Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (481)

Search Parameters:
Keywords = TiO2, MoS2

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 1527 KiB  
Article
The Effect of the Metal Impurities on the Stability, Chemical, and Sensing Properties of MoSe2 Surfaces
by Danil W. Boukhvalov, Murat K. Rakhimzhanov, Aigul Shongalova, Abay S. Serikkanov, Nikolay A. Chuchvaga and Vladimir Yu. Osipov
Surfaces 2025, 8(3), 56; https://doi.org/10.3390/surfaces8030056 - 5 Aug 2025
Abstract
In this study, we present a comprehensive theoretical analysis of modifications in the physical and chemical properties of MoSe2 upon the introduction of substitutional transition metal impurities, specifically, Ti, V, Cr, Fe, Co, Ni, Cu, W, Pd, and Pt. Wet systematically calculated [...] Read more.
In this study, we present a comprehensive theoretical analysis of modifications in the physical and chemical properties of MoSe2 upon the introduction of substitutional transition metal impurities, specifically, Ti, V, Cr, Fe, Co, Ni, Cu, W, Pd, and Pt. Wet systematically calculated the adsorption enthalpies for various representative analytes, including O2, H2, CO, CO2, H2O, NO2, formaldehyde, and ethanol, and further evaluated their free energies across a range of temperatures. By employing the formula for probabilities, we accounted for the competition among molecules for active adsorption sites during simultaneous adsorption events. Our findings underscore the importance of integrating temperature effects and competitive adsorption dynamics to predict the performance of highly selective sensors accurately. Additionally, we investigated the influence of temperature and analyte concentration on sensor performance by analyzing the saturation of active sites for specific scenarios using Langmuir sorption theory. Building on our calculated adsorption energies, we screened the catalytic potential of doped MoSe2 for CO2-to-methanol conversion reactions. This paper also examines the correlations between the electronic structure of active sites and their associated sensing and catalytic capabilities, offering insights that can inform the design of advanced materials for sensors and catalytic applications. Full article
Show Figures

Graphical abstract

14 pages, 5700 KiB  
Article
The Design of Diatomite/TiO2/MoS2/Nitrogen-Doped Carbon Nanofiber Composite Separators for Lithium–Sulfur Batteries
by Wei Zhong, Wenjie Xiao, Jianfei Liu, Chuxiao Yang, Sainan Liu and Zhenyang Cai
Materials 2025, 18(15), 3654; https://doi.org/10.3390/ma18153654 - 4 Aug 2025
Viewed by 211
Abstract
Severe polysulfide shuttling and sluggish redox kinetics critically hinder lithium–sulfur (Li-S) battery commercialization. In this study, a multifunctional diatomite (DE)/TiO2/MoS2/N-doped carbon nanofiber (NCNF) composite separator was fabricated via hydrothermal synthesis, electrospinning, and carbonization. DE provides dual polysulfide suppression, encompassing [...] Read more.
Severe polysulfide shuttling and sluggish redox kinetics critically hinder lithium–sulfur (Li-S) battery commercialization. In this study, a multifunctional diatomite (DE)/TiO2/MoS2/N-doped carbon nanofiber (NCNF) composite separator was fabricated via hydrothermal synthesis, electrospinning, and carbonization. DE provides dual polysulfide suppression, encompassing microporous confinement and electrostatic repulsion. By integrating synergistic catalytic effects from TiO2 and MoS2 nanoparticles, which accelerate polysulfide conversion, and conductive NCNF networks, which facilitate rapid charge transfer, this hierarchical design achieves exceptional electrochemical performance: a 1245.6 mAh g−1 initial capacity at 0.5 C and 65.94% retention after 200 cycles. This work presents a rational multi-component engineering strategy to suppress shuttle effects in high-energy-density Li-S batteries. Full article
Show Figures

