Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (37)

Search Parameters:
Keywords = THM coupled model

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 4446 KB  
Article
Study on Production System Optimization and Productivity Prediction of Deep Coalbed Methane Wells Considering Thermal–Hydraulic–Mechanical Coupling Effects
by Sukai Wang, Yonglong Li, Wei Liu, Siyu Zhang, Lipeng Zhang, Yan Liang, Xionghui Liu, Quan Gan, Shiqi Liu and Wenkai Wang
Processes 2025, 13(10), 3090; https://doi.org/10.3390/pr13103090 - 26 Sep 2025
Viewed by 317
Abstract
Deep coalbed methane (CBM) resources possess significant potential. However, their development is challenged by geological characteristics such as high in situ stress and low permeability. Furthermore, existing production strategies often prove inadequate. In order to achieve long-term stable production of deep coalbed methane [...] Read more.
Deep coalbed methane (CBM) resources possess significant potential. However, their development is challenged by geological characteristics such as high in situ stress and low permeability. Furthermore, existing production strategies often prove inadequate. In order to achieve long-term stable production of deep coalbed methane reservoirs and increase their final recoverable reserves, it is urgent to construct a scientific and reasonable drainage system. This study focuses on the deep CBM reservoir in the Daning-Jixian Block of the Ordos Basin. First, a thermal–hydraulic–mechanical (THM) multi-physics coupling mathematical model was constructed and validated against historical well production data. Then, the model was used to forecast production. Finally, key control measures for enhancing well productivity were identified through production strategy adjustment. The results indicate that controlling the bottom-hole flowing pressure drop rate at 1.5 times the current pressure drop rate accelerates the early-stage pressure drop, enabling gas wells to reach the peak gas production earlier. The optimized pressure drop rates for each stage are as follows: 0.15 MPa/d during the dewatering stage, 0.057 MPa/d during the gas production rise stage, 0.035 MPa/d during the stable production stage, and 0.01 MPa/d during the production decline stage. This strategy increases peak daily gas production by 15.90% and cumulative production by 3.68%. It also avoids excessive pressure drop, which can cause premature production decline during the stable phase. Consequently, the approach maximizes production over the entire life cycle of the well. Mechanistically, the 1.5× flowing pressure drop offers multiple advantages. Firstly, it significantly shortens the dewatering and production ramp-up periods. This acceleration promotes efficient gas desorption, increasing the desorbed gas volume by 1.9%, and enhances diffusion, yielding a 39.2% higher peak diffusion rate, all while preserving reservoir properties. Additionally, this strategy synergistically optimizes the water saturation and temperature fields, which mitigates the water-blocking effect. Furthermore, by enhancing coal matrix shrinkage, it rebounds permeability to 88.9%, thus avoiding stress-induced damage from aggressive extraction. Full article
Show Figures

Figure 1

30 pages, 9020 KB  
Article
Performance of Fault-Controlled Hydrothermal System: Insights from Multi-Field Coupled Rock Mechanics Analysis
by Bo Cheng, Xiaofei Gong, Qiang Li, Yong Liu and Jinghong Yan
Appl. Sci. 2025, 15(18), 10064; https://doi.org/10.3390/app151810064 - 15 Sep 2025
Viewed by 321
Abstract
As is typical of deep rock engineering, fault-controlled hydrothermal systems (FHS) have emerged as a highly promising solution for geothermal energy exploitation. The stability and thermal recovery performance of such systems are critical to their long-term efficiency and viability. In this study, we [...] Read more.
As is typical of deep rock engineering, fault-controlled hydrothermal systems (FHS) have emerged as a highly promising solution for geothermal energy exploitation. The stability and thermal recovery performance of such systems are critical to their long-term efficiency and viability. In this study, we establish a coupled Thermo-Hydro-Mechanical (THM) model to investigate the mechanical response and thermal output of an FHS. The stability of the system is evaluated based on the evolution of the failure zone within the fault. Key findings include the following: (1) The pore pressure distribution between injection and production wells leads to an elliptical failure pattern in the fault, caused by the constraint exerted by the negative pore pressure zone around the production well on the positive pressure zone around the injection well along the well connectivity direction; (2) Reducing the injection flow rate by 50% can result in a 76% decrease in the thermal recovery efficiency. Meanwhile, reducing the number of reinjection sub-wells from seven to three can lead to a 95% reduction in the failure volume; and (3) Larger fault thickness diminishes both failure volume and thermal performance; specifically, increasing the fault thickness from 5 m to 30 m can result in an 89% reduction in the failure volume. The fault damage zone volume exhibits a sharp decrease as permeability rises from 2 × 10−12 m2 to 8 × 10−12 m2. This study provides scientific insights and practical guidelines for the design and stability assessment of FHS-based geothermal systems. Full article
(This article belongs to the Special Issue Advances and Technologies in Rock Mechanics and Rock Engineering)
Show Figures

