Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (12,912)

Search Parameters:
Keywords = T gene

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 1941 KiB  
Article
When Two Worlds Collide: The Contribution and Association Between Genetics (APOEε4) and Neuroinflammation (IL-1β) in Alzheimer’s Neuropathogenesis
by Jagadeesh Narasimhappagari, Ling Liu, Meenakshisundaram Balasubramaniam, Srinivas Ayyadevara and W. Sue T. Griffin
Cells 2025, 14(15), 1216; https://doi.org/10.3390/cells14151216 (registering DOI) - 7 Aug 2025
Abstract
Introduction: Here we consider the collision of a genetic factor and an essential instigator in Alzheimer’s neuropathogenesis: (i) the Alzheimer’s gene (APOEε4), which downregulates lysosomal autophagy and induces synthesis of (ii) the instigator, interleukin-1β (IL-1β), which drives synthesis of βAPP for Aβ plaques [...] Read more.
Introduction: Here we consider the collision of a genetic factor and an essential instigator in Alzheimer’s neuropathogenesis: (i) the Alzheimer’s gene (APOEε4), which downregulates lysosomal autophagy and induces synthesis of (ii) the instigator, interleukin-1β (IL-1β), which drives synthesis of βAPP for Aβ plaques and of MAPKp38 for phosphorylation of tau for formation of neurofibrillary tangles (NFTs), the two cardinal features of AD. Methods: RT-PCR, immunoblotting and immunohistochemistry techniques were used to assess the levels of IL-1β and its signaling cascade in ADε4,4, ε3,3, and age-matched controls (AMC3,3) in hippocampal regions of the brain. Results: IL-1β and its downstream signaling proteins TLR-2, MyD88, NFκB, COX-1, and COX-2 were greater in tissues from ADε4,4 than ADε3,3 or AMC3,3. Cathepsin B, D, and L levels, which play a pivotal role and are necessary for lysosomal autophagy, were lower in ADε4,4 than in ADε3,3 or AMC ε3,3. IL-1β and its downstream signaling cascade TLR-2, MyD88, NFκB, COX-1, and COX-2 expression levels were high in SH-SY5Y and T98G cells transfected with APOεE4. Conclusions: APOEε4 causes Alzheimer’s by downregulating autophagy, thus inducing IL-1β for Aβ plaque and neurofibrillary tangle formation. Full article
(This article belongs to the Special Issue Advanced Research in Neurogenesis and Neuroinflammation)
Show Figures

Figure 1

19 pages, 2057 KiB  
Review
Therapeutic Opportunities in Overcoming Premature Termination Codons in Epidermolysis Bullosa via Translational Readthrough
by Kathleen L. Miao, Ryan Huynh, David Woodley and Mei Chen
Cells 2025, 14(15), 1215; https://doi.org/10.3390/cells14151215 - 7 Aug 2025
Abstract
Epidermolysis Bullosa (EB) comprises a group of inherited blistering disorders caused by pathogenic variants in genes essential for skin and mucosal integrity. Nonsense mutations, which generate premature termination codons (PTCs), result in reduced or absent protein expression and contribute to severe disease phenotypes [...] Read more.
Epidermolysis Bullosa (EB) comprises a group of inherited blistering disorders caused by pathogenic variants in genes essential for skin and mucosal integrity. Nonsense mutations, which generate premature termination codons (PTCs), result in reduced or absent protein expression and contribute to severe disease phenotypes in EB. Readthrough therapies, which may continue translation past PTCs to restore full-length functional proteins, have emerged as promising approaches. This review summarizes findings from preclinical studies investigating readthrough therapies in EB models, clinical studies demonstrating efficacy in EB patients, and emerging readthrough agents with potential application to EB. Preclinical and clinical studies with gentamicin have demonstrated restored type VII collagen and laminin-332 expression, leading to measurable clinical improvements. Parallel development of novel compounds—including aminoglycoside analogs (e.g., ELX-02), translation termination factor degraders (e.g., CC-90009, SRI-41315, SJ6986), tRNA post-transcriptional inhibitors (e.g., 2,6-diaminopurine, NV848), and nucleoside analogs (e.g., clitocine)—has expanded the therapeutic pipeline. Although challenges remain regarding toxicity, codon specificity, and variable protein restoration thresholds, continued advances in molecular targeting and combination therapies offer the potential to establish readthrough therapies as localized or systemic treatments addressing both cutaneous and extracutaneous disease manifestations in EB. Full article
Show Figures

