Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (701)

Search Parameters:
Keywords = Stacked Ensemble

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 3409 KiB  
Article
Short-Term Prediction Intervals for Photovoltaic Power via Multi-Level Analysis and Dual Dynamic Integration
by Kaiyang Kuang, Jingshan Zhang, Qifan Chen, Yan Zhou, Yan Yan, Litao Dai and Guanghu Wang
Electronics 2025, 14(15), 3068; https://doi.org/10.3390/electronics14153068 (registering DOI) - 31 Jul 2025
Abstract
There is an obvious correlation between the photovoltaic (PV) output of different physical levels; that is, the overall power change trend of large-scale regional (high-level) stations can provide a reference for the prediction of the output of sub-regional (low-level) stations. The current PV [...] Read more.
There is an obvious correlation between the photovoltaic (PV) output of different physical levels; that is, the overall power change trend of large-scale regional (high-level) stations can provide a reference for the prediction of the output of sub-regional (low-level) stations. The current PV prediction methods have not deeply explored the multi-level PV power generation elements and have not considered the correlation between different levels, resulting in the inability to obtain potential information on PV power generation. Moreover, traditional probabilistic prediction models lack adaptability, which can lead to a decrease in prediction performance under different PV prediction scenarios. Therefore, a probabilistic prediction method for short-term PV power based on multi-level adaptive dynamic integration is proposed in this paper. Firstly, an analysis is conducted on the multi-level PV power stations together with the influence of the trend of high-level PV power generation on the forecast of low-level power generation. Then, the PV data are decomposed into multiple layers using the complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN) and analyzed by combining fuzzy entropy (FE) and mutual information (MI). After that, a new multi-level model prediction method, namely, the improved dual dynamic adaptive stacked generalization (I-Stacking) ensemble learning model, is proposed to construct short-term PV power generation prediction models. Finally, an improved dynamic adaptive kernel density estimation (KDE) method for prediction errors is proposed, which optimizes the performance of the prediction intervals (PIs) through variable bandwidth. Through comparative experiments and analysis using traditional methods, the effectiveness of the proposed method is verified. Full article
Show Figures

Figure 1

23 pages, 978 KiB  
Article
Emotional Analysis in a Morphologically Rich Language: Enhancing Machine Learning with Psychological Feature Lexicons
by Ron Keinan, Efraim Margalit and Dan Bouhnik
Electronics 2025, 14(15), 3067; https://doi.org/10.3390/electronics14153067 (registering DOI) - 31 Jul 2025
Abstract
This paper explores emotional analysis in Hebrew texts, focusing on improving machine learning techniques for depression detection by integrating psychological feature lexicons. Hebrew’s complex morphology makes emotional analysis challenging, and this study seeks to address that by combining traditional machine learning methods with [...] Read more.
This paper explores emotional analysis in Hebrew texts, focusing on improving machine learning techniques for depression detection by integrating psychological feature lexicons. Hebrew’s complex morphology makes emotional analysis challenging, and this study seeks to address that by combining traditional machine learning methods with sentiment lexicons. The dataset consists of over 350,000 posts from 25,000 users on the health-focused social network “Camoni” from 2010 to 2021. Various machine learning models—SVM, Random Forest, Logistic Regression, and Multi-Layer Perceptron—were used, alongside ensemble techniques like Bagging, Boosting, and Stacking. TF-IDF was applied for feature selection, with word and character n-grams, and pre-processing steps like punctuation removal, stop word elimination, and lemmatization were performed to handle Hebrew’s linguistic complexity. The models were enriched with sentiment lexicons curated by professional psychologists. The study demonstrates that integrating sentiment lexicons significantly improves classification accuracy. Specific lexicons—such as those for negative and positive emojis, hostile words, anxiety words, and no-trust words—were particularly effective in enhancing model performance. Our best model classified depression with an accuracy of 84.1%. These findings offer insights into depression detection, suggesting that practitioners in mental health and social work can improve their machine learning models for detecting depression in online discourse by incorporating emotion-based lexicons. The societal impact of this work lies in its potential to improve the detection of depression in online Hebrew discourse, offering more accurate and efficient methods for mental health interventions in online communities. Full article
(This article belongs to the Special Issue Techniques and Applications of Multimodal Data Fusion)
Show Figures

