, Y.N.; Lv, X.; Dou, X.C. 2D TiO2 nanosheets for ultrasensitive humidity sensing application benefited by abundant surface oxygen vacancy defects. Sens. Actuators B Chem. 2018, 262, 350–358. [Google Scholar] [CrossRef]
- Li, Z.; Haidry, A.A.; Gao, B.; Wang, T.; Yao, Z.J. The effect of Co-doping on the humidity sensing properties of ordered mesoporous TiO2. Appl. Surf. Sci. 2017, 412, 638–647. [Google Scholar] [CrossRef]
- Azmer, M.I.; Aziz, F.; Ahmad, Z.; Raza, E.; Najeeb, M.A.; Fatima, N.; Bawazeer, T.M.; Alsoufi, M.S.; Shakoor, R.A.; Sulaiman, K. Compositional engineering of VOPcPhO-TiO2 nano-composite to reduce the absolute threshold value of humidity sensors. Talanta 2017, 174, 279–284. [Google Scholar] [CrossRef] [PubMed]
- Cosentino, I.C.; Muccillo, E.N.S.; Muccillo, R. Development of zirconia-titania porous ceramics for humidity sensors. Sens. Actuators B Chem. 2003, 96, 677–683. [Google Scholar] [CrossRef]
- Poonia, E.; Mishra, P.K.; Kiran, V.; Sangwan, J.; Kumar, R.; Raib, P.K.; Tomer, V.K. Aero-gel assisted synthesis of anatase TiO2 nanoparticles for humidity sensing application. Dalton Trans. 2018, 47, 6293–6298. [Google Scholar] [CrossRef]
- Radja, I.; Tudorache, F.; Amrani, B.; Guezzoul, M.; Ech-Chergui, A.N.; Kadari, A.S.; Driss-Khodja, K.; Reddy, M.R.V.; Mehdi, A.; Bendeddouche, C.K.; et al. Unveiling growth and characterization of alkali metals-doped SnS2 thin films for resistive humidity sensing. Sens. Actuators A Phys. 2025, 385, 116308. [Google Scholar] [CrossRef]
- Manjunatha, K.; Chethan, B.; Wu, S.Y.; Ubaidullah, M.; Al-Kahtani, A.A.; Dhakal, T.; Angadi, V.J. Synthesis of Li doped MgFe2O4 nanoparticles for humidity sensor applications. Ceram. Int. 2024, 50, 27287–27295. [Google Scholar] [CrossRef]
- Yin, M.; Yang, F.; Wang, Z.; Zhu, M.; Liu, M.; Xu, X.; Xu, Z. A Fast Humidity Sensor Based on Li+ -Doped SnO2 One-Dimensional Porous Nanofibers. Materials 2017, 10, 535. [Google Scholar] [CrossRef]
- Na, B.; Guo, C.; Wang, T.; Zhang, X.; Huo, L.; Li, L.; Liu, Y.; Cheng, X.; Xu, Y. Multifunctional and highly sensitive humidity sensor based on KCl/Sm2O3 nanoflowers with ultrafast response. Sens. Actuators B Chem. 2023, 385, 133701. [Google Scholar] [CrossRef]
- Xu, T.; Li, R.; Zhang, T.; Li, Y.; Zhang, H.; Yuan, Z.; Zhuo, K. Fabrication of high-Performance humidity sensors based on KCl-modified GaN nanorods for respiratory monitoring. Microchem. J. 2025, 213, 113707. [Google Scholar] [CrossRef]
- Chen, G.; Si, R.; Wang, C. Na4Ti5O12 based humidity sensor with excellent linear response over a wide humidity range. Mater. Lett. 2021, 304, 130588. [Google Scholar] [CrossRef]
- Srilarueang, S.; Sreejivungsa, K.; Thanamoon, N.; Jarernboon, W.; Thongbai, P. Optimizing sintering conditions and microstructure for enhanced dielectric and humidity sensing properties of Na1/3Ca1/3Tb1/3Cu3Ti4O12 ceramics. Mater. Chem. Phys. 2024, 318, 129320. [Google Scholar] [CrossRef]
- Xuan, X.; Li, L.; Li, T.; Wang, J.; Yu, Y.; Wang, C. Boosting the Humidity Performances of Na0.5BixTiO3 by Tuning Bi Content. Nanomaterials 2022, 12, 2498. [Google Scholar] [CrossRef]