Figure 1

27 pages, 15414 KiB  
Article
Epimedium-Derived Exosome-Loaded GelMA Hydrogel Enhances MC3T3-E1 Osteogenesis via PI3K/Akt Pathway
by Weijian Hu, Xin Xie and Jiabin Xu
Cells 2025, 14(15), 1214; https://doi.org/10.3390/cells14151214 - 7 Aug 2025
Abstract
Healing large bone defects remains challenging. Gelatin scaffolds are biocompatible and biodegradable, but lack osteoinductive activity. Plant-derived exosomes carry miRNAs, growth factors, and proteins that modulate osteogenesis, but free exosomes suffer from poor stability, limited targeting, and low bioavailability in vivo. We developed [...] Read more.
Healing large bone defects remains challenging. Gelatin scaffolds are biocompatible and biodegradable, but lack osteoinductive activity. Plant-derived exosomes carry miRNAs, growth factors, and proteins that modulate osteogenesis, but free exosomes suffer from poor stability, limited targeting, and low bioavailability in vivo. We developed a 3D GelMA hydrogel loaded with Epimedium-derived exosomes (“GelMA@Exo”) to improve exosome retention, stability, and sustained release. Its effects on MC3T3-E1 preosteoblasts—including proliferation, osteogenic differentiation, migration, and senescence—were evaluated via in vitro assays. Angiogenic potential was assessed using HUVECs. Underlying mechanisms were examined at transcriptomic and protein levels to elucidate GelMA@Exo’s therapeutic osteogenesis actions. GelMA@Exo exhibited sustained exosome release, enhancing exosome retention and cellular uptake. In vitro, GelMA@Exo markedly boosted MC3T3-E1 proliferation, migration, and mineralized nodule formation, while reducing senescence markers and promoting angiogenesis in HUVECs. Mechanistically, GelMA@Exo upregulated key osteogenic markers (RUNX2, TGF-β1, Osterix, COL1A1, ALPL) and activated the PI3K/Akt pathway. Transcriptomic data confirmed global upregulation of osteogenesis-related genes and bone-regeneration pathways. This study presents a GelMA hydrogel functionalized with plant-derived exosomes, which synergistically provides osteoinductive stimuli and structural support. The GelMA@Exo platform offers a versatile strategy for localized delivery of natural bioactive molecules and a promising approach for bone tissue engineering. Our findings provide strong experimental evidence for the translational potential of plant-derived exosomes in regenerative medicine. Full article
(This article belongs to the Section Cell Proliferation and Division)
Show Figures

Figure 1

10 pages, 902 KiB  
Case Report
Gene Mutation-Negative Malignant Melanoma in a Prepubertal Patient: A Clinical and Molecular Case Report
by Adrian Guźniczak, Patrycja Sosnowska-Sienkiewicz, Jarosław Szydłowski, Paweł Kurzawa and Danuta Januszkiewicz-Lewandowska
Genes 2025, 16(8), 937; https://doi.org/10.3390/genes16080937 (registering DOI) - 6 Aug 2025
Abstract
Conventional melanoma is exceedingly rare in the pediatric population, particularly among prepubescent children, and its diagnosis and management necessitate a multidisciplinary approach. The objective of this present report is to delineate the diagnostic pathway and therapeutic management of a 4-year-old girl with conventional [...] Read more.
Conventional melanoma is exceedingly rare in the pediatric population, particularly among prepubescent children, and its diagnosis and management necessitate a multidisciplinary approach. The objective of this present report is to delineate the diagnostic pathway and therapeutic management of a 4-year-old girl with conventional melanoma, with particular focus on the molecular context. A pigmented lesion located on the auricle was surgically excised, and subsequent histopathological and immunohistochemical analyses confirmed the diagnosis of malignant melanoma (pT3b). Radiologic investigations revealed no evidence of metastatic disease, and comprehensive genetic testing utilizing next-generation sequencing (NGS) identified no pathogenic variants in the germline genes examined, nor in the BRAF, NRAS, KRAS, and TP53 genes within the excised lesion. The patient remains in good general health. This case report adds to the limited body of literature on melanoma in pediatric patients and underscores the importance of thorough diagnostic evaluation in this age group. Full article
(This article belongs to the Section Human Genomics and Genetic Diseases)
Show Figures