Figure 1

20 pages, 3810 KiB  
Article
Exploring Drought Response: Machine-Learning-Based Classification of Rice Tolerance Using Root and Physiological Traits
by Wuttichai Gunnula, Nantawan Kanawapee, Hathairat Chokthaweepanich and Piyaporn Phansak
Agronomy 2025, 15(8), 1840; https://doi.org/10.3390/agronomy15081840 - 29 Jul 2025
Viewed by 216
Abstract
Drought is a key limitation for rice productivity. While oxidative stress markers like hydrogen peroxide (H2O2) are important for drought adaptation, the predictive value of combining root anatomical and physiological traits is underexplored. We assessed 20 rice cultivars under [...] Read more.
Drought is a key limitation for rice productivity. While oxidative stress markers like hydrogen peroxide (H2O2) are important for drought adaptation, the predictive value of combining root anatomical and physiological traits is underexplored. We assessed 20 rice cultivars under drought and control conditions using a random forest, a multi-layer perceptron, and a SHAP-optimized stacking ensemble. The stacking ensemble achieved the highest classification accuracy (81.8%) and identified hydrogen peroxide, relative water content, and endodermis inner circumference as key predictors. SHAP analysis revealed important interactions between root anatomical and physiological traits, providing new biological insights into drought tolerance. Our integrative approach, supported by robust cross-validation, improves predictive power and transparency for breeding drought-resilient rice cultivars. Full article
(This article belongs to the Section Precision and Digital Agriculture)
Show Figures

Figure 1

33 pages, 11684 KiB  
Article
Face Spoofing Detection with Stacking Ensembles in Work Time Registration System
by Rafał Klinowski and Mirosław Kordos
Appl. Sci. 2025, 15(15), 8402; https://doi.org/10.3390/app15158402 - 29 Jul 2025
Viewed by 78
Abstract
This paper introduces a passive face-authenticity detection system, designed for integration into an employee work time registration platform. The system is implemented as a stacking ensemble of multiple models. Each model independently assesses whether a camera is capturing a live human face or [...] Read more.
This paper introduces a passive face-authenticity detection system, designed for integration into an employee work time registration platform. The system is implemented as a stacking ensemble of multiple models. Each model independently assesses whether a camera is capturing a live human face or a spoofed representation, such as a photo or video. The ensemble comprises a convolutional neural network (CNN), a smartphone bezel-detection algorithm to identify faces displayed on electronic devices, a face context analysis module, and additional CNNs for image processing. The outputs of these models are aggregated by a neural network that delivers the final classification decision. We examined various combinations of models within the ensemble and compared the performance of our approach against existing methods through experimental evaluation. Full article
(This article belongs to the Special Issue Application of Artificial Intelligence in Image Processing)
Show Figures

Figure 1

12 pages, 1066 KiB  
Article
Prediction of the Maximum and Minimum Prices of Stocks in the Stock Market Using a Hybrid Model Based on Stacking
by Sebastian Tuesta, Nahum Flores and David Mauricio
Algorithms 2025, 18(8), 471; https://doi.org/10.3390/a18080471 - 28 Jul 2025
Viewed by 203
Abstract
Predicting stock prices on stock markets is challenging due to the nonlinear and nonstationary nature of financial markets. This study presents a hybrid model based on integrated machine learning (ML) techniques—neural networks, support vector regression (SVR), and decision trees—that uses the stacking method [...] Read more.
Predicting stock prices on stock markets is challenging due to the nonlinear and nonstationary nature of financial markets. This study presents a hybrid model based on integrated machine learning (ML) techniques—neural networks, support vector regression (SVR), and decision trees—that uses the stacking method to estimate the next day’s maximum and minimum stock prices. The model’s performance was evaluated using three data sets: Brazil’s São Paulo Stock Exchange (iBovespa)—Companhia Energética do Rio Grande do Norte (CSRN) and CPFL Energia (CPFE)—and one from the New York Stock Exchange (NYSE), the Dow Jones Industrial Average (DJI). The datasets covered the following time periods: CSRN and CPFE from 1 January 2008 to 30 September 2013, and DJI from 3 December 2018 to 31 August 2024. For the CSRN ensemble, the hybrid model achieved a mean absolute percentage error (MAPE) of 0.197% for maximum price and 0.224% for minimum price, outperforming results from the literature. For the CPFE set, the model showed a MAPE of 0.834% for the maximum price and 0.937% for the minimum price, demonstrating comparable accuracy. The model obtained a MAPE of 0.439% for the DJI set for maximum price and 0.474% for minimum price, evidencing its applicability across different market contexts. These results suggest that the proposed hybrid approach offers a robust alternative for stock price prediction by overcoming the limitations of using a single ML technique. Full article
Show Figures