Figure 1

24 pages, 5034 KB  
Article
Enhancing Frost Heave Resistance of Channel Sediment Hetao Irrigation District via Octadecyltrichlorosilane Modification and a Hydro-Thermo-Mechanical Coupled Model
by Tianze Zhang, Hailong Wang and Yanhong Han
Sustainability 2025, 17(17), 8083; https://doi.org/10.3390/su17178083 - 8 Sep 2025
Viewed by 707
Abstract
To address frost heave in winter-lined canals and sediment accumulation in the Hetao Irrigation District of Inner Mongolia Autonomous Region, while reducing long-term maintenance costs of canal linings and relocating sediment as solid waste, this study proposes the use of low-toxicity, environmentally friendly [...] Read more.
To address frost heave in winter-lined canals and sediment accumulation in the Hetao Irrigation District of Inner Mongolia Autonomous Region, while reducing long-term maintenance costs of canal linings and relocating sediment as solid waste, this study proposes the use of low-toxicity, environmentally friendly octadecyltrichlorosilane (OTS) to modify channel sediment. This approach aims to improve the frost heave resistance of canal sediment and investigate optimal modification conditions and their impact on frost heave phenomena, aligning with sustainable development goals of low energy consumption and economic efficiency. Water Droplet Penetration Time (WDPT) tests and unidirectional freezing experiments were conducted to analyze frost heave magnitude, temperature distribution, and moisture variation in modified sediment. A coupled thermal–hydraulic–mechanical (THM) model established using COMSOL Multiphysics 6.2 software was employed for numerical simulations. Experimental results demonstrate that the hydrophobicity of channel sediment increases with higher OTS concentrations. The optimal modification effect is achieved at 50 °C with a silane-to-sediment mass ratio of 0.001, aligning with the economic efficiency of sustainable development. The unidirectional freezing test results indicate that compared to the 0% modified sediment content, the 40% modified sediment proportion reduces frost heave magnitude by 71.3% and decreases water accumulation at the freezing front by 21.1%. The comparison between numerical simulation results and experimental data demonstrates that the model can accurately simulate the frost heave behavior of modified sediment, with the error margin maintained within 15%. In conclusion, OTS-modified channel sediment demonstrates significant advantages in enhancing frost heave resistance while aligning with the economic and environmental sustainability requirements. Furthermore, the coupled thermal–hydraulic–mechanical (THM) model provides a reliable tool to guide sustainable infrastructure development for hydraulic engineering in the cold and arid regions of Inner Mongolia, effectively reducing long-term maintenance energy consumption. Full article
(This article belongs to the Section Soil Conservation and Sustainability)
Show Figures

Figure 1

21 pages, 5750 KB  
Article
Numerical Simulations of Coupled Vapor, Water, and Heat Flow in Unsaturated Deformable Soils During Freezing and Thawing
by Sara Soltanpour and Adolfo Foriero
Geotechnics 2025, 5(3), 51; https://doi.org/10.3390/geotechnics5030051 - 4 Aug 2025
Viewed by 515
Abstract
Freezing and thawing cycles significantly affect the mechanical and hydraulic behavior of soils, posing detrimental challenges for infrastructures in cold climates. This study develops and validates a coupled Thermal–Hydraulic–Mechanical (THM) model using COMSOL Multiphysics (Version 6.3) to demonstrate the complexities of vapor and [...] Read more.
Freezing and thawing cycles significantly affect the mechanical and hydraulic behavior of soils, posing detrimental challenges for infrastructures in cold climates. This study develops and validates a coupled Thermal–Hydraulic–Mechanical (THM) model using COMSOL Multiphysics (Version 6.3) to demonstrate the complexities of vapor and water flux, heat transport, frost heave, and vertical stress build-up in unsaturated soils. The analysis focuses on fine sand, sandy clay, and silty clay by examining their varying susceptibilities to frost action. Silty clay generated the highest amount of frost heave and steepest vertical stress gradients due to its high-water retention and strong capillary forces. Fine sand, on the other hand, produced a minimal amount of frost heave and a polarized vertical stress distribution. The study also revealed that vapor flux is more noticeable in freezing fine sand, while silty clay produces the greatest water flux between the frozen and unfrozen zones. The study also assesses the impact of soil properties including the saturated hydraulic conductivity, the particle thermal conductivity, and particle heat capacity on the frost-induced phenomena. Findings show that reducing the saturated hydraulic conductivity has a greater impact on mitigating frost heave than other variations in thermal properties. Silty clay is most affected by these changes, particularly near the soil surface, while fine sand shows less noticeable responses. Full article
Show Figures