Figure 1

18 pages, 4136 KiB  
Article
Interfacial Electric Fields and Chemical Bonds in Ti3C2O-Crafted AgI/MoS2 Direct Z-Scheme Heterojunction Synergistically Expedite Photocatalytic Performance
by Suxing Jiao, Tianyou Chen, Yiran Ying, Yincheng Liu and Jing Wu
Catalysts 2025, 15(8), 740; https://doi.org/10.3390/catal15080740 - 3 Aug 2025
Viewed by 218
Abstract
The photocatalytic performance of heterojunctions is often restricted by inferior contact interface and low charge transfer efficiency. In this work, Ti3C2O MXene was crafted with AgI/MoS2 to produce a Z-scheme heterojunction (AgI/MoS2/Ti3C2O). [...] Read more.
The photocatalytic performance of heterojunctions is often restricted by inferior contact interface and low charge transfer efficiency. In this work, Ti3C2O MXene was crafted with AgI/MoS2 to produce a Z-scheme heterojunction (AgI/MoS2/Ti3C2O). Interfacial electric fields and chemical bonds were proven to exist in the heterojunction. The interfacial electric fields supplied a powerful driving force, and the interfacial Ti-O-Mo bonds served as an atomic-level channel for synergistically expediting the vectorial transfer of photogenerated carriers. As a result, AgI/MoS2/Ti3C2O exhibited significantly improved photocatalytic activity, demonstrating a high H2O2 production rate of 700 μmol·g−1·h−1 and a rapid degradation of organic pollutants. Full article
Show Figures

Graphical abstract

26 pages, 5007 KiB  
Article
Copper-Enhanced NiMo/TiO2 Catalysts for Bifunctional Green Hydrogen Production and Pharmaceutical Pollutant Removal
by Nicolás Alejandro Sacco, Fernanda Albana Marchesini, Ilaria Gamba and Gonzalo García
Catalysts 2025, 15(8), 737; https://doi.org/10.3390/catal15080737 - 1 Aug 2025
Viewed by 258
Abstract
This study presents the development of Cu-doped NiMo/TiO2 photoelectrocatalysts for simultaneous green hydrogen production and pharmaceutical pollutant removal under simulated solar irradiation. The catalysts were synthesized via wet impregnation (15 wt.% total metal loading with 0.6 wt.% Cu) and thermally treated at [...] Read more.
This study presents the development of Cu-doped NiMo/TiO2 photoelectrocatalysts for simultaneous green hydrogen production and pharmaceutical pollutant removal under simulated solar irradiation. The catalysts were synthesized via wet impregnation (15 wt.% total metal loading with 0.6 wt.% Cu) and thermally treated at 400 °C and 900 °C to investigate structural transformations and catalytic performance. Comprehensive characterization (XRD, BET, SEM, XPS) revealed phase transitions, enhanced crystallinity, and redistribution of redox states upon Cu incorporation, particularly the formation of NiTiO3 and an increase in oxygen vacancies. Crystallite sizes for anatase, rutile, and brookite ranged from 21 to 47 nm at NiMoCu400, while NiMoCu900 exhibited only the rutile phase with 55 nm crystallites. BET analysis showed a surface area of 44.4 m2·g−1 for NiMoCu400, and electrochemical measurements confirmed its higher electrochemically active surface area (ECSA, 2.4 cm2), indicating enhanced surface accessibility. In contrast, NiMoCu900 exhibited a much lower BET surface area (1.4 m2·g−1) and ECSA (1.4 cm2), consistent with its inferior photoelectrocatalytic performance. Compared to previously reported binary NiMo/TiO2 systems, the ternary NiMoCu/TiO2 catalysts demonstrated significantly improved hydrogen production activity and more efficient photoelectrochemical degradation of paracetamol. Specifically, NiMoCu400 showed an anodic peak current of 0.24 mA·cm−2 for paracetamol oxidation, representing a 60% increase over NiMo400 and a cathodic current of −0.46 mA·cm−2 at −0.1 V vs. RHE under illumination, nearly six times higher than the undoped counterpart (–0.08 mA·cm−2). Mott–Schottky analysis further revealed that NiMoCu400 retained n-type behavior, while NiMoCu900 exhibited an unusual inversion to p-type, likely due to Cu migration and rutile-phase-induced realignment of donor states. Despite its higher photosensitivity, NiMoCu900 showed negligible photocurrent, confirming that structural preservation and surface redox activity are critical for photoelectrochemical performance. This work provides mechanistic insight into Cu-mediated photoelectrocatalysis and identifies NiMoCu/TiO2 as a promising bifunctional platform for integrated solar-driven water treatment and sustainable hydrogen production. Full article
(This article belongs to the Section Electrocatalysis)
Show Figures