Figure 1

37 pages, 7561 KiB  
Article
Efficient Machine Learning-Based Prediction of Solar Irradiance Using Multi-Site Data
by Hassan N. Noura, Zaid Allal, Ola Salman and Khaled Chahine
Future Internet 2025, 17(8), 336; https://doi.org/10.3390/fi17080336 - 27 Jul 2025
Viewed by 140
Abstract
Photovoltaic panels have become a promising solution for generating renewable energy and reducing our reliance on fossil fuels by capturing solar energy and converting it into electricity. The effectiveness of this conversion depends on several factors, such as the quality of the solar [...] Read more.
Photovoltaic panels have become a promising solution for generating renewable energy and reducing our reliance on fossil fuels by capturing solar energy and converting it into electricity. The effectiveness of this conversion depends on several factors, such as the quality of the solar panels and the amount of solar radiation received in a specific region. This makes accurate solar irradiance forecasting essential for planning and managing efficient solar power systems. This study examines the application of machine learning (ML) models for accurately predicting global horizontal irradiance (GHI) using a three-year dataset from six distinct photovoltaic stations: NELHA, ULL, HSU, RaZON+, UNLV, and NWTC. The primary aim is to identify optimal shared features for GHI prediction across multiple sites using a 30 min time shift based on autocorrelation analysis. Key features identified for accurate GHI prediction include direct normal irradiance (DNI), diffuse horizontal irradiance (DHI), and solar panel temperatures. The predictions were performed using tree-based algorithms and ensemble learners, achieving R2 values exceeding 95% at most stations, with NWTC reaching 99%. Gradient Boosting Regression (GBR) performed best at NELHA, NWTC, and RaZON, while Multi-Layer Perceptron (MLP) excelled at ULL and UNLV. CatBoost was optimal for HSU. The impact of time-shifting values on performance was also examined, revealing that larger shifts led to performance deterioration, though MLP performed well under these conditions. The study further proposes a stacking ensemble approach to enhance model generalizability, integrating the strengths of various models for more robust GHI prediction. Full article
(This article belongs to the Section Smart System Infrastructure and Applications)
Show Figures

Figure 1

26 pages, 829 KiB  
Article
Enhanced Face Recognition in Crowded Environments with 2D/3D Features and Parallel Hybrid CNN-RNN Architecture with Stacked Auto-Encoder
by Samir Elloumi, Sahbi Bahroun, Sadok Ben Yahia and Mourad Kaddes
Big Data Cogn. Comput. 2025, 9(8), 191; https://doi.org/10.3390/bdcc9080191 - 22 Jul 2025
Viewed by 316
Abstract
Face recognition (FR) in unconstrained conditions remains an open research topic and an ongoing challenge. The facial images exhibit diverse expressions, occlusions, variations in illumination, and heterogeneous backgrounds. This work aims to produce an accurate and robust system for enhanced Security and Surveillance. [...] Read more.
Face recognition (FR) in unconstrained conditions remains an open research topic and an ongoing challenge. The facial images exhibit diverse expressions, occlusions, variations in illumination, and heterogeneous backgrounds. This work aims to produce an accurate and robust system for enhanced Security and Surveillance. A parallel hybrid deep learning model for feature extraction and classification is proposed. An ensemble of three parallel extraction layer models learns the best representative features using CNN and RNN. 2D LBP and 3D Mesh LBP are computed on face images to extract image features as input to two RNNs. A stacked autoencoder (SAE) merged the feature vectors extracted from the three CNN-RNN parallel layers. We tested the designed 2D/3D CNN-RNN framework on four standard datasets. We achieved an accuracy of 98.9%. The hybrid deep learning model significantly improves FR against similar state-of-the-art methods. The proposed model was also tested on an unconstrained conditions human crowd dataset, and the results were very promising with an accuracy of 95%. Furthermore, our model shows an 11.5% improvement over similar hybrid CNN-RNN architectures, proving its robustness in complex environments where the face can undergo different transformations. Full article
Show Figures

