Enhancing Frost Heave Resistance of Channel Sediment Hetao Irrigation District via Octadecyltrichlorosilane Modification and a Hydro-Thermo-Mechanical Coupled Model
Abstract
1. Introduction
2. Material and Methods
2.1. Material Preparation
2.1.1. Material Physical Properties
2.1.2. Preparation of Modified Channel Sediment
- Temperature Gradient
- 2.
- Silane-to-Channel Sediment Mass Ratio
- 3.
- Experimental Group Designation
2.1.3. Basic Physical Properties of Modified Channel Sediment
2.2. Experimental Methods
2.2.1. Water Drop Penetration Time Test (WDPT)
2.2.2. Unidirectional Freezing Test [31]
2.3. Model Development
3. Results
3.1. Optimal Parameters for OTS-Modified Channel Sediment
3.2. Various Frost Heave Parameters in the Unidirectional Freezing Test
3.2.1. Temperature Profiles Across Depths
3.2.2. Moisture Content at Different Depths
3.2.3. Variation in Frost Heave Amount
4. Discussion
4.1. A COMSOL Multiphysics-Based Coupled Hydrological–Thermal–Mechanical Model
- Isotropic continuous medium assumption;
- Liquid-phase water migration is considered, neglecting vapor diffusion;
- Linear relationship between thermal parameters and moisture content/ice saturation;
- Neglecting temperature-dependent effects on thermal conductivity.
4.1.1. Governing Equation for the Temperature Field
4.1.2. Governing Equation for the Water Content Field
4.1.3. Governing Equation for the Stress Field
4.2. Determination of Coupling Parameters Between Equations
4.2.1. Thermophysical Properties
- (1)
- Thermal Conductivity
- (2)
- Volumetric Heat Capacity
- (3)
- Soil Freezing Temperature
- Water Content : Higher water content strengthens capillary action and adsorption, resulting in a lower freezing temperature.
- Salinity : Salt reduces the freezing temperature, with a critical concentration threshold.
- Porosity : Smaller pore radii enhance the surface curvature effect of ice crystals, leading to a lower freezing temperature.
4.2.2. Hydraulic Characteristic Parameters
- (1)
- Hydraulic Conductivity
- (2)
- Specific Water Capacity
- (3)
- Moisture Diffusion Coefficient
4.3. Model Setup
4.3.1. Geometric Model
4.3.2. Thermal Boundary Conditions
4.3.3. Moisture Field Boundary Conditions
4.3.4. Stress Field Boundary Conditions
4.4. Mesh Independence Study
4.5. Experimental Data Validation
4.6. Experimental Results
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, Y.; Jiao, Y.; Yang, W.; Yan, Y.; Wu, H.; Ling, L.; Shi, Y. Estimation of Non-Point Source Nitrogen and Phosphorus Pollution Load in Farmlands of Hetao Irrigation District, Inner Mongolia. China Environ. Sci. 2023, 43, 6551–6560. [Google Scholar]
- Guo, F.; Li, T.; Huo, Y.; Cao, Z. Numerical Simulation of Thermal Insulation and Frost Heave Prevention Effect of Precast Concrete Channels in Hetao Irrigation District, Inner Mongolia Based on ADINA. Resour. Environ. Arid Areas 2023, 37, 84–92. [Google Scholar]
- Jiang, H.; Zhang, M.; Wang, Z.; Gong, J.; Sun, X. Theoretical Analysis of the Mechanical Response of a Lined Canal Induced by Soil Frost Heave Behavior Based on Improved Foundation Beam Models. Cold Reg. Sci. Technol. 2024, 225, 104252. [Google Scholar] [CrossRef]
- Li, J.; He, X.; Zhou, B. Simulation of Frost Heaving Damage of Concrete Lining Channels by Using XFEM. J. Coast. Res. 2019, 93 (Suppl. 1), 264–273. [Google Scholar] [CrossRef]
- Tsytovich, N.A. Mechanics of Frozen Soil; Zhang, C.; Zhu, Y., Translators; Science Press: Beijing, China, 1985. [Google Scholar]