Figure 1

14 pages, 6773 KiB  
Article
MoTiCo Conversion Coating on 7075 Aluminium Alloy Surface: Preparation, Corrosion Resistance Analysis, and Application in Outdoor Sports Equipment Trekking Poles
by Yiqun Wang, Feng Huang and Xuzheng Qian
Metals 2025, 15(8), 864; https://doi.org/10.3390/met15080864 (registering DOI) - 1 Aug 2025
Viewed by 149
Abstract
The problem of protecting 7075 Al alloy trekking poles from corrosion in complex outdoor environments was addressed using a composite conversion coating system. This system comprised Na2MoO4, NaF, CoSO4·7H2O, ethylenediaminetetraacetic acid-2Na, and H2(TiF [...] Read more.
The problem of protecting 7075 Al alloy trekking poles from corrosion in complex outdoor environments was addressed using a composite conversion coating system. This system comprised Na2MoO4, NaF, CoSO4·7H2O, ethylenediaminetetraacetic acid-2Na, and H2(TiF6). The influences of this system on the properties of the coating layer were systematically studied by adjusting the pH of the coating solution. The conversion temperature and pH were the pivotal parameters influencing the formation of the conversion coating. The pH substantially influenced the compactness of the coating layer, acting as a regulatory agent of the coating kinetics. When the conversion temperature and pH were set to 40 °C and 3.8, respectively, the prepared coating layer displayed optimal performance in terms of compactness and protective properties. Therefore, this parameter combination favours the synthesis of high-performance conversion coatings. Microscopy confirmed the formation of a continuous, dense composite oxide film structure under these conditions, effectively blocking erosion in corrosive media. Furthermore, the optimised process led to substantial enhancements in the environmental adaptabilities and service lives of the components of trekking poles, thus establishing a theoretical foundation and technical reference for use in the surface protection of outdoor equipment. Full article
Show Figures

Figure 1

23 pages, 3795 KiB  
Article
Structural Analysis of the Newly Prepared Ti55Al27Mo13 Alloy by Aluminothermic Reaction
by Štefan Michna, Jaroslava Svobodová, Anna Knaislová, Jan Novotný and Lenka Michnová
Materials 2025, 18(15), 3583; https://doi.org/10.3390/ma18153583 - 30 Jul 2025
Viewed by 180
Abstract
This study presents the structural and compositional characterisation of a newly developed Ti55Al27Mo13 alloy synthesised via aluminothermic reaction. The alloy was designed to overcome the limitations of conventional processing routes for high–melting–point elements such as Ti and Mo, enabling the formation of a [...] Read more.
This study presents the structural and compositional characterisation of a newly developed Ti55Al27Mo13 alloy synthesised via aluminothermic reaction. The alloy was designed to overcome the limitations of conventional processing routes for high–melting–point elements such as Ti and Mo, enabling the formation of a complex, multi–phase microstructure in a single high–temperature step. The aim was to develop and characterise a material with microstructural features expected to enhance wear resistance, oxidation behaviour, and thermal stability in future applications. The alloy is intended as a precursor for composite nanopowders and surface coatings applied to aluminium–, magnesium–, and iron–based substrates subjected to mechanical and thermal loading. Elemental analysis (XRF, EDS) confirmed the presence of Ti, Al, Mo, and minor elements such as Si, Fe, and C. Microstructural investigations using laser confocal and scanning electron microscopy revealed a heterogeneous structure comprising solid solutions, eutectic regions, and dispersed oxide and carbide phases. Notably, the alloy exhibits high hardness values, reaching >2400 HV in Al2O3 regions and ~1300 HV in Mo– and Si–enriched solid solutions. These results suggest the material’s substantial potential for protective surface engineering. Further tribological, thermal, and corrosion testing, conducted with meticulous attention to detail, will follow to validate its functional performance in target applications. Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Figure 1