Figure 1

17 pages, 2307 KiB  
Article
DeepBiteNet: A Lightweight Ensemble Framework for Multiclass Bug Bite Classification Using Image-Based Deep Learning
by Doston Khasanov, Halimjon Khujamatov, Muksimova Shakhnoza, Mirjamol Abdullaev, Temur Toshtemirov, Shahzoda Anarova, Cheolwon Lee and Heung-Seok Jeon
Diagnostics 2025, 15(15), 1841; https://doi.org/10.3390/diagnostics15151841 - 22 Jul 2025
Viewed by 294
Abstract
Background/Objectives: The accurate identification of insect bites from images of skin is daunting due to the fine gradations among diverse bite types, variability in human skin response, and inconsistencies in image quality. Methods: For this work, we introduce DeepBiteNet, a new [...] Read more.
Background/Objectives: The accurate identification of insect bites from images of skin is daunting due to the fine gradations among diverse bite types, variability in human skin response, and inconsistencies in image quality. Methods: For this work, we introduce DeepBiteNet, a new ensemble-based deep learning model designed to perform robust multiclass classification of insect bites from RGB images. Our model aggregates three semantically diverse convolutional neural networks—DenseNet121, EfficientNet-B0, and MobileNetV3-Small—using a stacked meta-classifier designed to aggregate their predicted outcomes into an integrated, discriminatively strong output. Our technique balances heterogeneous feature representation with suppression of individual model biases. Our model was trained and evaluated on a hand-collected set of 1932 labeled images representing eight classes, consisting of common bites such as mosquito, flea, and tick bites, and unaffected skin. Our domain-specific augmentation pipeline imputed practical variability in lighting, occlusion, and skin tone, thereby boosting generalizability. Results: Our model, DeepBiteNet, achieved a training accuracy of 89.7%, validation accuracy of 85.1%, and test accuracy of 84.6%, and surpassed fifteen benchmark CNN architectures on all key indicators, viz., precision (0.880), recall (0.870), and F1-score (0.875). Our model, optimized for mobile deployment with quantization and TensorFlow Lite, enables rapid on-client computation and eliminates reliance on cloud-based processing. Conclusions: Our work shows how ensemble learning, when carefully designed and combined with realistic data augmentation, can boost the reliability and usability of automatic insect bite diagnosis. Our model, DeepBiteNet, forms a promising foundation for future integration with mobile health (mHealth) solutions and may complement early diagnosis and triage in dermatologically underserved regions. Full article
(This article belongs to the Special Issue Artificial Intelligence in Biomedical Diagnostics and Analysis 2024)
Show Figures

Figure 1

21 pages, 2395 KiB  
Article
A Robust Stacking-Based Ensemble Model for Predicting Cardiovascular Diseases
by Hayat Bihri, Lalla Amina Charaf, Salma Azzouzi and My El Hassan Charaf
AI 2025, 6(7), 160; https://doi.org/10.3390/ai6070160 - 21 Jul 2025
Viewed by 317
Abstract
Background/Objectives: Cardiovascular diseases (CVDs) remain the primary cause of mortality worldwide, underscoring the critical importance of developing accurate early prediction models. In this study, we propose an advanced stacking ensemble learning framework to improve the predictive performance for CVD diagnosis. Methods: The methodology [...] Read more.
Background/Objectives: Cardiovascular diseases (CVDs) remain the primary cause of mortality worldwide, underscoring the critical importance of developing accurate early prediction models. In this study, we propose an advanced stacking ensemble learning framework to improve the predictive performance for CVD diagnosis. Methods: The methodology encompasses comprehensive data preprocessing, feature selection, cross-validation, and the construction of a stacking architecture integrating Random Forest (RF), Support Vector Machine (SVM), and CatBoost as base learners. Two meta-learning configurations were examined: Logistic Regression (LR) and a Multilayer Perceptron (MLP). Results: Experimental results indicate that the MLP-based stacking model achieves superior performance, with an accuracy of 97.06%, outperforming existing approaches reported in the literature. Furthermore, the model demonstrates high recall (96.08%) and precision (98%), confirming its robustness and generalization capacity. Conclusions: Compared to individual classifiers and traditional ensemble methods, the proposed approach yields significantly enhanced predictive outcomes, highlighting the potential of deep learning-based stacking strategies in cardiovascular risk assessment. Full article
(This article belongs to the Section Medical & Healthcare AI)
Show Figures