Figure 1

14 pages, 1897 KiB  
Article
Type I Interferon-Enhancing Effect of Cardamom Seed Extract via Intracellular Nucleic Acid Sensor Regulation
by Abdullah Al Sufian Shuvo, Masahiro Kassai and Takeshi Kawahara
Foods 2025, 14(15), 2744; https://doi.org/10.3390/foods14152744 - 6 Aug 2025
Abstract
The induction of type I interferon (IFN) via intracellular nucleic acid sensors may be useful in preventing viral infections. However, little is known about the effect of natural plant materials on sensor responses. We previously found that cardamom (Elettaria cardamomum (L.) Maton) [...] Read more.
The induction of type I interferon (IFN) via intracellular nucleic acid sensors may be useful in preventing viral infections. However, little is known about the effect of natural plant materials on sensor responses. We previously found that cardamom (Elettaria cardamomum (L.) Maton) seed extract (CSWE) enhanced type I IFN expression and prevented influenza virus infection. In this study, we investigated the effect of CSWE on type I IFN responses using intracellular nucleic acid sensor molecules. Human lung epithelial A549 cells were treated with CSWE and transfected with poly(dA:dT) or poly(I:C) using lipofection. CSWE and 1,8-cineole, the major CSWE components, dose-dependently induced type I IFNs and IFN-stimulated genes in both poly(dA:dT)- and poly(I:C)-transfected A549 cells. The type I IFN-enhancing effect of CSWE was dependent on the stimulator of interferon genes (STING), whereas the effect of 1,8-cineole was independent of STING and mediated by the down-regulation of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)-inducible poly-ADP-ribose polymerase expression. Our study suggests that CSWE has the potential to act as a beneficial antiviral agent by enhancing homeostatic type I IFN production. Full article
Show Figures

Figure 1

15 pages, 5628 KiB  
Article
Improving the Efficiency of CRISPR/Cas9-Mediated Non-Homologous End Joining Gene Knockout Using Small Molecules in Porcine Cells
by Shihao Lv, Xiaokang Xu, Sijia Yang, Mingjie Feng, Zhongyu Yuan, Xueqing Liu, Chaoqian Jiang, Jun Song and Yanshuang Mu
Biomolecules 2025, 15(8), 1132; https://doi.org/10.3390/biom15081132 - 6 Aug 2025
Abstract
The CRISPR/Cas9 genome editing system has emerged as an effective platform to generate loss-of-function gene edits through non-homologous end joining (NHEJ) without a repair template. To verify whether small molecules can enhance the efficiency of CRISPR/ Cas9-mediated NHEJ gene editing in porcine cells, [...] Read more.
The CRISPR/Cas9 genome editing system has emerged as an effective platform to generate loss-of-function gene edits through non-homologous end joining (NHEJ) without a repair template. To verify whether small molecules can enhance the efficiency of CRISPR/ Cas9-mediated NHEJ gene editing in porcine cells, this experiment investigated the effects of six small-molecule compounds, namely Repsox, Zidovudine, IOX1, GSK-J4, YU238259, and GW843682X, on the efficiency of CRISPR/Cas9-mediated NHEJ gene editing. The results showed the optimal concentrations of the small molecules, including Repsox, Zidovudine, IOX1, GSK-J4, YU238259, and GW843682X, for in vitro-cultured PK15 viability. Compared with the control group, the single small molecules Repsox, Zidovudine, GSK-J4, and IOX1 increased the efficiency of NHEJ-mediated gene editing 3.16-fold, 1.17-fold, 1.16-fold, and 1.120-fold, respectively, in the Cas9-sgRNA RNP delivery system. There were no benefits when using YU238259 and GW843682X compared with the control group. In the CRISPR/Cas9 plasmid delivery system, the Repsox, Zidovudine, IOX1, and GSK-J4 treatments increased the efficiency of NHEJ-mediated gene editing 1.47-fold, 1.15-fold, 1.21-fold, and 1.23-fold, respectively, compared with the control group. Repsox can also improve the efficiency of NHEJ-mediated multi-gene editing based on a CRISPR sgRNA-tRNA array. We also explored the mechanism of Repsox’s effect on the efficiency of NHEJ-mediated gene editing. The results showed that Repsox reduces the expression levels of SMAD2, SMAD3, and SMAD4 in the TGF-β pathway, indicating that Repsox can increase the efficiency of CRISPR NHEJ-mediated gene editing in porcine cells through the TGF-β pathway. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