Figure 1

18 pages, 11001 KB  
Article
Temperature Prediction Model for Horizontal Shale Gas Wells Considering Stress Sensitivity
by Jianli Liu, Fangqing Wen, Hu Han, Daicheng Peng, Qiao Deng and Dong Yang
Processes 2025, 13(6), 1896; https://doi.org/10.3390/pr13061896 - 15 Jun 2025
Viewed by 657
Abstract
In the production process of horizontal wells, wellbore temperature data play a critical role in predicting shale gas production. This study proposes a coupled thermo-hydro-mechanical (THM) mathematical model that accounts for the influence of the stress field when determining the distribution of wellbore [...] Read more.
In the production process of horizontal wells, wellbore temperature data play a critical role in predicting shale gas production. This study proposes a coupled thermo-hydro-mechanical (THM) mathematical model that accounts for the influence of the stress field when determining the distribution of wellbore temperature. The model integrates the effects of heat transfer in the temperature field, gas transport in the seepage field, and the mechanical deformation of shale induced by the stress field. The coupled model is solved using the finite difference method. The model was validated against field data from shale gas production, and sensitivity analyses were conducted on seven key parameters related to the stress field. The findings indicate that the stress field exerts an influence on both the wellbore temperature distribution and the total gas production. Neglecting the stress field effects may lead to an overestimation of shale gas production by up to 12.9%. Further analysis reveals that reservoir porosity and Langmuir volume are positively correlated with wellbore temperature, while permeability, Young’s modulus, Langmuir pressure, the coefficient of thermal expansion, and adsorption strain are negatively correlated with wellbore temperature. Full article
Show Figures

Figure 1

28 pages, 4124 KB  
Review
Thermal-Hydrologic-Mechanical Processes and Effects on Heat Transfer in Enhanced/Engineered Geothermal Systems
by Yu-Shu Wu and Philip H. Winterfeld
Energies 2025, 18(12), 3017; https://doi.org/10.3390/en18123017 - 6 Jun 2025
Viewed by 832
Abstract
Enhanced or engineered geothermal systems (EGSs), or non-hydrothermal resources, are highly notable among sustainable energy resources because of their abundance and cleanness. The EGS concept has received worldwide attention and undergone intensive studies in the last decade in the US and around the [...] Read more.
Enhanced or engineered geothermal systems (EGSs), or non-hydrothermal resources, are highly notable among sustainable energy resources because of their abundance and cleanness. The EGS concept has received worldwide attention and undergone intensive studies in the last decade in the US and around the world. In comparison, hydrothermal reservoir resources, the ‘low-hanging fruit’ of geothermal energy, are very limited in amount or availability, while EGSs are extensive and have great potential to supply the entire world with the needed energy almost permanently. The EGS, in essence, is an engineered subsurface heat mining concept, where water or another suitable heat exchange fluid is injected into hot formations to extract heat from the hot dry rock (HDR). Specifically, the EGS relies on the principle that injected water, or another working fluid, penetrates deep into reservoirs through fractures or high-permeability channels to absorb large quantities of thermal energy by contact with the host hot rock. Finally, the heated fluid is produced through production wells for electricity generation or other usages. Heat mining from fractured EGS reservoirs is subject to complex interactions within the reservoir rock, involving high-temperature heat exchange, multi-phase flow, rock deformation, and chemical reactions under thermal-hydrological-mechanical (THM) processes or thermal-hydrological-mechanical-chemical (THMC) interactions. In this paper, we will present a THM model and reservoir simulator and its application for simulation of hydrothermal geothermal systems and EGS reservoirs as well as a methodology of coupling thermal, hydrological, and mechanical processes. A numerical approach, based on discretizing the thermo-poro-elastic Navier equation using an integral finite difference method, is discussed. This method provides a rigorous, accurate, and efficient fully coupled methodology for the three (THM) strongly interacted processes. Several programs based on this methodology are demonstrated in the simulation cases of geothermal reservoirs, including fracture aperture enhancement, thermal stress impact, and tracer transport in a field-scale reservoir. Results are displayed to show geomechanics’ impact on fluid and heat flow in geothermal reservoirs. Full article
(This article belongs to the Section H2: Geothermal)
Show Figures