Figure 1

42 pages, 2129 KiB  
Review
Ensemble Learning Approaches for Multi-Class Intrusion Detection Systems for the Internet of Vehicles (IoV): A Comprehensive Survey
by Manal Alharthi, Faiza Medjek and Djamel Djenouri
Future Internet 2025, 17(7), 317; https://doi.org/10.3390/fi17070317 - 19 Jul 2025
Viewed by 376
Abstract
The emergence of the Internet of Vehicles (IoV) has revolutionized intelligent transportation and communication systems. However, IoV presents many complex and ever-changing security challenges and thus requires robust cybersecurity protocols. This paper comprehensively describes and evaluates ensemble learning approaches for multi-class intrusion detection [...] Read more.
The emergence of the Internet of Vehicles (IoV) has revolutionized intelligent transportation and communication systems. However, IoV presents many complex and ever-changing security challenges and thus requires robust cybersecurity protocols. This paper comprehensively describes and evaluates ensemble learning approaches for multi-class intrusion detection systems in the IoV environment. The study evaluates several approaches, such as stacking, voting, boosting, and bagging. A comprehensive review of the literature spanning 2020 to 2025 reveals important trends and topics that require further investigation and the relative merits of different ensemble approaches. The NSL-KDD, CICIDS2017, and UNSW-NB15 datasets are widely used to evaluate the performance of Ensemble Learning-Based Intrusion Detection Systems (ELIDS). ELIDS evaluation is usually carried out using some popular performance metrics, including Precision, Accuracy, Recall, F1-score, and Area Under Receiver Operating Characteristic Curve (AUC-ROC), which were used to evaluate and measure the effectiveness of different ensemble learning methods. Given the increasing complexity and frequency of cyber threats in IoV environments, ensemble learning methods such as bagging, boosting, and stacking enhance adaptability and robustness. These methods aggregate multiple learners to improve detection rates, reduce false positives, and ensure more resilient intrusion detection models that can evolve alongside emerging attack patterns. Full article
Show Figures

Figure 1

32 pages, 2529 KiB  
Article
Cloud Adoption in the Digital Era: An Interpretable Machine Learning Analysis of National Readiness and Structural Disparities Across the EU
by Cristiana Tudor, Margareta Florescu, Persefoni Polychronidou, Pavlos Stamatiou, Vasileios Vlachos and Konstadina Kasabali
Appl. Sci. 2025, 15(14), 8019; https://doi.org/10.3390/app15148019 - 18 Jul 2025
Viewed by 251
Abstract
As digital transformation accelerates across Europe, cloud computing plays an increasingly central role in modernizing public services and private enterprises. Yet adoption rates vary markedly among EU member states, reflecting deeper structural differences in digital capacity. This study employs explainable machine learning to [...] Read more.
As digital transformation accelerates across Europe, cloud computing plays an increasingly central role in modernizing public services and private enterprises. Yet adoption rates vary markedly among EU member states, reflecting deeper structural differences in digital capacity. This study employs explainable machine learning to uncover the drivers of national cloud adoption across 27 EU countries using harmonized panel datasets spanning 2014–2021 and 2014–2024. A methodological pipeline combining Random Forests (RF), XGBoost, Support Vector Machines (SVM), and Elastic Net regression is implemented, with model tuning conducted via nested cross-validation. Among individual models, Elastic Net and SVM delivered superior predictive performance, while a stacked ensemble achieved the best overall accuracy (MAE = 0.214, R2 = 0.948). The most interpretable model, a standardized RF with country fixed effects, attained MAE = 0.321, and R2 = 0.864, making it well-suited for policy analysis. Variable importance analysis reveals that the density of ICT specialists is the strongest predictor of adoption, followed by broadband access and higher education. Fixed-effect modeling confirms significant national heterogeneity, with countries like Finland and Luxembourg consistently leading adoption, while Bulgaria and Romania exhibit structural barriers. Partial dependence and SHAP analyses reveal nonlinear complementarities between digital skills and infrastructure. A hierarchical clustering of countries reveals three distinct digital maturity profiles, offering tailored policy pathways. These results directly support the EU Digital Decade’s strategic targets and provide actionable insights for advancing inclusive and resilient digital transformation across the Union. Full article
(This article belongs to the Special Issue Advanced Technologies Applied in Digital Media Era)
Show Figures