18 pages, 1899 KiB  
Article
MALAT1 Expression Is Deregulated in miR-34a Knockout Cell Lines
by Andrea Corsi, Tonia De Simone, Angela Valentino, Elisa Orlandi, Chiara Stefani, Cristina Patuzzo, Stefania Fochi, Maria Giusy Bruno, Elisabetta Trabetti, John Charles Rotondo, Chiara Mazziotta, Maria Teresa Valenti, Alessandra Ruggiero, Donato Zipeto, Cristina Bombieri and Maria Grazia Romanelli
Non-Coding RNA 2025, 11(4), 60; https://doi.org/10.3390/ncrna11040060 - 5 Aug 2025
Abstract
Background/Objectives: Non-coding microRNA-34a (miR-34a) regulates the expression of key factors involved in several cellular processes, such as differentiation, apoptosis, proliferation, cell cycle, and senescence. Deregulation of the expression of these factors is implicated in the onset and progression of several human diseases, including [...] Read more.
Background/Objectives: Non-coding microRNA-34a (miR-34a) regulates the expression of key factors involved in several cellular processes, such as differentiation, apoptosis, proliferation, cell cycle, and senescence. Deregulation of the expression of these factors is implicated in the onset and progression of several human diseases, including cancer, neurodegenerative disorders, and pathologies associated with viral infections and inflammation. Despite numerous studies, the molecular mechanisms regulated by miR-34a remain to be fully understood. The present study aimed to generate miR-34a knockout cell lines to identify novel genes potentially regulated by its expression. Methods: We employed the CRISPR-Cas9 gene editing system to knock out the hsa-miR-34a gene in HeLa and 293T cell lines, two widely used models for studying molecular and cellular mechanisms. We compared proliferation rates and gene expression profiles via RNA-seq and qPCR analyses between the wild-type and miR-34a KO cell lines. Results: Knockout of miR-34a resulted in a decreased proliferation rate in both cell lines. Noteworthy, the ablation of miR-34a resulted in increased expression of the long non-coding RNA MALAT1. Additionally, miR-34a-5p silencing in the A375 melanoma cell line led to MALAT1 overexpression. Conclusions: Our findings support the role of the miR-34a/MALAT1 axis in regulating proliferation processes. Full article
(This article belongs to the Section Long Non-Coding RNA)
Show Figures

Figure 1

22 pages, 2630 KiB  
Review
Transfection Technologies for Next-Generation Therapies
by Dinesh Simkhada, Su Hui Catherine Teo, Nandu Deorkar and Mohan C. Vemuri
J. Clin. Med. 2025, 14(15), 5515; https://doi.org/10.3390/jcm14155515 - 5 Aug 2025
Abstract
Background: Transfection is vital for gene therapy, mRNA treatments, CAR-T cell therapy, and regenerative medicine. While viral vectors are effective, non-viral systems like lipid nanoparticles (LNPs) offer safer, more flexible alternatives. This work explores emerging non-viral transfection technologies to improve delivery efficiency [...] Read more.
Background: Transfection is vital for gene therapy, mRNA treatments, CAR-T cell therapy, and regenerative medicine. While viral vectors are effective, non-viral systems like lipid nanoparticles (LNPs) offer safer, more flexible alternatives. This work explores emerging non-viral transfection technologies to improve delivery efficiency and therapeutic outcomes. Methods: This review synthesizes the current literature and recent advancements in non-viral transfection technologies. It focuses on the mechanisms, advantages, and limitations of various delivery systems, including lipid nanoparticles, biodegradable polymers, electroporation, peptide-based carriers, and microfluidic platforms. Comparative analysis was conducted to evaluate their performance in terms of transfection efficiency, cellular uptake, biocompatibility, and potential for clinical translation. Several academic search engines and online resources were utilized for data collection, including Science Direct, PubMed, Google Scholar Scopus, the National Cancer Institute’s online portal, and other reputable online databases. Results: Non-viral systems demonstrated superior performance in delivering mRNA, siRNA, and antisense oligonucleotides, particularly in clinical applications. Biodegradable polymers and peptide-based systems showed promise in enhancing biocompatibility and targeted delivery. Electroporation and microfluidic systems offered precise control over transfection parameters, improving reproducibility and scalability. Collectively, these innovations address key challenges in gene delivery, such as stability, immune response, and cell-type specificity. Conclusions: The continuous evolution of transfection technologies is pivotal for advancing gene and cell-based therapies. Non-viral delivery systems, particularly LNPs and emerging platforms like microfluidics and biodegradable polymers, offer safer and more adaptable alternatives to viral vectors. These innovations are critical for optimizing therapeutic efficacy and enabling personalized medicine, immunotherapy, and regenerative treatments. Future research should focus on integrating these technologies to develop next-generation transfection platforms with enhanced precision and clinical applicability. Full article
Show Figures