- Wang, D.; Lou, Y.; Wang, R.; Wang, P.; Zheng, X.; Zhang, Y.; Jiang, N. Humidity sensor based on Ga2O3 nanorods doped with Na+ and K+ from GaN powder. Ceram. Int. 2015, 41, 14790–14797. [Google Scholar] [CrossRef]
- Li, T.; Si, R.; Wang, J.; Wang, S.; Sun, J.; Wang, C. Microstructure, colossal permittivity, and humidity sensitivity of (Na, Nb) co-doped rutileTiO2 ceramics. J. Am. Ceram. Soc. 2019, 102, 6688–6696. [Google Scholar] [CrossRef]
- Dimitriev, Y.; Ivanova, Y.; Iordanova, R. History of sol-gel science and technology (review). J. Univ. Chem. Technol. Met. 2008, 43, 181–192. [Google Scholar]
- Faustini, M.; Nicole, L.; Ruiz-Hitzky, E.; Sanchez, C. History of Organic–Inorganic Hybrid Materials: Prehistory, Art, Science, and Advanced Applications. Adv. Func. Mater. 2018, 28, 1704158. [Google Scholar] [CrossRef]
- Haas, K.-H.; Amberg-Schwab, S.; Rose, K.; Schottner, G. Functionalized coatings based on inorganic–organic polymers (ORMOCER®s) and their combination with vapor deposited inorganic thin films. Surf. Coat. Technol. 1999, 111, 72–79. [Google Scholar] [CrossRef]
- Haas, K.-H.; Wolter, H. Synthesis, properties and applications of inorganic–organic copolymers (ORMOCER®s). Curr. Opin. Solid State Mater. Sci. 1999, 4, 571–580. [Google Scholar] [CrossRef]
- García-Martínez, J.-M.; Collar, E.P. Current and Future Insights in Organic–Inorganic Hybrid Materials. Polymers 2024, 16, 3043. [Google Scholar] [CrossRef]
- Adam, H.; Lakshmipriya, T.; Gopinath, S.C.B.; Adam, T.; Salim, E.T.; Fakhri, M.A.; Ashok-Kumar, T. Introduction to Hybrid Materials and Nanostructures. In Hybrid-Nanomaterials; Engineering Materials; Springer: Singapore, 2024; pp. 1–22. [Google Scholar]
- Sanchez, C.; Julián, B.; Belleville, P.; Popall, M. Applications of hybrid organic–inorganic nanocomposites. J. Mater. Chem. 2005, 15, 3559–3592. [Google Scholar] [CrossRef]
- Arya, M.; Heera, S.; Meenu, P.; Deepa, K.G. Organic-inorganic hybrid materials and architectures in optoelectronic devices: Recent advancements. ChemPhysMater 2024, 3, 252–272. [Google Scholar] [CrossRef]
- Zhou, K.; Qi, B.; Liu, Z.; Wang, X.; Sun, Y.; Zhang, L. Advanced Organic–Inorganic Hybrid Materials for Optoelectronic Applications. Adv. Func. Mater. 2024, 34, 2411671. [Google Scholar] [CrossRef]
- Tomala, R.; Lukowiak, A.; Borak, B.; Chiappini, A.; Blanc, W.; Ferrari, M.; Bouajaj, A.; Ristic, D.; Taccheo, S.; Strek, W. Glass photonic structures fabricated by sol-gel route. In Proceedings of the SPIE 10683, Fiber Lasers and Glass Photonics: Materials Through Applications, Strasbourg, France, 17 May 2018; p. 106832P. [Google Scholar]
- Livage, J.; Ganguli, D. Sol–gel electrochromic coatings and devices: A review. Sol. Energy Mater. Sol. Cells 2001, 68, 365–381. [Google Scholar] [CrossRef]
- Dahmouche, K.; Atik, M.; Mello, N.C.; Bonagamba, T.J.; Panepucci, H.; Aegerter, M.A.; Judeinstein, P. Investigation of new ion-conducting ORMOLYTES: Structure and properties. J. Sol. Gel. Sci. Technol. 1997, 8, 711–715. [Google Scholar] [CrossRef]