14 pages, 4332 KiB  
Article
Powerful Tribocatalytic Degradation of Methyl Orange Solutions with Concentrations as High as 100 mg/L by BaTiO3 Nanoparticles
by Mingzhang Zhu, Zeren Zhou, Yanhong Gu, Lina Bing, Yuqin Xie, Zhenjiang Shen and Wanping Chen
Nanomaterials 2025, 15(14), 1135; https://doi.org/10.3390/nano15141135 - 21 Jul 2025
Viewed by 300
Abstract
In sharp contrast to photocatalysis and other prevalent catalytic technologies, tribocatalysis has emerged as a promising technology to degrade high-concentration organic dyes in recent years. In this study, BaTiO3 (BTO) nanoparticles were challenged to degrade methyl orange (MO) solutions with unprecedentedly high [...] Read more.
In sharp contrast to photocatalysis and other prevalent catalytic technologies, tribocatalysis has emerged as a promising technology to degrade high-concentration organic dyes in recent years. In this study, BaTiO3 (BTO) nanoparticles were challenged to degrade methyl orange (MO) solutions with unprecedentedly high concentrations through magnetic stirring. With BTO nanoparticles and home-made PTFE magnetic rotary disks in 50 mg/L MO solutions, 10 h of magnetic stirring resulted in 91.4% and 98.1% degradations in an as-received glass beaker and in a beaker with a PTFE disk coated on its bottom, respectively. Even for 100 mg/L MO solutions, nearly complete degradation was achieved by magnetic-stirring-stimulated BTO nanoparticles in beakers with the following four kinds of bottom: 97.3% degradation in 30 h for a glass bottom, 97.4% degradation in 20 h for a PTFE coating, 97.9% degradation in 42 h for a Ti coating, and 97.4% degradation in 74 h for an Al2O3 coating. Electron paramagnetic resonance (EPR) analyses revealed that the generation of reactive oxygen species (ROS) by magnetic-stirring-stimulated BTO nanoparticles is dramatically affected by the bottom material of beakers. These findings suggest an appealing prospect for BTO nanoparticles to utilize mechanical energy for sustainable water remediation. Full article
Show Figures

Graphical abstract

13 pages, 2686 KiB  
Article
Synergistic Energy Level Alignment and Light-Trapping Engineering for Optimized Perovskite Solar Cells
by Li Liu, Wenfeng Liu, Qiyu Liu, Yongheng Chen, Xing Yang, Yong Zhang and Zao Yi
Coatings 2025, 15(7), 856; https://doi.org/10.3390/coatings15070856 - 20 Jul 2025
Viewed by 364
Abstract
Perovskite solar cells (PSCs) leverage the exceptional photoelectric properties of perovskite materials, yet interfacial energy level mismatches limit carrier extraction efficiency. In this work, energy level alignment was exploited to reduce the charge transport barrier, which can be conducive to the transmission of [...] Read more.
Perovskite solar cells (PSCs) leverage the exceptional photoelectric properties of perovskite materials, yet interfacial energy level mismatches limit carrier extraction efficiency. In this work, energy level alignment was exploited to reduce the charge transport barrier, which can be conducive to the transmission of photo-generated carriers and reduce the probability of electron–hole recombination. We designed a dual-transition perovskite solar cell (PSC) with the structure of FTO/TiO2/Nb2O5/CH3NH3PbI3/MoO3/Spiro-OMeTAD/Au by finite element analysis methods. Compared with the pristine device (FTO/TiO2/CH3NH3PbI3/Spiro-OMeTAD/Au), the open-circuit voltage of the optimized cell increases from 0.98 V to 1.06 V. Furthermore, the design of a circular platform light-trapping structure makes up for the light loss caused by the transition at the interface. The short-circuit current density of the optimized device increases from 19.81 mA/cm2 to 20.36 mA/cm2, and the champion device’s power conversion efficiency (PCE) reaches 17.83%, which is an 18.47% improvement over the planar device. This model provides new insight for the optimization of perovskite devices. Full article
Show Figures