Figure 1

18 pages, 5256 KiB  
Article
Impact of Alginate Oligosaccharides on Ovarian Performance and the Gut Microbial Community in Mice with D-Galactose-Induced Premature Ovarian Insufficiency
by Yan Zhang, Hongda Pan, Dao Xiang, Hexuan Qu and Shuang Liang
Antioxidants 2025, 14(8), 962; https://doi.org/10.3390/antiox14080962 (registering DOI) - 5 Aug 2025
Abstract
Premature ovarian insufficiency (POI) is an important factor in female infertility and is often associated with oxidative stress. Alginate oligosaccharides (AOSs), derived from the degradation of alginate, have been demonstrated to have protective effects against various oxidative stress-related diseases. However, the impact of [...] Read more.
Premature ovarian insufficiency (POI) is an important factor in female infertility and is often associated with oxidative stress. Alginate oligosaccharides (AOSs), derived from the degradation of alginate, have been demonstrated to have protective effects against various oxidative stress-related diseases. However, the impact of AOSs on POI has not been previously explored. The current study explored the effects of AOSs on ovarian dysfunction in a mouse model of POI induced by D-galactose (D-gal). Female C57BL/6 mice were randomly divided into five groups: the control (CON), POI model (D-gal), and low-, medium-, and high-dose AOS groups (AOS-L, 100 mg/kg/day; AOS-M, 150 mg/kg/day; AOS-H, 200 mg/kg/day). For 42 consecutive days, mice in the D-gal, AOS-L, AOS-M, and AOS-H groups received daily intraperitoneal injections of D-gal (200 mg/kg/day), whereas those in the CON group received equivalent volumes of sterile saline. Following D-gal injection, AOSs were administered via gavage at the specified doses; mice in the CON and D-gal groups received sterile saline instead. AOS treatment markedly improved estrous cycle irregularities, normalized serum hormone levels, reduced granulosa cell apoptosis, and increased follicle counts in POI mice. Moreover, AOSs significantly reduced ovarian oxidative stress and senescence in POI mice, as indicated by lower levels of malondialdehyde (MDA), higher activities of catalase (CAT) and superoxide dismutase (SOD), and decreased protein expression of 4-hydroxynonenal (4-HNE), nitrotyrosine (NTY), 8-hydroxydeoxyguanosine (8-OHdG), and p16 in ovarian tissue. Analysis of the gut microbiota through 16S rRNA gene sequencing and short-chain fatty acid (SCFA) analysis revealed significant differences in gut microbiota composition and SCFA levels (acetic acid and total SCFAs) between control and D-gal-induced POI mice. These differences were largely alleviated by AOS treatment. AOSs changed the gut microbiota by increasing the abundance of Ligilactobacillus and decreasing the abundance of Clostridiales, Clostridiaceae, Marinifilaceae, and Clostridium_T. Additionally, AOSs mitigated the decline in acetic acid and total SCFA levels observed in POI mice. Notably, the total SCFA level was significantly correlated with the abundance of Ligilactobacillus, Marinifilaceae, and Clostridium_T. In conclusion, AOS intervention effectively mitigates ovarian oxidative stress, restores gut microbiota homeostasis, and regulates the microbiota–SCFA axis, collectively improving D-gal-induced POI. Therefore, AOSs represent a promising therapeutic strategy for POI management. Full article
(This article belongs to the Section Health Outcomes of Antioxidants and Oxidative Stress)
Show Figures