Figure 1

17 pages, 4932 KB  
Article
Numerical Simulation of Flow Characteristics in CO2 Long-Term Storage in Bedded Salt Cavern
by Bo Cao, Xuehai Fu, Junqiang Kang, Pan Tang, Hui Xu and Yuanyuan Zhang
Processes 2025, 13(5), 1563; https://doi.org/10.3390/pr13051563 - 18 May 2025
Cited by 1 | Viewed by 731
Abstract
The salt layer, characterized by its low permeability and excellent damage self-healing properties, is an ideal geological body for CO2 geological storage. However, the relatively high permeability of mudstone interlayers may reduce the safety of CO2 long-term storage in bedded salt [...] Read more.
The salt layer, characterized by its low permeability and excellent damage self-healing properties, is an ideal geological body for CO2 geological storage. However, the relatively high permeability of mudstone interlayers may reduce the safety of CO2 long-term storage in bedded salt caverns. This study establishes a thermal–hydraulic–mechanical (THM) coupled physical and mathematical model for CO2 geological storage in the Huaian salt cavern, analyzes the factors affecting CO2 flow behavior, and proposes measures to enhance the safety of CO2 storage in salt caverns. The results indicate that the permeability of both salt layers and mudstone interlayers is influenced by stress-induced deformation within the salt cavern. From the salt cavern edge to the simulation boundary, the permeability and volume strain exhibit a trend of rapid decline, followed by a gradual increase, and an eventual stabilization or slight reduction. The seepage velocity, pore pressure, and flow distance of CO2 in the mudstone interlayer are significantly higher than those in the salt layer, leading to CO2 migration along the interfaces between the mudstone and salt layer. With the increase in storage time, the permeability of the mudstone interlayer gradually decreases, while the permeability of the salt layer shows a general tendency to increase. The elevated storage pressure reduces the permeability of the mudstone interlayer, while increasing the permeability of the salt layer, and enhances the seepage velocity in both the mudstone and salt layers. To enhance the safety of CO2 long-term storage in bedded salt caverns, it is recommended to minimize the presence of mudstone interlayers during site selection and cavern construction, optimize the storage pressure, and strengthen monitoring systems for potential CO2 leakage. Full article
Show Figures