- Nunes, P.J.; Zając, W.; Styszko, K.; Pereira, S.; Fortunato, E.; de Zea Bermudez, V.; Fernandes, M. Novel ormolytes for smart electrochromic windows for energy-efficient buildings. Solid State Ion. 2025, 424, 116850. [Google Scholar] [CrossRef]
- Judeinstein, P.; Sanchez, C. Hybrid organic–inorganic materials: A land of multidisciplinarity. J. Mater. Chem. 1996, 6, 511–525. [Google Scholar] [CrossRef]
- Copéret, C.; Héroguel, F. Recent Advances in Surface Organometallic Chemistry. In Applied Homogeneous Catalysis with Organometallic Compounds: A Comprehensive Handbook in Four Volumes; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2017; pp. 1069–1084. [Google Scholar]
- Coperet, C.; Lefebvre, F.; Basset, J.-M. Surface organometallic chemistry. In Catalysis from A to Z: A Concise Encyclopedia; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2020. [Google Scholar]
- Nivetha, P.; Siranjeevi, R.; Susmitha, R.; Sameera Shabnum, S.; Krishna Raj, C.; Benazir, K.; Saravanan, A.; Vickram, A.S. A Comprehensive Review on Advances in Synthesis and Characterization of Nanocomposite: Current Status and Emerging Applications. Environ. Qual. Manag. 2025, 35, e70108. [Google Scholar] [CrossRef]
- Pierre, A.C. Hybrid Organic–Inorganic and Composite Materials. In Introduction to Sol-Gel Processing; Springer: Cham, Switzerland, 2020; pp. 421–455. [Google Scholar]
- Cerveau, G.; Corriu, R.J.P.; Framery, E. Nanostructured Organic-Inorganic Hybrid Materials: Kinetic Control of the Texture. Chem. Mater. 2001, 13, 3373–3388. [Google Scholar] [CrossRef]
- Innocenzi, P.; Brusatin, G.; Guglielmi, M.; Babonneau, F. Structural Characterization of Hybrid Organic–Inorganic Materials. In Handbook of Sol-Gel Science and Technology; Springer: Cham, Switzerland, 2017; pp. 1–23. [Google Scholar]
- Neetu, T.; Dinesh, K. Fabrication of Porous Nanoceramic Materials Based on Sol-Gel Chemistry. In Smart Ceramics: Preparation, Properties, and Applications; Jenny Stanford Publishing: New York, NY, USA, 2018; pp. 121–142. [Google Scholar]
- Salinas, D.; Pecchi, G.; Fierro, J.L.G. K2O supported on sol-gel CeO2-Al2O3 and La2O3-Al2O3 catalysts for the transesterification reaction of canola oil. J. Molec. Catal. 2016, 423, 503–510. [Google Scholar] [CrossRef]
- Atanasova, P.; Kozhukharov, S.; Milanes, M. Evaluation of the buffering effect possessed by diluted diammonium hexanitrocerate solutions. Ann. Proceeds Univ. Rousse 2015, 54, 42–46. [Google Scholar]
- Kozhukharov, S.; Nenova, Z.; Nenov, T.; Machkova, M.; Kozhukharov, V. Influence of Ce(III)/Ce(IV)-supplements on the Characteristics of Humidity Sensors with TiO2 Films Prepared via a Sol-gel Method. Bol. Soc. Esp. Cerám. Vidrio 2013, 52, 71–78. [Google Scholar] [CrossRef]
- Sridharan, V.; Menendez, J.C. Cerium (IV) ammonium nitrate as a catalyst in organic synthesis. Chem. Rev. 2010, 110, 3805–3849. [Google Scholar] [CrossRef]
- Nair, V.; Balagopal, L.; Rajan, R.; Mathew, J. Recent Advances in Synthetic Transformations Mediated by Cerium (IV) Ammonium Nitrate. Acc. Chem. Res. 2004, 37, 21–30. [Google Scholar] [CrossRef]