Figure 1

23 pages, 4178 KiB  
Article
Taxonomic Biomarkers of Gut Microbiota with Potential Clinical Utility in Mexican Adults with Obesity and Depressive and Anxiety Symptoms
by María Alejandra Samudio-Cruz, Daniel Cerqueda-García, Elizabeth Cabrera-Ruiz, Alexandra Luna-Angulo, Samuel Canizales-Quinteros, Carlos Landa-Solis, Gabriela Angélica Martínez-Nava, Paul Carrillo-Mora, Edgar Rangel-López, Juan Ríos-Martínez, Blanca López-Contreras, Jesús Fernando Valencia-León and Laura Sánchez-Chapul
Microorganisms 2025, 13(8), 1828; https://doi.org/10.3390/microorganisms13081828 - 5 Aug 2025
Abstract
While the gut microbiota of obese children in Mexico has been studied, its relationship with depressive and anxiety symptoms in obese adults remains unexplored. The aim of this study was to describe the gut microbiota profile of Mexican adults with obesity and its [...] Read more.
While the gut microbiota of obese children in Mexico has been studied, its relationship with depressive and anxiety symptoms in obese adults remains unexplored. The aim of this study was to describe the gut microbiota profile of Mexican adults with obesity and its association with depression and anxiety. We sequenced the V3-V4 region of the 16S rRNA gene from stool samples of obese adults categorized into four groups: control (OCG), with depressive symptoms (OD), with anxiety symptoms (OAx), or with both (ODAx). Alpha diversity was assessed using t-tests, beta diversity was assessed with PERMANOVA, and taxonomic differences was assessed with LEfSe. Associations between bacterial genera and clinical variables were analyzed using the Maaslin2 library. Bacteroidota was the most prevalent phylum, and Prevotella was the dominant enterotype across all groups. Although overall diversity did not differ significantly, 30 distinct taxonomic biomarkers were identified among groups as follows: 4 in OCG (Firmicutes), 5 in OD (Firmicutes, Bacteroidota), 13 in OAx (Firmicutes, Bacteroidetes, Fusobacteroidota, Proteobacteria), and 8 in ODAx (Firmicutes). This is the first study to identify distinct gut microbiota profiles in obese Mexican adults with depressive and anxiety symptoms. These findings suggest important microbial biomarkers for improving the diagnosis and treatment of mental health conditions in obesity. Full article
(This article belongs to the Special Issue Gut Microbiota: Influences and Impacts on Human Health)
Show Figures

Figure 1

16 pages, 4746 KiB  
Article
SARS-CoV-2 Nsp1 Is a Major Suppressor of HLA Class I and Class II Expression
by Ivo Schirmeister, Nicolas Eckert, Sebastian Weigang, Jonas Fuchs, Lisa Kern, Georg Kochs and Anne Halenius
Viruses 2025, 17(8), 1083; https://doi.org/10.3390/v17081083 - 5 Aug 2025
Viewed by 30
Abstract
Human leukocyte antigen class I (HLA-I) molecules present intracellular peptides on the cell surface to enable CD8+ T cells to effectively control viral infections. Many viruses disrupt this antigen presentation pathway to evade immune detection. In this study, we demonstrate that SARS-CoV-2 Nsp1 [...] Read more.
Human leukocyte antigen class I (HLA-I) molecules present intracellular peptides on the cell surface to enable CD8+ T cells to effectively control viral infections. Many viruses disrupt this antigen presentation pathway to evade immune detection. In this study, we demonstrate that SARS-CoV-2 Nsp1 impairs both the constitutive and interferon-γ (IFN-γ)-induced upregulation of HLA-I. Moreover, Nsp1 also blocks IFN-γ-induced expression of HLA-II. We found that, contrary to previously published work, the early SARS-CoV-2 B 1.1.7 Alpha variant lacking the accessory protein ORF8 retained full capacity to downregulate HLA-I, comparable to an ORF8-expressing wild-type isolate. While ectopic overexpression of ORF8 could reduce HLA-I surface levels, this effect was only observed at high expression levels. In contrast, moderate expression of the viral protein Nsp1 was sufficient to potently suppress both basal and IFN-γ-induced HLA-I, as well as HLA-II expression. To probe the underlying mechanism, we analyzed HLA-I-associated genes in previously published RNA-sequencing datasets and confirmed that Nsp1 reduces expression of components required for HLA-I biosynthesis and antigen processing. These findings identify Nsp1 as a key factor that impairs antigen presentation pathways, potentially contributing to the ability of SARS-CoV-2 to modulate immune recognition. Full article
(This article belongs to the Section Coronaviruses)
Show Figures