Figure 1

14 pages, 2594 KiB  
Article
Amorphous MoTex Nanomaterials Promote Visible-Light Co-Catalytic Degradation of Methylene Blue
by Zhen Zhang, Bin Liu, Jian Zhou and Zhimei Sun
Materials 2025, 18(14), 3388; https://doi.org/10.3390/ma18143388 - 18 Jul 2025
Viewed by 325
Abstract
To investigate the application potential of amorphous transition metal chalcogenides in catalysis, this study successfully synthesized amorphous molybdenum telluride (MoTex) materials and systematically explored their structural characteristics, compositional modulation, and catalytic performance. Experimental results indicate that the synthesized amorphous system consists [...] Read more.
To investigate the application potential of amorphous transition metal chalcogenides in catalysis, this study successfully synthesized amorphous molybdenum telluride (MoTex) materials and systematically explored their structural characteristics, compositional modulation, and catalytic performance. Experimental results indicate that the synthesized amorphous system consists of particles of approximately 200–300 nm in size. This distinct microstructure facilitates the exposure of abundant active sites and enhances physical adsorption capacity. The amorphous MoTe2/MoTe3 catalysts achieve an approximately 30%/40% degradation of methylene blue (MB) within 90 min, demonstrating significantly enhanced photocatalytic efficiency compared to that of crystalline MoTe2 (≈20% degradation under identical conditions). Furthermore, when integrated with titanium dioxide (TiO2), the composite exhibits exceptional co-catalytic performance, achieving a 90% degradation of MB within 90 min under visible-light irradiation, representing a catalytic efficiency improvement exceeding 160% compared to the results for pristine TiO2. Furthermore, through comparative analysis of the catalytic behavior and microstructural variations between amorphous MoTe3 (a-MoTe3) and MoTe2 (a-MoTe2), we observed that the catalytic activity of molybdenum tellurides exhibits a weak correlation with the tellurium content, with co-catalytic efficacy jointly governed by the density of the active sites and the physical adsorption properties. This research provides new methods and insights for the study and improvement of catalytic performance in chalcogenide materials. Full article
Show Figures

Graphical abstract

23 pages, 4276 KiB  
Article
First-Principles Insights into Mo and Chalcogen Dopant Positions in Anatase, TiO2
by W. A. Chapa Pamodani Wanniarachchi, Ponniah Vajeeston, Talal Rahman and Dhayalan Velauthapillai
Computation 2025, 13(7), 170; https://doi.org/10.3390/computation13070170 - 14 Jul 2025
Viewed by 254
Abstract
This study employs density functional theory (DFT) to investigate the electronic and optical properties of molybdenum (Mo) and chalcogen (S, Se, Te) co-doped anatase TiO2. Two co-doping configurations were examined: Model 1, where the dopants are adjacent, and Model 2, where [...] Read more.
This study employs density functional theory (DFT) to investigate the electronic and optical properties of molybdenum (Mo) and chalcogen (S, Se, Te) co-doped anatase TiO2. Two co-doping configurations were examined: Model 1, where the dopants are adjacent, and Model 2, where the dopants are farther apart. The incorporation of Mo into anatase TiO2 resulted in a significant bandgap reduction, lowering it from 3.22 eV (pure TiO2) to range of 2.52–0.68 eV, depending on the specific doping model. The introduction of Mo-4d states below the conduction band led to a shift in the Fermi level from the top of the valence band to the bottom of the conduction band, confirming the n-type doping characteristics of Mo in TiO2. Chalcogen doping introduced isolated electronic states from Te-5p, S-3p, and Se-4p located above the valence band maximum, further reducing the bandgap. Among the examined configurations, Mo–S co-doping in Model 1 exhibited most optimal structural stability structure with the fewer impurity states, enhancing photocatalytic efficiency by reducing charge recombination. With the exception of Mo–Te co-doping, all co-doped systems demonstrated strong oxidation power under visible light, making Mo-S and Mo-Se co-doped TiO2 promising candidates for oxidation-driven photocatalysis. However, their limited reduction ability suggests they may be less suitable for water-splitting applications. The study also revealed that dopant positioning significantly influences charge transfer and optoelectronic properties. Model 1 favored localized electron density and weaker magnetization, while Model 2 exhibited delocalized charge density and stronger magnetization. These findings underscore the critical role of dopant arrangement in optimizing TiO2-based photocatalysts for solar energy applications. Full article
(This article belongs to the Special Issue Feature Papers in Computational Chemistry)
Show Figures