- Nair, V.; Deepthi, A. Cerium (IV) Ammonium Nitrate. A Versatile Single-Electron Oxidant. Chem. Rev. 2007, 107, 1862–1891. [Google Scholar] [CrossRef]
- Musil, M.; Skopal, F.; Hajek, M.; Vavra, A. Butanolysis: Comparison of potassium hydroxide and potassium tert-butoxide as catalyst for biodiesel preparing from rapeseed oil. J. Environ. Manag. 2018, 218, 555–561. [Google Scholar] [CrossRef]
- Patel, C.K.; Banerjee, S.; Kant, K.; Sengupta, R.; Aljaar, N.; Malakar, C.C. Roles of Alkali Metals tert-Butoxide as Catalysts and Activators in Organic Transformations. Asian J. Org. Chem. 2023, 12, e202300311. [Google Scholar] [CrossRef]
- Rupp, J.L.M.; Solenthaler, C.; Gasser, P.; Muecke, U.P.; Gauckler, L.J. Crystallization of amorphous ceria solid solutions. Acta Mater. 2007, 55, 3505–3512. [Google Scholar] [CrossRef]
- Craciun, R. Characterization of mixed amorphous/crystalline cerium oxide supported on SiO2. Solid State Ion. 1998, 110, 83–93. [Google Scholar] [CrossRef]
- Sato, T.; Misawa, M.; Maruyama, K.; Itoh, K. Preparation of TiO2–Na2O glass by sol–gel method and structural characterization. J. Non-Cryst. Sol. 2007, 353, 2832–2836. [Google Scholar] [CrossRef]
- Eddy, D.R.; Permana, M.D.; Sakti, L.K.; Sheha, G.A.N.; Solihudin; Hidayat, S.; Takei, T.; Kumada, N.; Rahayu, I. Heterophase Polymorph of TiO2 (Anatase, Rutile, Brookite, TiO2 (B)) for Efficient Photocatalyst: Fabrication and Activity. Nanomaterials 2023, 13, 704. [Google Scholar] [CrossRef]
- Scherrer, P. Bestimmung der Grösse und der inneren Struktur von Kolloidteilchen mittels Röntgenstrahlen. Nachrichten Von Ges. Wiss. Göttingen Math.-Phys. Klasse 1918, 2, 98–100. [Google Scholar]
- Fubini, B.; Bolis, V.; Bailes, M.; Stone, F.S. The reactivity of oxides with water vapor. Solid State Ion. 1989, 32, 258–272. [Google Scholar] [CrossRef]
- Traversa, E. Ceramic sensors for humidity detection: The state-of the-art and future developments. Sens. Actuators B Chem. 1995, 23, 135–156. [Google Scholar] [CrossRef]
- Nenov, T.; Yordanov, S. Ceramic Sensors: Technology and Applications; CRC Press: Boca Raton, FL, USA, 1996; pp. 71–89. [Google Scholar]
- Anderson, J.H.; Parks, G.A. Electrical conductivity of silica gel in the presence of adsorbed water. J. Phys. Chem. 1968, 72, 3662–3668. [Google Scholar] [CrossRef]
- Dickey, E.C.; Varghese, O.K.; Ong, K.G.; Gong, D.; Paulose, M.; Grimes, C.A. Room temperature ammonia and humidity sensing using highly ordered nanoporous alumina films. Sensors 2002, 2, 91–110. [Google Scholar] [CrossRef]
- Shimizu, Y.; Arai, H.; Seiyama, T. Theoretical studies on the impedance-humidity characteristics of ceramic humidity sensors. Sens. Actuators 1985, 7, 11–22. [Google Scholar] [CrossRef]
- Kennour, S.; Lamrani, N.; Chaouchi, A.; Lorgouilloux, Y.; Rguiti, M.; Courtois, C. Humidity Sensing Properties of (Na0.5Bi0.5)0.94Ba0.06TiO3 Lead-Free Ferroelectrics Ceramics. Sci. Sinter. 2023, 55, 339–351. [Google Scholar] [CrossRef]