Graphical abstract

28 pages, 10216 KB  
Article
Stability and Degradation Issues of Manganese Violet Pigment in Polymeric Paints: Morphological and Chemical Changes Under SO2 and Humidity Exposure
by Laura Pagnin, Giulia Cardin, Valentina Pintus, Michele Back, Farkas Pintér, Katja Sterflinger and Francesca Caterina Izzo
Appl. Sci. 2025, 15(9), 4630; https://doi.org/10.3390/app15094630 - 22 Apr 2025
Viewed by 1409
Abstract
This study focuses on investigating the stability of modern and contemporary paints based on manganese violet pigment PV16 (NH4MnP2O7) when exposed to atmospheric pollutants, specifically sulfur dioxide (SO2) in the presence of high relative humidity. [...] Read more.
This study focuses on investigating the stability of modern and contemporary paints based on manganese violet pigment PV16 (NH4MnP2O7) when exposed to atmospheric pollutants, specifically sulfur dioxide (SO2) in the presence of high relative humidity. In particular, this study aims to investigate the role of PV16 in increasing the degradation processes of various modern binders. Therefore, the objectives of this research can be divided into (i) evaluating the chemical modifications involving PV16, (ii) investigating the degradation processes that occur in different organic matrices (i.e., drying oil, alkyd resin, and acrylic and styrene–acrylic emulsions), and (iii) comparing the chemical stability of model and commercial paints. The paints were analyzed by 3D Optical Microscopy, Attenuated total Reflection–Fourier-Transform Infrared spectroscopy (ATR-FTIR) and μ-Raman Spectroscopy, Scanning Electron Microscope coupled with Energy Dispersive X-Ray spectroscopy (SEM-EDX), X-Ray Powder Diffraction (XRPD), Fiber Optic Reflectance Spectroscopy (FORS), Pyrolysis–Gas Chromatography–Mass Spectrometry (Py-GC/MS), and Thermally assisted Hydrolysis and Methylation (THM) of Py-GC/MS (THM-Py-GC/MS). The results show that when exposed to high relative humidity and SO2, PV16 presents a colorimetric change from violet to grey; several compounds crystallize on the surface; and, depending on the binder, various degradation reactions occur. This study highlights the susceptibility of manganese violet pigment PV16 under certain environmental conditions, which may be considered to define adequate conservation strategies for works of art containing this specific pigment. Additionally, the results obtained within this investigation point out the need to expand the chemical knowledge of this material for engineering, sensing, and industrial applications. Full article
Show Figures

Figure 1

22 pages, 6214 KB  
Article
Numerical Simulation of CO2 Injection and Extraction Heat Transfer in Complex Fracture Networks
by Yuguo Liu, Xiaolong Zhao, Yizhong Zhao, Peng Zhao, Yinghui Zhu, Yi Wu and Xinru He
Energies 2025, 18(7), 1606; https://doi.org/10.3390/en18071606 - 24 Mar 2025
Viewed by 728
Abstract
In order to reveal the heat transfer mechanism of CO2 injection and extraction in the fracture network of geothermal reservoir rock, based on the assumption of a dual-media model and considering the characteristics of the rock matrix and the fracture network, the [...] Read more.
In order to reveal the heat transfer mechanism of CO2 injection and extraction in the fracture network of geothermal reservoir rock, based on the assumption of a dual-media model and considering the characteristics of the rock matrix and the fracture network, the changes in the physical properties of the heat transfer fluid, and the effects of multi-field coupling, a coupled thermo–hydro–mechanical (THM) model of CO2 injection and extraction heat transfer was established. A numerical simulation study was carried out to investigate the evolution of injection and extraction temperature and heat extraction performance under the influence of different factors in the randomly distributed fracture network of the reservoir rock, which has a horizontal slit and a high-angle slit, with CO2 as the heat transfer fluid. The results show that the heat exchange efficiency of reservoir fracture is higher than that of rock matrix; compared with water, the CO2 heat extraction rate is low, and the temperature drop in production wells is small, which is favorable to the long-term exploitation of geothermal reservoirs. if the horizontal distance between the production wells and the injection wells is far and the fracture connectivity is good, the heat exchange is strong and the heat extraction rate is higher; increasing the CO2 injection rate will increase the range of the low-temperature area, reduce the temperature of the production wells, and increase the heat extraction rate in a short period of time; and the heat extraction rate will increase in the later stages. The increase in CO2 injection rate will rapidly increase the range of the low-temperature area in a short time, decrease the temperature of the production well and increase the heat extraction rate, and then the growth of the heat extraction rate tends to stabilize in the later stages; the width ratio of horizontal fracture and high-angle fracture affects the direction of heat exchange, the temperature of production well and the heat extraction rate, and the influence is more significant when the width ratio is greater than 1; the temperature of the production well decreases fastest, the increase in the heat extraction rate is largest, and the effects on the temperature of the production well and the heat extraction rate are insignificant when it is close to the production well. The increase in the heat extraction rate is slower when close to the injection well. Full article
(This article belongs to the Special Issue Development and Utilization in Geothermal Energy)
Show Figures