- Qu, H.; Tang, A.; Zhao, A.; Mu, D.; Wang, Z. A Unified Theoretical Thaw Expansion and Settlement Coefficient Model for Frozen Soil. J. Cold Reg. Eng. 2025, 39, 04025008. [Google Scholar] [CrossRef]
- Xu, C.; Zhang, Z.; Zhao, Y.; Jin, D.; Yu, Q.; Meng, X. Experimental study of thaw settlement and internal structural changes in frozen soil during the thawing process. Case Stud. Constr. Mater. 2025, 22, e04279. [Google Scholar] [CrossRef]
- Chen, X.; Liu, J.; Liu, H.; Wang, Y. Freezing of Soil and Foundation; Science Press: Beijing, China, 2006. [Google Scholar]
- Li, L.; Feng, H.; Chen, K. Analysis of Engineering Disease Causes and Countermeasures in Bridge-Road Transition Sections of Qinghai-Tibet Railway in Permafrost Regions. J. Glaciol. Geocryol. 2025, 47, 199–212. [Google Scholar]
- Fan, X. Application of Expanded Polystyrene Boards in Channel Renovation of Nanchuan Irrigation District, Linxia City. J. Mass Stand. 2024, 14, 152–154. [Google Scholar]
- Wang, N.; Wang, Q.; Huo, Z.; Ma, B.; Chen, Y. The Influence of Salt Content and Compaction Degree on the Initial Frost Heave Moisture Content of Saline Soil. J. Eng. Geol. 2016, 24, 951–958. [Google Scholar]
- Chen, N. Study on Curing Mechanism and Road Performance of New Soil Stabilizer in Stabilizing Low-Liquid Limit Red Clay. Master’s Thesis, Chongqing Jiaotong University, Chongqing, China, 2024. [Google Scholar]
- Zhang, W.; Yu, Q.; Wen, Z.; Guo, L.; You, Y.; Wang, X.; Zhang, Z. Experimental study on solar heating system based on heat pipe technology for mitigating subgrade frost heave. J. Clean. Prod. 2024, 434, 140063. [Google Scholar] [CrossRef]
- Han, J.; Liu, L.; Zuo, C.; Wang, H.; Lin, F.; Zhao, Y.; Li, T.; Liu, D. Evolution and Parametric Analysis of Concrete Temperature Field Induced by ElectricHeating Curing in Winter. Sustainability 2023, 15, 8337. [Google Scholar] [CrossRef]
- Chen, M.; Takano, C.; Nakashima, K.; Gowthaman, S.; Kawasaki, S. Exploration of ureolytic airborne bacteria for biocementation applications from different climate zones in Japan. Sci. Rep. 2025, 15, 7536. [Google Scholar]
- Technology Application for Seepage Prevention and Frost Heave Prevention in Channels of Hetao Irrigation District, Inner Mongolia. 1 January 2009. Available online: http://www.jsgg.com.cn/Index/Display.asp?NewsID=13669 (accessed on 12 March 2025).
- Li, H.; Liu, Y.; Zhang, L. Monitoring of Settlement in Soft Soil Foundations Treated by Replacement Method at Culvert Sites. J. Northeast. For. Univ. 2019, 47, 103–106. [Google Scholar] [CrossRef]
- Jiang, Q.; Chen, Z.; Wang, J.; Liu, J. Determination Method for Thickness of Lightweight Soil in Soft Soil Foundation Embankments Treated by Replacement Method. China Highw. 2019, 64, 84–88. [Google Scholar]
- Gu, Z.; Wang, S. Stability Analysis of Replacement Soil in Expansive Soil Canal Slope. Heilongjiang Sci. Technol. Inf. 2017, 2, 239. [Google Scholar] [CrossRef]
- Sheraz, M.; Choi, B.; Kim, J. Enhancing Textile Water Repellency with Octadecyltrichlorosilane (OTS) and Hollow Silica Nanoparticles. Polymers 2023, 15, 4065. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Dansawad, P.; Han, L.; Gao, H.; Zhao, S.; Xue, S. Hydrolyzed OTS modified PVDF nanofibrous membrane for oil–water mixture high-efficiency separation. Sep. Purif. Technol. 2025, 361, 131444. [Google Scholar] [CrossRef]
- GB/T 50123-2019; Standard for Geotechnical Testing Method. Ministry of Water Resources of the People’s Republic of China: Beijing, China, 2019.