Figure 1

8 pages, 675 KiB  
Case Report
A Case of Pediatric Subcutaneous Panniculitis-like T-Cell Lymphoma Successfully Treated with Immunosuppressive Therapy
by Min Chong Kim, Dong Hoon Shin and Jae Min Lee
Children 2025, 12(8), 1029; https://doi.org/10.3390/children12081029 - 5 Aug 2025
Viewed by 59
Abstract
Introduction: Subcutaneous panniculitis-like T-cell lymphoma (SPTCL) is a very rare subtype of cutaneous T-cell lymphoma. It is characterized by the neoplastic infiltration of subcutaneous adipose tissue. Its clinical presentation, including subcutaneous nodules, fever, and systemic symptoms, often mimics inflammatory panniculitis, making diagnosis difficult. [...] Read more.
Introduction: Subcutaneous panniculitis-like T-cell lymphoma (SPTCL) is a very rare subtype of cutaneous T-cell lymphoma. It is characterized by the neoplastic infiltration of subcutaneous adipose tissue. Its clinical presentation, including subcutaneous nodules, fever, and systemic symptoms, often mimics inflammatory panniculitis, making diagnosis difficult. Case Presentation: This case report describes a 14-year-old female presenting with fever, limb pain, swelling, and subcutaneous nodules, who was ultimately diagnosed with SPTCL via punch biopsy and BIOMED-2 clonality assays, confirming positive T-cell receptor-γ chain gene rearrangement. Positron emission tomography–computed tomography revealed diffuse subcutaneous involvement across multiple body regions. Methylprednisolone and cyclosporine A treatment rapidly resolved her symptoms, with laboratory parameters, including ferritin and inflammatory markers, showing significant improvement. Next-generation sequencing identified a heterozygous C9 gene mutation (c.346C>T, p.Arg116Ter), adding a novel genetic dimension to the case. Following a tapered discontinuation of immunosuppressive therapy, the patient achieved sustained remission without relapse for over 1 year. Conclusions: We report a case of adolescent SPTCL treated with immunosuppressive therapy and suggest that immunosuppressive therapy should be considered before chemotherapy in pediatric patients with SPTCL but without HLH. Full article
Show Figures

Figure 1

12 pages, 1076 KiB  
Article
Rapid Identification of the SNP Mutation in the ABCD4 Gene and Its Association with Multi-Vertebrae Phenotypes in Ujimqin Sheep Using TaqMan-MGB Technology
by Yue Zhang, Min Zhang, Hong Su, Jun Liu, Feifei Zhao, Yifan Zhao, Xiunan Li, Yanyan Yang, Guifang Cao and Yong Zhang
Animals 2025, 15(15), 2284; https://doi.org/10.3390/ani15152284 - 5 Aug 2025
Viewed by 46
Abstract
Ujimqin sheep, known for its distinctive multi-vertebrae phenotypes (T13L7, T14L6, and T14L7) and economic value, has garnered significant attention. However, conventional phenotypic detection methods suffer from low efficiency and high costs. In this study, based on a key SNP locus (ABCD4 gene, [...] Read more.
Ujimqin sheep, known for its distinctive multi-vertebrae phenotypes (T13L7, T14L6, and T14L7) and economic value, has garnered significant attention. However, conventional phenotypic detection methods suffer from low efficiency and high costs. In this study, based on a key SNP locus (ABCD4 gene, Chr7:89393414, C > T) identified through a genome-wide association study (GWAS), a TaqMan-MGB (minor groove binder) genotyping system was developed. the objective was to establish a high-throughput and efficient molecular marker-assisted selection (MAS) tool. Specific primers and dual fluorescent probes were designed to optimize the reaction system. Standard plasmids were adopted to validate genotyping accuracy. A total of 152 Ujimqin sheep were subjected to TaqMan-MGB genotyping, digital radiography (DR) imaging, and Sanger sequencing. the results showed complete concordance between TaqMan-MGB and Sanger sequencing, with an overall agreement rate of 83.6% with DR imaging. For individuals with T/T genotypes (127/139), the detection accuracy reached 91.4%. This method demonstrated high specificity, simplicity, and cost-efficiency, significantly reducing the time and financial burden associated with traditional imaging-based approaches. the findings indicate that the TaqMan-MGB technique can accurately identify the T/T genotype at the SNP site and its strong association with the multi-vertebrae phenotypes, offering an effective and reliable tool for molecular breeding of Ujimqin sheep. Full article
(This article belongs to the Section Animal Genetics and Genomics)
Show Figures