Figure 1

21 pages, 7602 KiB  
Article
Visible-Light-Responsive Ag(Au)/MoS2-TiO2 Inverse Opals: Synergistic Plasmonic, Photonic, and Charge Transfer Effects for Photoelectrocatalytic Water Remediation
by Stelios Loukopoulos, Elias Sakellis, Polychronis Tsipas, Spiros Gardelis, Vassilis Psycharis, Marios G. Kostakis, Nikolaos S. Thomaidis and Vlassis Likodimos
Nanomaterials 2025, 15(14), 1076; https://doi.org/10.3390/nano15141076 - 11 Jul 2025
Viewed by 428
Abstract
Titanium dioxide (TiO2) is a benchmark photocatalyst for environmental applications, but its limited visible-light activity due to a wide band gap and fast charge recombination restricts its practical efficiency. This study presents the development of heterostructured Ag (Au)/MoS2-TiO2 [...] Read more.
Titanium dioxide (TiO2) is a benchmark photocatalyst for environmental applications, but its limited visible-light activity due to a wide band gap and fast charge recombination restricts its practical efficiency. This study presents the development of heterostructured Ag (Au)/MoS2-TiO2 inverse opal (IO) films that synergistically integrate photonic, plasmonic, and semiconducting functionalities to overcome these limitations. The materials were synthesized via a one-step evaporation-induced co-assembly approach, embedding MoS2 nanosheets and plasmonic nanoparticles (Ag or Au) within a nanocrystalline TiO2 photonic framework. The inverse opal architecture enhances light harvesting through slow-photon effects, while MoS2 and plasmonic nanoparticles improve visible-light absorption and charge separation. By tuning the template sphere size, the photonic band gap was aligned with the TiO2-MoS2 absorption edge and the localized surface plasmon resonance of Ag, enabling optimal spectral overlap. The corresponding Ag/MoS2-TiO2 photonic films exhibited superior photocatalytic and photoelectrocatalytic degradation of tetracycline under visible light. Ultraviolet photoelectron spectroscopy and Mott–Schottky analysis confirmed favorable band alignment and Fermi level shifts that facilitate interfacial charge transfer. These results highlight the potential of integrated photonic–plasmonic-semiconductor architectures for efficient solar-driven water treatment. Full article
(This article belongs to the Section Environmental Nanoscience and Nanotechnology)
Show Figures

Graphical abstract

14 pages, 7044 KiB  
Article
Microstructure, Wear and Corrosion Properties of Inconel 718-CeO2 Composite Coatings
by Yu Liu, Guohui Li, Hui Liang, Zhanhui Zhang, Zeyu Li and Haiquan Jin
Coatings 2025, 15(7), 783; https://doi.org/10.3390/coatings15070783 - 2 Jul 2025
Viewed by 305
Abstract
Based on laser cladding technology, six composite coatings with different amounts of Inconel 718 and 0~5% CeO2 were successfully prepared on the 316L stainless steel substrate. The effect of different amounts of CeO2 particles was investigated and discussed, such as microstructure, [...] Read more.
Based on laser cladding technology, six composite coatings with different amounts of Inconel 718 and 0~5% CeO2 were successfully prepared on the 316L stainless steel substrate. The effect of different amounts of CeO2 particles was investigated and discussed, such as microstructure, phases, elemental distribution, microhardness, wear resistance and corrosion resistance. The results show that the phases are composed of γ~(Fe, Ni), Ni3Nb, (Nb0.03Ti0.97)Ni3, and MCX(M = Cr, Nb and Mo). When the amount of CeO2 particles is higher than 1%, some Ce2O3 compounds can be detected in coatings. The average microhardness values of N0~N5 are 604.6, 754.5, 771.6, 741.4, 694.5 and 677.3 HV0.2, respectively. There is a trend that the microhardness increases firstly and then decreases, because an appropriate amount of CeO2 can improve the solid solution strength. The average wear rate values of N0~N5 are 2.97 × 10−5, 1.22 × 10−5, 0.94 × 10−5, 1.53 × 10−5, 1.81 × 10−5 and 2.26 × 10−5 mm3∙N−1∙min−1, respectively. The N2 coating has the smallest corrosion current density of 2.05 × 10−4 A·cm−2, which is about 56% of the N0 coating. When the amount of CeO2 particles is 2%, the coating has the best wear resistance and corrosion resistance due to fine grains and Cr, Nb and Mo compounds. Full article
Show Figures