- Chan, H.S.C.; Lourenço, N.D.S. Comparison of three silane compounds to impart water repellency in an industrial sand. Géotechnique Lett. 2016, 6, 263–266. [Google Scholar] [CrossRef]
- Ma, R.; Wu, J.W.; Zha, Y.Y.; Gao, H.Y.; Yang, J.Z. A Simplified Model for Water Migration in Frozen-Thawed Soil in the Hetao Irrigation District, Inner Mongolia. J. Irrig. Drain. 2012, 31, 1–5. [Google Scholar] [CrossRef]
- Wang, Y.H.; Chen, H.Y. A Numerical Simulation of Coupled Water and Heat Transfer in Irrigation Canals During Freeze-Thaw Cycles in the Hetao Irrigation District, Inner Mongolia. J. Irrig. Drain. 2016, 35, 48–53. [Google Scholar] [CrossRef]
- Cardama, L.Y.; Pena, B.N.; Cruzado, P.C. Sensitivity of thermal analysis and calorimetry to assess the impact of forest management on soils. J. Therm. Anal. Calorim. 2024, 150, 1327–1336. [Google Scholar] [CrossRef]
- Yang, W.; Ding, Y.; Guan, L. Determination of Thermal Conductivity of Moist Soil Using the Hot Probe Method. Refrig. Air Cond. Electr. Power Mach. 2010, 31, 13–15. [Google Scholar]
- Meng, F.; Li, X.; Wu, X.; Xu, Y.; Chai, J.; Li, Y. Determination of Soil Thermal Conductivity Using the Probe Method. Insul. Mater. 2006, 65–66, 70. [Google Scholar] [CrossRef]
- Wu, Y.; Wu, Y.; Luo, G.; Zhang, T.; Wang, Q.; Fan, L.; Song, X.; Yu, Z. Effects of Diesel Concentration on the Thermal Conductivity, Specific Heat Capacity and Thermal Diffusivity of Diesel-Contaminated Soil. J. Therm. Sci. 2024, 33, 696–709. [Google Scholar] [CrossRef]
- Tinebra, I.; Alagna, V.; Iovino, M.; Bagarello, V. Comparing different application procedures of the water drop penetration time test to assess soil water repellency in a fire affected Sicilian area. Catena 2019, 177, 41–48. [Google Scholar] [CrossRef]
- Luo, C.; Zhou, F.; Luo, C. Study on Thermal-Mass Transfer in Unsaturated Lead-Contaminated Loess under Unidirectional Freezing Conditions. J. Yangtze River Sci. Res. Inst. 2012, 31, 1–10. [Google Scholar]
- Tan, D.Y. Study on the Internal Structure and Surface Potential of Octadecyltrichlorosilane Self-Assembled Monolayers Using Electrostatic Force Microscopy (EFM). Master’s Thesis, Zhejiang University, Hangzhou, China, 2012. [Google Scholar]
- Fang, X.Q. Study on the Anti-Relaxation Coating Technique and Characterization of Octadecyltrichlorosilane Atomic Vapor Cells. Master’s Thesis, North University of China, Taiyuan, China, 2023. [Google Scholar]
- Kim, S.; Sohn, H.; Boo, J.; Lee, J. Significantly Improved Stability of n-Octadecyltrichlorosilane Self-Assembled Monolayer by Plasma Pretreatment on Mica. Thin Solid Film. 2007, 516, 940–947. [Google Scholar] [CrossRef]
- Hong, T. Preparation and Properties Study of Octadecyltrichlorosilane Self-Assembled Multilayers. Master’s Thesis, Wuhan University of Technology, Wuhan, China, 2017. [Google Scholar]
- Zhou, Y. Preparation and Performance Study of Fluorine-Free Superhydrophobic Cotton Fabrics Based on Octadecyltrichlorosilane. Master’s Thesis, Jiangnan University, Wuxi, China, 2024. [Google Scholar] [CrossRef]
- Li, Q. Study on the Laws of Coupled Water-Heat Transfer in Unsaturated Soil Under Temperature Gradients. Master’s Thesis, Civil Aviation University of China, Tianjin, China, 2023. [Google Scholar] [CrossRef]
- Ji, Y.K. A Study on the Growth Mechanism of Ice Lenses and the Hydro-Thermal-Mechanical Coupling Characteristics of Frost Heave. Master’s Thesis, China University of Mining and Technology, Xuzhou, China, 2019. [Google Scholar] [CrossRef]