Figure 1

19 pages, 2355 KiB  
Article
Multistage Molecular Simulations, Design, Synthesis, and Anticonvulsant Evaluation of 2-(Isoindolin-2-yl) Esters of Aromatic Amino Acids Targeting GABAA Receptors via π-π Stacking
by Santiago González-Periañez, Fabiola Hernández-Rosas, Carlos Alberto López-Rosas, Fernando Rafael Ramos-Morales, Jorge Iván Zurutuza-Lorméndez, Rosa Virginia García-Rodríguez, José Luís Olivares-Romero, Rodrigo Rafael Ramos-Hernández, Ivette Bravo-Espinoza, Abraham Vidal-Limon and Tushar Janardan Pawar
Int. J. Mol. Sci. 2025, 26(14), 6780; https://doi.org/10.3390/ijms26146780 - 15 Jul 2025
Viewed by 397
Abstract
Epilepsy remains a widespread neurological disorder, with approximately 30% of patients showing resistance to current antiepileptic therapies. To address this unmet need, a series of 2-(isoindolin-2-yl) esters derived from natural amino acids were designed and evaluated for their potential interaction with the GABA [...] Read more.
Epilepsy remains a widespread neurological disorder, with approximately 30% of patients showing resistance to current antiepileptic therapies. To address this unmet need, a series of 2-(isoindolin-2-yl) esters derived from natural amino acids were designed and evaluated for their potential interaction with the GABAA receptor. Sixteen derivatives were subjected to in silico assessments, including physicochemical and ADMET profiling, virtual screening–ensemble docking, and enhanced sampling molecular dynamics simulations (metadynamics calculations). Among these, compounds derived from the aromatic amino acids, phenylalanine, tyrosine, tryptophan, and histidine, exhibited superior predicted affinity, attributed to π–π stacking interactions at the benzodiazepine binding site of the GABAA receptor. Based on computational performance, the tyrosine and tryptophan derivatives were synthesized and further assessed in vivo using the pentylenetetrazole-induced seizure model in zebrafish (Danio rerio). The tryptophan derivative produced comparable behavioral seizure reduction to the reference drug diazepam at the tested concentrations. The results implies that aromatic amino acid-derived isoindoline esters are promising anticonvulsant candidates and support the hypothesis that π–π interactions may play a critical role in modulating GABAA receptor binding affinity. Full article
(This article belongs to the Special Issue Computational Studies in Drug Design and Discovery)
Show Figures

Graphical abstract

24 pages, 8171 KiB  
Article
Breast Cancer Image Classification Using Phase Features and Deep Ensemble Models
by Edgar Omar Molina Molina and Victor H. Diaz-Ramirez
Appl. Sci. 2025, 15(14), 7879; https://doi.org/10.3390/app15147879 - 15 Jul 2025
Viewed by 371
Abstract
Breast cancer is a leading cause of mortality among women worldwide. Early detection is crucial for increasing patient survival rates. Artificial intelligence, particularly convolutional neural networks (CNNs), has enabled the development of effective diagnostic systems by digitally processing mammograms. CNNs have been widely [...] Read more.
Breast cancer is a leading cause of mortality among women worldwide. Early detection is crucial for increasing patient survival rates. Artificial intelligence, particularly convolutional neural networks (CNNs), has enabled the development of effective diagnostic systems by digitally processing mammograms. CNNs have been widely used for the classification of breast cancer in images, obtaining accurate results similar in many cases to those of medical specialists. This work presents a hybrid feature extraction approach for breast cancer detection that employs variants of EfficientNetV2 network and convenient image representation based on phase features. First, a region of interest (ROI) is extracted from the mammogram. Next, a three-channel image is created using the local phase, amplitude, and orientation features of the ROI. A feature vector is constructed for the processed mammogram using the developed CNN model. The size of the feature vector is reduced using simple statistics, achieving a redundancy suppression of 99.65%. The reduced feature vector is classified as either malignant or benign using a classifier ensemble. Experimental results using a training/testing ratio of 70/30 on 15,506 mammography images from three datasets produced an accuracy of 86.28%, a precision of 78.75%, a recall of 86.14%, and an F1-score of 80.09% with the modified EfficientNetV2 model and stacking classifier. However, an accuracy of 93.47%, a precision of 87.61%, a recall of 93.19%, and an F1-score of 90.32% were obtained using only CSAW-M dataset images. Full article
(This article belongs to the Special Issue Object Detection and Image Processing Based on Computer Vision)
Show Figures