Figure 1

28 pages, 3203 KiB  
Article
From Pollutant Removal to Renewable Energy: MoS2-Enhanced P25-Graphene Photocatalysts for Malathion Degradation and H2 Evolution
by Cristian Martínez-Perales, Abniel Machín, Pedro J. Berríos-Rolón, Paola Sampayo, Enrique Nieves, Loraine Soto-Vázquez, Edgard Resto, Carmen Morant, José Ducongé, María C. Cotto and Francisco Márquez
Materials 2025, 18(11), 2602; https://doi.org/10.3390/ma18112602 - 3 Jun 2025
Viewed by 1197
Abstract
The widespread presence of pesticides—especially malathion—in aquatic environments presents a major obstacle to conventional remediation strategies, while the ongoing global energy crisis underscores the urgency of developing renewable energy sources such as hydrogen. In this context, photocatalytic water splitting emerges as a promising [...] Read more.
The widespread presence of pesticides—especially malathion—in aquatic environments presents a major obstacle to conventional remediation strategies, while the ongoing global energy crisis underscores the urgency of developing renewable energy sources such as hydrogen. In this context, photocatalytic water splitting emerges as a promising approach, though its practical application remains limited by poor charge carrier dynamics and insufficient visible-light utilization. Herein, we report the design and evaluation of a series of TiO2-based ternary nanocomposites comprising commercial P25 TiO2, reduced graphene oxide (rGO), and molybdenum disulfide (MoS2), with MoS2 loadings ranging from 1% to 10% by weight. The photocatalysts were fabricated via a two-step method: hydrothermal integration of rGO into P25 followed by solution-phase self-assembly of exfoliated MoS2 nanosheets. The composites were systematically characterized using X-ray diffraction (XRD), Raman spectroscopy, transmission electron microscopy (TEM), UV-Vis diffuse reflectance spectroscopy (DRS), and photoluminescence (PL) spectroscopy. Photocatalytic activity was assessed through two key applications: the degradation of malathion (20 mg/L) under simulated solar irradiation and hydrogen evolution from water in the presence of sacrificial agents. Quantification was performed using UV-Vis spectroscopy, gas chromatography–mass spectrometry (GC-MS), and thermal conductivity detection (GC-TCD). Results showed that the integration of rGO significantly enhanced surface area and charge mobility, while MoS2 served as an effective co-catalyst, promoting interfacial charge separation and acting as an active site for hydrogen evolution. Nearly complete malathion degradation (~100%) was achieved within two hours, and hydrogen production reached up to 6000 µmol g−1 h−1 under optimal MoS2 loading. Notably, photocatalytic performance declined with higher MoS2 content due to recombination effects. Overall, this work demonstrates the synergistic enhancement provided by rGO and MoS2 in a stable P25-based system and underscores the viability of such ternary nanocomposites for addressing both environmental remediation and sustainable energy conversion challenges. Full article
(This article belongs to the Special Issue Catalysis: Where We Are and Where We Go)
Show Figures