- Chen, Z.F. Study on Freezing Temperature Prediction and Water-Salt Migration Patterns in Saline Soils of Western. Master’s Thesis, Jilin University, Changchun, China, 2020. [Google Scholar] [CrossRef]
- Feng, B.; Zhang, Z.; Zhang, J.; Wang, Z. Research Progress on the Effects of Temperature on Soil Water Movement. Adv. Water Sci. 2002, 5, 643–648. [Google Scholar]
- Sadiq, F.M.; Naqvi, W.M.; Cetin, B.; Daniels, J. Role of Temperature Gradient and Soil Thermal Properties on Frost Heave. Transp. Res. Rec. 2025, 2679, 217–226. [Google Scholar] [CrossRef]
- He, X.; Zeng, C.; Gao, Z.; Zhang, W.; Wan, H. Study on the Variation Patterns of the Temperature Field in the Expressway Subgrade of the Nagqu-Yangbajing Seasonal Permafrost Regions. Saf. Environ. Eng. 2023, 30, 92–100. [Google Scholar] [CrossRef]
- Dong, X.; Ye, W.; Yang, G.; Wu, D.; Shen, Y.; Liu, H. Experimental Study on the Effect of Temperature on the Thermal Parameters of Loess. Rock Soil Mech. 2017, 38, 2888–2894,2900. [Google Scholar] [CrossRef]
- Xue, D. Study on Frost Heave Characteristics of Expansive Soil in Yanbian Area. Master’s Thesis, Jilin Jianzhu University, Changchun, China, 2024. [Google Scholar] [CrossRef]
- Yiran, H. Study on Water-Heat Migration and Frost Heave Behavior of Graded Soils During Freezing Process. Ph.D. Thesis, Harbin Institute of Technology, Harbin, China, 2023. [Google Scholar] [CrossRef]
- He, Y. Study on Hydrothermal Properties and Hydro-Thermo-Mechanical Coupling Model of Peat Soil in Seasonally Frozen Regions. Ph.D. Thesis, Jilin University, Changchun, China, 2023. [Google Scholar]
- Luo, J. Hydro-Thermo-Deformation Coupling Model for Frost Heave Process in Expansive Soils. Ph.D. Thesis, Harbin Institute of Technology, Harbin, China, 2021. [Google Scholar] [CrossRef]
- Liu, J.; Yang, P.; Wang, J.; Wang, S.; Jiang, H. Freezing front evolution in chloride soils under unidirectional freezing conditions and the characterization via electrical conductivity. Cold Reg. Sci. Technol. 2023, 213, 103913. [Google Scholar] [CrossRef]
- Nagare, R.M.; Schincariol, R.A.; Quinton, W.L.; Hayashi, M. Effects of Freezing on Soil Temperature, Freezing Front Propagation, and Moisture Redistribution in Peat: Laboratory Investigations. Hydrol. Earth Syst. Sci. 2012, 16, 501–515. [Google Scholar] [CrossRef]
- Jiang, S. Study on Frost Heave Characteristics of Peat Soil in Seasonally Frozen Regions. Master’s Thesis, Jilin University, Changchun, China, 2020. [Google Scholar] [CrossRef]
- Hua, Z. Study on Frost Heave Characteristics of Carbonate Saline Soil in Nong’an Area. Master’s Thesis, Jilin University, Changchun, China, 2016. [Google Scholar]
- Cheng, S.-H.; Wang, L.; Engel, B.A.; Wang, Y.-B. Quantitative Analysis of Concrete Lining Damage in Field Canals by Frost Heave Using a Water–Heat–Mechanical Coupling Model. J. Irrig. Drain. Eng. 2022, 148, 04022036. [Google Scholar] [CrossRef]
- Liu, J.; Xu, S.; Li, L.; Zhang, G. Freeze-thaw cycling of nano-SiO2-modified recycled aggregate in concretes: Hydro-thermal-mechanical modeling. J. Build. Eng. 2024, 96, 110554. [Google Scholar] [CrossRef]
- Bai, Q. Preliminary Study on Boundary Layer Parameter Calibration and Numerical Simulation Methods for Hydrothermal Stability of Frozen Ground Subgrade. Master’s Thesis, Beijing Jiaotong University, Shanghai, China, 2016. [Google Scholar]