Figure 1

30 pages, 3561 KB  
Review
Physical and Mechanical Properties and Constitutive Model of Rock Mass Under THMC Coupling: A Comprehensive Review
by Jianxiu Wang, Bilal Ahmed, Jian Huang, Xingzhong Nong, Rui Xiao, Naveed Sarwar Abbasi, Sharif Nyanzi Alidekyi and Huboqiang Li
Appl. Sci. 2025, 15(4), 2230; https://doi.org/10.3390/app15042230 - 19 Feb 2025
Cited by 1 | Viewed by 2402
Abstract
Research on the multi-field coupling effects in rocks has been ongoing for several decades, encompassing studies on single physical fields as well as two-field (TH, TM, HM) and three-field (THM) couplings. However, the environmental conditions of rock masses in deep resource extraction and [...] Read more.
Research on the multi-field coupling effects in rocks has been ongoing for several decades, encompassing studies on single physical fields as well as two-field (TH, TM, HM) and three-field (THM) couplings. However, the environmental conditions of rock masses in deep resource extraction and underground space development are highly complex. In such settings, rocks are put through thermal-hydrological-mechanical-chemical (THMC) coupling effects under peak temperatures, strong osmotic pressures, extreme stress, and chemically reactive environments. The interaction between these fields is not a simple additive process but rather a dynamic interplay where each field influences the others. This paper provides a comprehensive analysis of fragmentation evolution, deformation mechanics, mechanical constitutive models, and the construction of coupling models under multi-field interactions. Based on rock strength theory, the constitutive models for both multi-field coupling and creep behavior in rocks are developed. The research focus on multi-field coupling varies across industries, reflecting the diverse needs of sectors such as mineral resource extraction, oil and gas production, geothermal energy, water conservancy, hydropower engineering, permafrost engineering, subsurface construction, nuclear waste disposal, and deep energy storage. The coupling of intense stress, fluid flow, temperature, and chemical factors not only triggers interactions between these fields but also alters the physical and mechanical properties of the rocks themselves. Investigating the mechanical behavior of rocks under these conditions is essential for averting accidents and assuring the soundness of engineering projects. Eventually, we discuss vital challenges and future directions in multi-field coupling research, providing valuable insights for engineering applications and addressing allied issues. Full article
(This article belongs to the Special Issue Earthquake Engineering and Seismic Risk)
Show Figures

Figure 1

18 pages, 3972 KB  
Article
Numerical Simulation of Thermo-Hydro-Mechanical Coupling of Model Test for Nuclear Waste Disposal
by Yu-Ping Wang, Zhe Wang, Fa-Cheng Yi, Lei Fu and Ying Luo
Appl. Sci. 2025, 15(2), 930; https://doi.org/10.3390/app15020930 - 18 Jan 2025
Viewed by 1160
Abstract
This article presents a simulation of a long-term retardation performance Mock-up test of the multi-field coupling of buffer materials, with the aim to study the thermo-hydro-mechanical (THM) processes occurring in the engineered barrier system of a high-level waste (HLW) repository. In view of [...] Read more.
This article presents a simulation of a long-term retardation performance Mock-up test of the multi-field coupling of buffer materials, with the aim to study the thermo-hydro-mechanical (THM) processes occurring in the engineered barrier system of a high-level waste (HLW) repository. In view of the theory of mixtures and mechanics of continuous media, the coupled THM mathematical model of unsaturated buffer materials is established, considering heat transport and multiphase fluid flow. Using the buffer material Mock-up test of multi-field coupling as a model, the partial differential equation (PDE) module in the general finite element software COMSOL Multiphysics was developed by a second development stage. The dynamic response process of buffer material under the condition of THM coupling was numerically simulated, and the spatial distribution and variation law of suction, porosity, horizontal displacement, temperature and swelling pressure in the engineered barrier were investigated. The porosity of the buffer material under THM coupling was influenced by the swelling pressure and the suction. The welling pressure evolution of the buffer material may be influenced by the thermal expansion induced by high temperature and the swelling pressure generated by buffer material saturation. The evolution of the horizontal displacement of the heater used to simulate a container with radioactive waste was validated. This paper provides technical reference for the design and safety evaluation of underground laboratory barrier engineering in China. Full article
Show Figures