Figure 1

29 pages, 5459 KiB  
Article
Carbon Capture Using Metal Organic Frameworks (MOFs): Novel Custom Ensemble Learning Models for Prediction of CO2 Adsorption
by Zainab Iyiola, Eric Thompson Brantson, Nneoma Juanita Okeke, Kayode Sanni and Promise Longe
Processes 2025, 13(7), 2199; https://doi.org/10.3390/pr13072199 - 9 Jul 2025
Viewed by 533
Abstract
The accurate prediction of carbon dioxide (CO2) adsorption in metal–organic frameworks (MOFs) is critical for accelerating the discovery of high-performance materials for post-combustion carbon capture. Experimental screening of MOFs is often costly and time-consuming, creating a strong incentive to develop reliable [...] Read more.
The accurate prediction of carbon dioxide (CO2) adsorption in metal–organic frameworks (MOFs) is critical for accelerating the discovery of high-performance materials for post-combustion carbon capture. Experimental screening of MOFs is often costly and time-consuming, creating a strong incentive to develop reliable data-driven models. Despite extensive research, most studies rely on standalone models or generic ensemble strategies that fall short in handling the complex, nonlinear relationships inherent in adsorption data. In this study, a novel ensemble learning framework is developed by integrating five distinct regression algorithms: Random Forest, XGBoost, LightGBM, Support Vector Regression, and Multi-Layer Perceptron. These algorithms are combined into four custom ensemble strategies: equal-weighted voting, performance-weighted voting, stacking, and manual blending. A dataset comprising 1212 experimentally validated MOF entries with input descriptors including BET surface area, pore volume, pressure, temperature, and metal center is used to train and evaluate the models. The stacking ensemble yields the highest performance, with an R2 of 0.9833, an RMSE of 1.0016, and an MAE of 0.6630 on the test set. Model reliability is further confirmed through residual diagnostics, prediction intervals, and permutation importance, revealing pressure and temperature to be the most influential features. Ablation analysis highlights the complementary role of all base models, particularly Random Forest and LightGBM, in boosting ensemble performance. This study demonstrates that custom ensemble learning strategies not only improve predictive accuracy but also enhance model interpretability, offering a scalable and cost-effective tool for guiding experimental MOF design. Full article
Show Figures

Figure 1

30 pages, 4254 KiB  
Article
Hybrid Attention-Enhanced Xception and Dynamic Chaotic Whale Optimization for Brain Tumor Diagnosis
by Aliyu Tetengi Ibrahim, Ibrahim Hayatu Hassan, Mohammed Abdullahi, Armand Florentin Donfack Kana, Amina Hassan Abubakar, Mohammed Tukur Mohammed, Lubna A. Gabralla, Mohamad Khoiru Rusydi and Haruna Chiroma
Bioengineering 2025, 12(7), 747; https://doi.org/10.3390/bioengineering12070747 - 9 Jul 2025
Viewed by 390
Abstract
In medical diagnostics, brain tumor classification remains essential, as accurate and efficient models aid medical professionals in early detection and treatment planning. Deep learning methodologies for brain tumor classification have gained popularity due to their potential to deliver prompt and precise diagnostic results. [...] Read more.
In medical diagnostics, brain tumor classification remains essential, as accurate and efficient models aid medical professionals in early detection and treatment planning. Deep learning methodologies for brain tumor classification have gained popularity due to their potential to deliver prompt and precise diagnostic results. This article proposes a novel classification technique that integrates the Xception model with a hybrid attention mechanism and progressive image resizing to enhance performance. The methodology is built on a combination of preprocessing techniques, transfer learning architecture reconstruction, and dynamic fine-tuning strategies. To optimize key hyper-parameters, this study employed the Dynamic Chaotic Whale Optimization Algorithm. Additionally, we developed a novel learning rate scheduler that dynamically adjusts the learning rate based on image size at each training phase, improving training efficiency and model adaptability. Batch sizes and layer freezing methods were also adjusted according to image size. We constructed an ensemble approach by preserving models trained on different image sizes and merging their results using weighted averaging, bagging, boosting, stacking, blending, and voting techniques. Our proposed method was evaluated on benchmark datasets achieving remarkable accuracies of 99.67%, 99.09%, and 99.67% compared to the classical algorithms. Full article
Show Figures

Figure 1

Back to TopTop