- Ning, L.; William, J.L. Unsaturated Soil Mechanics; Higher Education Press: Beijing, China, 2012. [Google Scholar]
- Taylor, G.S.; Luthin, J.N. A model for coupled heat and moisture transfer during soil freezing. Can. Geotech. J. 1978, 15, 548–555. [Google Scholar] [CrossRef]
- Zhou, J.; Xie, D.; Zhang, J. Experimental Results on Freeze Protection of Lined Canals in the Hetao Irrigation District, Inner Mongolia. Inn. Mong. Water Resour. 2011, 2, 167–168. [Google Scholar]
- Liu, W.; Wang, X.; Chen, C.; Wang, W. Cryogenic Freezing Effects on Static/Dynamic Mechanical Behavior of Concrete with Development of Thermo-Mechanically Coupled Constitutive Model. Constr. Build. Mater. 2025, 491, 142638. [Google Scholar] [CrossRef]
- Jie, X.; Haitao, H.; Zhi, Z. Influence of Compaction Degree and Water Content on Thermal Conductivity of Unsaturated Soil. Chin. J. Geotech. Eng. 2020, 42 (Suppl. 1), 244–248. [Google Scholar]
- Tang, P.; Xu, J.; Lu, Y. Experimental Study on the Influence of Water Content and Temperature on Thermal Conductivity of Unsaturated Soil. J. Disaster Prev. Mitig. Eng. 2019, 39, 678–683. [Google Scholar] [CrossRef]
- Jin, Z.; Wang, X.; Wu, X.; Peng, Z. Test and Analysis of Soil Thermal Parameters and Their Influencing Factors. Rock Soil Mech. 2022, 43, 1335–1340. [Google Scholar] [CrossRef]
- Bi, J.; Pan, Y.; Yang, S.; Li, R.; Wu, Z. Predicting the volumetric heat capacity of freezing soils using the soil freezing characteristic curve. J. Hydrol. 2024, 645, 132151. [Google Scholar] [CrossRef]
- Xiang, L. Experimental Study on the Influence of Water Content and Load on Freezing Temperature and Deformation of Remolded Loess Under Freeze-Thaw Conditions. Ph.D. Thesis, Xi’an University of Science and Technology, Xi’an, China, 2023. [Google Scholar] [CrossRef]
- Chen, Y.; Ma, X.; Zhang, Z. Investigating the Effects of Ambient Temperature and Water Content on Soil Temperature Field. J. Nat. Disasters 2022, 31, 168–174. [Google Scholar] [CrossRef]
- Ran, H.; Fan, J.; Huang, J.; Li, Z. Research Progress on Hydro-Thermal-Mechanical Coupling Effects and Modeling of Soil during Freeze-Thaw Processes. Grassl. Sci. 2019, 36, 991–999. [Google Scholar]
Number | Moisture Content/% | Cone Penetration Depth/mm |
---|---|---|
A | 16.4 | 2.5 |
B | 19.8 | 9 |
C | 22.3 | 17.5 |
Temperature (°C) | Mass Ratio of Silane to Sediment (%) | Experimental Group Number |
---|---|---|
30 | Low-concentration Zone: 0.0002%, 0.0004%, 0.0006%, 0.0008%, 0.001% | S1–S5 |
30 | High-concentration Zone: 0.002%, 0.003%, 0.004%, 0.005% | S6–S9 |
40 | Low-concentration Zone: 0.0002%, 0.0004%, 0.0006%, 0.0008%, 0.001% | S10–S14 |
40 | High-concentration Zone: 0.002%, 0.003%, 0.004%, 0.005% | S15–S18 |
50 | Low-concentration Zone: 0.0002%, 0.0004%, 0.0006%, 0.0008%, 0.001% | S19–S23 |
50 | High-concentration Zone: 0.002%, 0.003%, 0.004%, 0.005% | S24–S27 |
60 | Low-concentration Zone: 0.0002%, 0.0004%, 0.0006%, 0.0008%, 0.001% | S28–S32 |
60 | High-concentration Zone: 0.002%, 0.003%, 0.004%, 0.005% | S33–S36 |
0% Modified Sediment Mixing Proportion | 10% Modified Sediment Mixing Proportion | 20% Modified Sediment Mixing Proportion | 30% Modified Sediment Mixing Proportion | 40% Modified Sediment Mixing Proportion | |
---|---|---|---|---|---|
specific heat capacity KJ/(kg·K) | 0.86 | 0.83 | 0.81 | 0.78 | 0.76 |
thermal conductivity W/(m·K) | 1.48 | 1.45 | 1.42 | 1.39 | 1.36 |