Figure 1

20 pages, 6369 KB  
Essay
Analysis of Spatial and Temporal Patterns of Soil Erosion in the Yunnan–Guizhou Plateau during 2000–2030
by Jiahui Guo, Xiaohuang Liu, Jiufen Liu, Wenbo Zhang, Chaolei Yang, Liyuan Xing, Hongyu Li, Xinping Luo, Ran Wang, Zulpiya Mamat, Chao Wang and Honghui Zhao
Sustainability 2024, 16(17), 7769; https://doi.org/10.3390/su16177769 - 6 Sep 2024
Cited by 3 | Viewed by 1720
Abstract
The assessment of soil erosion in a region can provide an effective reference for local ecological environment management. The Yunnan–Guizhou Plateau54 is an important ecological security barrier in southwest China, owing to its unique climatic and environmental characteristics and superior natural resource endowment. [...] Read more.
The assessment of soil erosion in a region can provide an effective reference for local ecological environment management. The Yunnan–Guizhou Plateau54 is an important ecological security barrier in southwest China, owing to its unique climatic and environmental characteristics and superior natural resource endowment. The current research focus is the spatial analysis of a certain area. In this study, soil erosion in the Yunnan–Guizhou Plateau during 2000–2030 was analyzed and predicted from two aspects of structure and spatial layout by coupling several models. The report also analyzes the shift in the center of gravity of land use and analyzes the drivers of soil erosion, analyzing soil erosion by land use type. The study shows a decreasing trend in the soil erosion modulus from 2000 to 2020 from 1183.69 to 704.58 t·hm−2·a−1, but it is expected to have an increasing trend in the future and will increase to 877.72 t·hm−2·a−1. Analyzing the drivers of soil erosion allows for testing whether the factor affects the spatial distribution of the independent variable and to what extent it explains that dependent variable. This study showed that elevation had the highest explanatory power for soil erosion. Relatively high mountainous areas are often subject to greater soil erosion due to their steep topography, resulting in poorer vegetation cover. The north–south offset distance is greater than the east–west offset distance for forested land, water and unutilized land, and the east–west offset distance is greater than the north–south offset distance for cropland, grassland and built-up land in the Yunnan–Guizhou Plateau. The purpose of this study is to identify areas of serious soil erosion vulnerability in the Yunnan–Guizhou Plateau, and to analyze the driving factors affecting soil erosion vulnerability, so as to provide a basis for regional soil erosion management, and, at the same time, to provide a reference for the government to formulate soil and water conservation measures. Full article
Show Figures

Figure 1

22 pages, 14942 KB  
Article
Numerical Study of the Thermo-Hydro-Mechanical Coupling Impacts of Shallow Geothermal Borehole Groups in Fractured Rock Mass on Geological Environment
by Yujin Ran, Jia Peng, Xiaolin Tian, Dengyun Luo, Bin Yang, Peng Pei and Long Tang
Energies 2024, 17(6), 1384; https://doi.org/10.3390/en17061384 - 13 Mar 2024
Cited by 1 | Viewed by 1523
Abstract
Fractured rock mass is extensively distributed in Karst topography regions, and its geological environment is different from that of the quaternary strata. In this study, the influences on geological environment induced by the construction and operation of a large-scale borehole group of ground [...] Read more.
Fractured rock mass is extensively distributed in Karst topography regions, and its geological environment is different from that of the quaternary strata. In this study, the influences on geological environment induced by the construction and operation of a large-scale borehole group of ground source heat pumps are analyzed by a thermo-hydro-mechanical (THM) coupling numerical model. It was found that groundwater is redirected as the boreholes can function as channels to the surface, and the flow velocity in the upstream of borehole group is higher than those downstream. This change in groundwater flow enhances heat transfer in the upstream boreholes but may disturb the original groundwater system and impact the local geological environment. Heat accumulation is more likely to occur downstream. The geo-stress concentration appears in the borehole area, mainly due to exaction and increasing with the depth. On the fracture plane, tensile stress and maximum shear stress simultaneously occur on the upstream of boreholes, inducing the possibility of fracturing or the expansion of existing fractures. There is a slight uplift displacement on the surface after the construction of boreholes. The correlations of the above THM phenomena are discussed and analyzed. From the modeling results, it is suggested that the consolidation of backfills can minimize the environmental disturbances in terms of groundwater redirection, thermal accumulation, occurrence of tensile stress, and possible fracturing. This study provides support for the assessment of impacts on geological environments resulting from shallow geothermal development and layout optimization of ground heat exchangers in engineering practices. Full article
(This article belongs to the Special Issue Geothermal Heat Pumps and Heat Exchangers)
Show Figures