Figure 1

18 pages, 8203 KiB  
Article
Puerarin Enhances Eggshell Quality by Mitigating Uterine Senescence in Late-Phase Laying Breeder Hens
by Zhenwu Huang, Guangju Wang, Mengjie Xu, Yanru Shi, Jinghai Feng, Minhong Zhang and Chunmei Li
Antioxidants 2025, 14(8), 960; https://doi.org/10.3390/antiox14080960 (registering DOI) - 5 Aug 2025
Viewed by 139
Abstract
The deterioration of uterine calcium transport capacity induced by aging is a common problem for late-laying period hens, causing decline in eggshell quality. This study aimed to investigate the effects and possible regulatory mechanisms of dietary puerarin (PU) on calcium transport and eggshell [...] Read more.
The deterioration of uterine calcium transport capacity induced by aging is a common problem for late-laying period hens, causing decline in eggshell quality. This study aimed to investigate the effects and possible regulatory mechanisms of dietary puerarin (PU) on calcium transport and eggshell quality in aged hens. Two hundred eighty-eight Hubbard Efficiency Plus broiler breeder hens (50-week-old) were randomly allocated to three dietary treatments containing 0, 40, or 200 mg/kg puerarin (PU), with 8 replicates of 12 birds each, for an 8-week trial. The results demonstrated that dietary PU ameliorated the eggshell thickness and strength, which in turn reduced the broken egg rate (p < 0.05). Histological analysis showed that PU improved uterus morphology and increased epithelium height in the uterus (p < 0.05). Antioxidative capacity was significantly improved via upregulation of Nrf2, HO-1, and GPX1 mRNA expression in the uterus (p < 0.05), along with enhanced total antioxidant capacity (T-AOC) and glutathione peroxidase (GSH-PX) activity, and decreased levels of the oxidative stress marker malondialdehyde (MDA) (p < 0.05). Meanwhile, PU treatment reduced the apoptotic index of the uterus, followed by a significant decrease in expression of pro-apoptotic genes Caspase3 and BAX and the rate of BAX/BCL-2. Additionally, calcium content in serum and uterus, as well as the activity of Ca2+-ATPase in the duodenum and uterus, were increased by dietary PU (p < 0.05). The genes involved in calcium transport including ERα, KCNA1, CABP-28K, and OPN in the uterus were upregulated by PU supplementation (p < 0.05). The 16S rRNA gene sequencing revealed that dietary PU supplementation could reverse the age-related decline in the relative abundance of Bacteroidota within the uterus (p < 0.05). Overall, dietary PU can improve eggshell quality and calcium transport through enhanced antioxidative defenses and mitigation of age-related uterine degeneration. Full article
Show Figures

Graphical abstract

11 pages, 260 KiB  
Article
The Association of the COL27A1 rs946053 and TNC rs2104772s with Tendinopathies: A Case–Control Study in High-Level Croatian Athletes
by Goran Vrgoč, Saša Janković, Damir Knjaz, Ivana Duvnjak Orešković, Gordan Lauc and Nina Šimunić-Briški
Genes 2025, 16(8), 935; https://doi.org/10.3390/genes16080935 (registering DOI) - 4 Aug 2025
Viewed by 134
Abstract
Background/Objectives: The increased risk of developing tendinopathies in athlete populations has led to investigations of several genes associated with tendon properties, suggesting that some individuals have a greater genetic predisposition for developing tendinopathies. The main purpose of this study was to investigate how [...] Read more.
Background/Objectives: The increased risk of developing tendinopathies in athlete populations has led to investigations of several genes associated with tendon properties, suggesting that some individuals have a greater genetic predisposition for developing tendinopathies. The main purpose of this study was to investigate how the functional polymorphisms within the COL5A1, COL27A1 and TNC genes impact the risk of developing tendinopathies in high-level Croatian athletes. Methods: For this case–control genetic study, we recruited 63 high-level athletes with a diagnosis of tendinopathies and 92 healthy asymptomatic individuals as controls. All individuals were genotyped for three single-nucleotide polymorphisms (SNPs) within the COL5A1, COL27A1 and TNC genes using the pyrosequencing method. Results: TNC rs2104772 TT (p = 0.0089) and the T-T-T haplotype (p = 0.0234), constructed from rs12722, rs946053 and rs2104772, were significantly overrepresented in cases versus controls, implicating a predisposition for tendinopathies. COL27A1 rs946053 GG (p = 0.0118) and the G-A-C haplotype (p = 0.0424), constructed from rs12722, rs946053 and rs2104772, were significantly overrepresented in controls, implicating a protective role. Conclusions: These results further support associations between functional polymorphisms within the COL27A1 and TNC genes and the risk of tendinopathies in high-level athletes. Further research is needed to replicate these results in various populations and larger cohorts. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Back to TopTop