Density (kg/m3) | 2006 | 2006 | 2006 | 2006 | 2006 |
Thermal Diffusivity (W·m2)/KJ | 8.58 × 10−5 | 8.71 × 10−5 | 8.74 × 10−5 | 8.88 × 10−5 | 8.92 × 10−5 |
Parameter Classification | Parameter | Magnitude | Parameter Classification | Parameter | Magnitude | Parameter Classification | Parameter | Magnitude |
---|---|---|---|---|---|---|---|---|
Modified Channel Sediment | density of water (kg/m3) | 1000 | Thermophysical Properties | latent heat of phase change (KJ/kg) L | 334.56 | Hydraulic Characteristic Parameters | saturated water content (%) | 0.32 |
density of ice (kg/m3) | 918 | specific heat capacity of unfrozen soil-sand mixture KJ/(kg·K) | 0.76 | residual water content (%) | 0.076 | |||
dry density of soil (kg/m3) | 1700 | specific heat capacity of frozen soil-sand mixture KJ/(kg·K) | 0.735 | the permeability of the saturated soil (m/s) | 9.54 × 10−7 | |||
Initial Water Content (%) | 18 | specific heat capacity of water KJ/(kg·K) | 4.2 | Specific Water Capacity Parameter α0 | 1.8 | |||
Initial Temperature (°C) | −15 | specific heat capacity of ice KJ/(kg·K) | 2.1 | Specific Water Capacity Parameter m | 0.6 | |||
Soil Porosity n | 0.7 | thermal conductivity of soil-sand mixtures W/(m·K) | 1.36 | a constant that varies with soil type and salt content B | 0.56 | |||
Salinity S | 0.02 | thermal conductivity of water W/(m·K) | 0.63 | a parameter of the hydraulic conductivity function l | 0.41 | |||
thermal conductivity of ice W/(m·K) | 2.31 |
0% Modified Sediment Mixing Ratio | 10% Modified Sediment Mixing Ratio | 20% Modified Sediment Mixing Ratio | 30% Modified Sediment Mixing Ratio | |
---|---|---|---|---|
specific heat capacity of unfrozen soil–sand mixture KJ/(kg·K) | 0.86 | 0.83 | 0.81 | 0.78 |
specific heat capacity of frozen soil–sand mixture KJ/(kg·K) | 0.835 | 0.805 | 0.785 | 0.755 |
thermal conductivity of soil–sand mixtures W/(m·K) | 1.48 | 1.45 | 1.42 | 1.39 |
saturated water content (%) | 0.4 | 0.38 | 0.36 | 0.34 |
residual water content (%) | 0.08 | 0.079 | 0.078 | 0.077 |
the permeability of the saturated soil (m/s) | 2.02 × 10−6 | 1.58 × 10−6 | 1.32 × 10−6 | 1.05 × 10−6 |
a constant that varies with soil type and salt content B | 0.64 | 0.62 | 0.6 | 0.58 |
a parameter of the hydraulic conductivity function l | 0.45 | 0.44 | 0.43 | 0.42 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, T.; Wang, H.; Han, Y. Enhancing Frost Heave Resistance of Channel Sediment Hetao Irrigation District via Octadecyltrichlorosilane Modification and a Hydro-Thermo-Mechanical Coupled Model. Sustainability 2025, 17, 8083. https://doi.org/10.3390/su17178083
Zhang T, Wang H, Han Y. Enhancing Frost Heave Resistance of Channel Sediment Hetao Irrigation District via Octadecyltrichlorosilane Modification and a Hydro-Thermo-Mechanical Coupled Model. Sustainability. 2025; 17(17):8083. https://doi.org/10.3390/su17178083
Chicago/Turabian StyleZhang, Tianze, Hailong Wang, and Yanhong Han. 2025. "Enhancing Frost Heave Resistance of Channel Sediment Hetao Irrigation District via Octadecyltrichlorosilane Modification and a Hydro-Thermo-Mechanical Coupled Model" Sustainability 17, no. 17: 8083. https://doi.org/10.3390/su17178083
APA StyleZhang, T., Wang, H., & Han, Y. (2025). Enhancing Frost Heave Resistance of Channel Sediment Hetao Irrigation District via Octadecyltrichlorosilane Modification and a Hydro-Thermo-Mechanical Coupled Model. Sustainability, 17(17), 8083. https://doi.org/10.3390/su17178083