Figure 1

13 pages, 5540 KB  
Article
Heat Extraction Evaluation of CO2 and Water Flow through Different Fracture Networks for Enhanced Geothermal Systems
by Zhixue Sun, Wentong Song, Hao Zhang, Xueyuan Li, Shuang Xie and Haifeng Nie
Energies 2024, 17(1), 86; https://doi.org/10.3390/en17010086 - 22 Dec 2023
Cited by 4 | Viewed by 1560
Abstract
Enhanced geothermal system (EGS) technologies have been developed to improve geothermal energy production from hot dry rock (HDR). In this study, discrete fracture network models for geometric topological networks that consider different parameters (the fracture density and the fracture length index) were built [...] Read more.
Enhanced geothermal system (EGS) technologies have been developed to improve geothermal energy production from hot dry rock (HDR). In this study, discrete fracture network models for geometric topological networks that consider different parameters (the fracture density and the fracture length index) were built on the basis of fractal geometry theory. The heat extraction processes of CO2 and water as the working fluid through different discrete fracture networks were simulated with the application of the thermal–hydraulic–mechanical (THM) coupled method. A series of sensitivity analyses were carried out to reveal the influences of fracture parameters on heat transfer processes. Based on the simulation results, heat extraction efficiencies and temperature distributions in the reservoir of CO2 and water as the working fluid were compared, which showed that CO2 as the working fluid can bring a faster thermal breakthrough. It was found that the fracture length index a = 2.5 and the fracture density I = 5.0 can provide the highest heat extraction rate compared with other cases. This study provides a detailed analysis of fracture parameters and working fluids, which will contribute to the optimized management of geothermal energy production. Full article
(This article belongs to the Section H2: Geothermal)
Show Figures

Figure 1

26 pages, 12172 KB  
Article
Modelling of the Corrosion-Induced Gas Impact on Hydraulic and Radionuclide Transport Properties of Geological Repository Barriers
by Asta Narkuniene, Gintautas Poskas and Gytis Bartkus
Minerals 2024, 14(1), 4; https://doi.org/10.3390/min14010004 - 19 Dec 2023
Viewed by 1575
Abstract
The geological disposal of high-level radioactive waste is the final step in the nuclear fuel cycle. It is realized via isolating the high-level radioactive waste in the geological environment with an appropriate system of engineered barriers. Radionuclides-containing materials must be isolated from the [...] Read more.
The geological disposal of high-level radioactive waste is the final step in the nuclear fuel cycle. It is realized via isolating the high-level radioactive waste in the geological environment with an appropriate system of engineered barriers. Radionuclides-containing materials must be isolated from the biosphere until the radioactivity contained in them has diminished to a safe level. In the case of high-level radioactive waste, it could take hundreds of thousands of years. Within such a long timescale, a number of physical and chemical processes will take part in the geological repository. For the assessment of radionuclide migration from a geological repository, it is necessary to predict the repository’s behavior once placed in the host rock as well as the host-rock response to disturbances due to construction. In this study, the analysis of repository barriers (backfill, concrete, inner excavation disturbed zone (EDZ), outer EDZ, host rock) thermo–hydraulic–mechanical (THM) evolution was performed, and the scope of gas-induced desaturation was analyzed with COMSOL Multiphysics. The analysis was based on modelling of a two-phase flow of miscible fluid (water and H2) considering important phenomena such as gas dissolution and diffusion, advective–diffusive transport in the gaseous phase, and mechanical deformations due to thermal expansion of water and porous media. The importance of proper consideration of temperature-dependent thermodynamic properties of water and THM couplings in the analysis of near-field processes was also discussed. The modelling demonstrated that such activities as 50 years’ ventilation of the waste disposal tunnel in initially saturated porous media, and such processes as gas generation due to corrosion of waste package or heat load from the waste, also led to desaturation of barriers. H2 gas generation led to the desaturation in engineered barriers and in a part of the EDZ close to the gas generation place vanishing soon after finish of gas generation, while the host rock remained saturated during the gas generation phase (50–100,000 years). Radionuclide transport properties in porous media such as effective diffusivity are highly dependent on the water content in the barriers determined by their porosity and saturation. Full article
Show Figures

Figure 1

Back to TopTop