Graphical abstract

13 pages, 3697 KiB  
Article
Interfacial Chemical and Electrical Performance Study and Thermal Annealing Refinement for AlTiO/4H-SiC MOS Capacitors
by Yu-Xuan Zeng, Wei Huang, Hong-Ping Ma and Qing-Chun Zhang
Nanomaterials 2025, 15(11), 814; https://doi.org/10.3390/nano15110814 - 28 May 2025
Viewed by 386
Abstract
The gate reliability issues in SiC-based devices with a gate dielectric formed through heat oxidation are important factors limiting their application in power devices. Aluminum oxide (Al2O3) and titanium dioxide (TiO2) were combined using the ALD process [...] Read more.
The gate reliability issues in SiC-based devices with a gate dielectric formed through heat oxidation are important factors limiting their application in power devices. Aluminum oxide (Al2O3) and titanium dioxide (TiO2) were combined using the ALD process to form a composite AlTiO gate dielectric on a 4H-SiC substrate. TDMAT and TMA were the precursors selected and deposited at 200 °C, and the samples were Ar or N2 annealed at temperatures ranging from 300 °C to 700 °C. An XPS analysis suggested that the AlTiO film had been deposited with a high overall quality and the involvement of Ti atoms had increased the interfacial bonding with the substrate. The as-deposited MOS structure had band shifts of ΔEC = 1.08 eV and ΔEV = 2.41 eV. After annealing, the AlTiO bandgap increased by 0.85 eV at most, and better band alignment was attained. Leakage current and breakdown voltage characteristic investigations were conducted after Al electrode deposition. The leakage current density and electrical breakdown field of an MOS capacitor structure with a SiC substrate were ~10−3 A/cm2 and 6.3 MV/cm, respectively. After the annealing process, both the measures of the JV performance of the MOS capacitor had improved to ~10−6 A/cm2 and 7.2 MV/cm. The interface charge Neff of the AlTiO layer was 4.019 × 1010 cm−2. The AlTiO/SiC structure fabricated in this work proved the feasibility of adjusting the properties of single-component gate dielectric materials using the ALD method, and using a suitable thermal annealing process has great potential to improve the performance of the compound MOS dielectric layer. Full article
(This article belongs to the Special Issue Advanced Studies in Wide-Bandgap Nanomaterials and Devices)
Show Figures

Figure 1

19 pages, 6541 KiB  
Article
Hydrochar from Carbon Quantum Dots (CQDs) Synthesis for Photocatalytic and Decontamination Applications in Presence of TiO2
by Daniel López, Karol Zapata, Lilian D. Ramírez-Valencia, Esther Bailón-García, Francisco Carrasco-Marín, Agustín F. Pérez-Cadenas, Camilo A. Franco and Farid B. Cortés
Int. J. Mol. Sci. 2025, 26(10), 4958; https://doi.org/10.3390/ijms26104958 - 21 May 2025
Viewed by 758
Abstract
This research aimed to co-produce CQDs and hydrochar from natural sources to improve the photocatalytic properties of TiO2. Juice extract from Citrus lemon fruits from south-eastern Spain was used as the carbon precursor. The synthesis strategy of the CQDs and hydrochar [...] Read more.
This research aimed to co-produce CQDs and hydrochar from natural sources to improve the photocatalytic properties of TiO2. Juice extract from Citrus lemon fruits from south-eastern Spain was used as the carbon precursor. The synthesis strategy of the CQDs and hydrochar (Hc) was divided into different stages aimed at figuring out the role of the temperature (180, 220, 250 °C), the addition of TiO2 nanoparticles, and the presence of N-/P-donor compounds (ethylenediamine and orto-phosphoric acid) in the photocatalytic properties of final composites. The results revealed that at 250 °C, using agro-carbon materials as Hc, and the addition of N-donor compounds, improved the photocatalytic activity and photodegradation rate of TiO2 over methyl orange (MO) under blue light by 1000% and 2700%, respectively, with the parallel reduction of TiO2 bandgap from 3.5 eV (Uv light) to 3.00 eV (visible light). These results are related to the ability of the carbon materials (electronegative) to enhance the formation of a Ti3+-active state. This study provides a landscape for a one-step method for the production of agro-carbon/TiO2 photocatalysts with high activity under visible light as an efficient and sustainable strategy for applications such as energy generation and water purification under sunlight. Full article
(This article belongs to the Special Issue Recent Research of Nanomaterials in Molecular Science: 2nd Edition)
Show Figures

Figure 1

Back to TopTop