- Si, R.; Xie, X.; Li, T.; Zheng, J.; Cheng, C.; Huang, S.; Wang, C. TiO2/(K,Na)NbO3 Nanocomposite for Boosting Humidity-Sensing Performances. ACS Sens. 2020, 5, 1345–1353. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Xuan, X.; Chen, G.; Ma, Y.; Chen, C.; Wang, C. Hydrothermal preparation of Na0.5Bi0.5TiO3 nanospheres towards high humidity sensing response. Sens. Actuators B Chem. 2021, 347, 130584. [Google Scholar] [CrossRef]
- Mi, Y.; Li, P. Preparation and performance of NaTaO3/TiO2 humidity sensors with high responsivity. Results Phys. 2023, 50, 106560. [Google Scholar] [CrossRef]
- Zhang, Y.; Zheng, X.; Zhang, T. Characterization and humidity sensing properties of Bi0.5Na0.5TiO3–Bi0.5K0.5TiO3 powder synthesized by metal-organic decomposition. Sens. Actuators B Chem. 2011, 156, 887–892. [Google Scholar] [CrossRef]
Sample | Rmax, Ω | Rmin, Ω | SRrel max, - | Sensing Response LR, Orders of Magnitude |
---|---|---|---|---|
TC_REF_400 | 2.73 × 109 | 1.05 × 108 | 2.59 × 101 | 1.4 |
TC_NOH_400 | 1.08 × 109 | 8.69 × 103 | 1.24 × 105 | 5.1 |
TC_STB_400 | 1.09 × 109 | 1.64 × 104 | 6.63 × 104 | 4.8 |
TC_REF_800 | 3.81 × 109 | 1.41 × 109 | 2.70 × 100 | 0.4 |
TC_NOH_800 | 2.20 × 109 | 2.41 × 105 | 9.12 × 103 | 4.0 |
TC_STB_800 | 1.90 × 109 | 4.43 × 105 | 4.29 × 103 | 3.6 |
Sensing Material | RH Range, % | Sensing Response, Orders of Magnitude | Response Time/ Recovery Time, s | Hysteresis, % | Reference |
---|---|---|---|---|---|
(Na0.5Bi0.5)0.94Ba0.06TiO3 Ceramic | 15–90 | 3 | 68/125 | 4.69 | [92] |
TiO2/(K0.5Na0.5)NbO3 Nanocomposite | 12–94 | 5 | 25/38 | <5 | [93] |
Na4Ti5O12 Ceramic | 11–75 | 4 | 34/199 | 4.15 | [47] |
Na0.5Bi0.5TiO3 Ceramic | 11–94 | 5 | 43/87 | 13.5 | [94] |
Na0.5BixTiO3 Ceramic | 11–75 | 5 | 4.4/29.5 | <10 | [49] |
NaTaO3/TiO2 Hot solvent method | 11–95 | 4.5 | 13/9 | 8.5 | [95] |
Bi0.5Na0.5TiO3–Bi0.5K0.5TiO3 Metal–organic decomposition method | 11–95 | 4 | 20/60 | ∼4 | [96] |
Ti-Na-Ce-O Sol–gel method, surface layers | 15–95 | 5 | 2/18 | 3.8 | this work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nenova, Z.; Kozhukharov, S.; Nedev, N.; Nenov, T. Influence of Na Additives on the Characteristics of Titania-Based Humidity Sensing Elements, Prepared via a Sol–Gel Method. Sensors 2025, 25, 6075. https://doi.org/10.3390/s25196075
Nenova Z, Kozhukharov S, Nedev N, Nenov T. Influence of Na Additives on the Characteristics of Titania-Based Humidity Sensing Elements, Prepared via a Sol–Gel Method. Sensors. 2025; 25(19):6075. https://doi.org/10.3390/s25196075
Chicago/Turabian StyleNenova, Zvezditza, Stephan Kozhukharov, Nedyu Nedev, and Toshko Nenov. 2025. "Influence of Na Additives on the Characteristics of Titania-Based Humidity Sensing Elements, Prepared via a Sol–Gel Method" Sensors 25, no. 19: 6075. https://doi.org/10.3390/s25196075
APA StyleNenova, Z., Kozhukharov, S., Nedev, N., & Nenov, T. (2025). Influence of Na Additives on the Characteristics of Titania-Based Humidity Sensing Elements, Prepared via a Sol–Gel Method. Sensors, 25(19), 6075. https://doi.org/10.3390/s25196075