Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (307)

Search Parameters:
Keywords = SfM photogrammetry

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 3348 KiB  
Article
Comparison of NeRF- and SfM-Based Methods for Point Cloud Reconstruction for Small-Sized Archaeological Artifacts
by Miguel Ángel Maté-González, Roy Yali, Jesús Rodríguez-Hernández, Enrique González-González and Julián Aguirre de Mata
Remote Sens. 2025, 17(14), 2535; https://doi.org/10.3390/rs17142535 - 21 Jul 2025
Viewed by 337
Abstract
This study presents a critical evaluation of image-based 3D reconstruction techniques for small archaeological artifacts, focusing on a quantitative comparison between Neural Radiance Fields (NeRF), its recent Gaussian Splatting (GS) variant, and traditional Structure-from-Motion (SfM) photogrammetry. The research targets artifacts smaller than 5 [...] Read more.
This study presents a critical evaluation of image-based 3D reconstruction techniques for small archaeological artifacts, focusing on a quantitative comparison between Neural Radiance Fields (NeRF), its recent Gaussian Splatting (GS) variant, and traditional Structure-from-Motion (SfM) photogrammetry. The research targets artifacts smaller than 5 cm, characterized by complex geometries and reflective surfaces that pose challenges for conventional recording methods. To address the limitations of traditional methods without resorting to the high costs associated with laser scanning, this study explores NeRF and GS as cost-effective and efficient alternatives. A comprehensive experimental framework was established, incorporating ground-truth data obtained using a metrological articulated arm and a rigorous quantitative evaluation based on root mean square (RMS) error, Chamfer distance, and point cloud density. The results indicate that while NeRF outperforms GS in terms of geometric fidelity, both techniques still exhibit lower accuracy compared to SfM, particularly in preserving fine geometric details. Nonetheless, NeRF demonstrates strong potential for rapid, high-quality 3D documentation suitable for visualization and dissemination purposes in cultural heritage. These findings highlight both the current capabilities and limitations of neural rendering techniques for archaeological documentation and suggest promising future research directions combining AI-based models with traditional photogrammetric pipelines. Full article
Show Figures

Figure 1

22 pages, 4017 KiB  
Article
Mapping and Estimating Blue Carbon in Mangrove Forests Using Drone and Field-Based Tree Height Data: A Cost-Effective Tool for Conservation and Management
by Ali Karimi, Behrooz Abtahi and Keivan Kabiri
Forests 2025, 16(7), 1196; https://doi.org/10.3390/f16071196 - 20 Jul 2025
Viewed by 448
Abstract
Mangrove forests are vital blue carbon (BC) ecosystems that significantly contribute to climate change mitigation through carbon sequestration. Accurate, scalable, and cost-effective methods for estimating carbon stocks in these environments are essential for conservation planning. In this study, we assessed the potential of [...] Read more.
Mangrove forests are vital blue carbon (BC) ecosystems that significantly contribute to climate change mitigation through carbon sequestration. Accurate, scalable, and cost-effective methods for estimating carbon stocks in these environments are essential for conservation planning. In this study, we assessed the potential of drones, also known as unmanned aerial vehicles (UAVs), for estimating above-ground biomass (AGB) and BC in Avicennia marina stands by integrating drone-based canopy measurements with field-measured tree heights. Using structure-from-motion (SfM) photogrammetry and a consumer-grade drone, we generated a canopy height model and extracted structural parameters from individual trees in the Melgonze mangrove patch, southern Iran. Field-measured tree heights served to validate drone-derived estimates and calibrate an allometric model tailored for A. marina. While drone-based heights differed significantly from field measurements (p < 0.001), the resulting AGB and BC estimates showed no significant difference (p > 0.05), demonstrating that crown area (CA) and model formulation effectively compensate for height inaccuracies. This study confirms that drones can provide reliable estimates of BC through non-invasive means—eliminating the need to harvest, cut, or physically disturb individual trees—supporting their application in mangrove monitoring and ecosystem service assessments, even under challenging field conditions. Full article
Show Figures

Figure 1

33 pages, 15773 KiB  
Article
Surface Change and Stability Analysis in Open-Pit Mines Using UAV Photogrammetric Data and Geospatial Analysis
by Abdurahman Yasin Yiğit and Halil İbrahim Şenol
Drones 2025, 9(7), 472; https://doi.org/10.3390/drones9070472 - 2 Jul 2025
Cited by 1 | Viewed by 697
Abstract
Significant morphological transformations resulting from open-pit mining activities always present major problems with site safety and slope stability. This study investigates an active marble quarry in Dinar, Türkiye by combining geospatial analysis and photogrammetry based on unmanned aerial vehicles (UAV). Acquired in 2024 [...] Read more.
Significant morphological transformations resulting from open-pit mining activities always present major problems with site safety and slope stability. This study investigates an active marble quarry in Dinar, Türkiye by combining geospatial analysis and photogrammetry based on unmanned aerial vehicles (UAV). Acquired in 2024 and 2025, high-resolution images were combined with dense point clouds produced by Structure from Motion (SfM) methods. Iterative Closest Point (ICP) registration (RMSE = 2.09 cm) and Multiscale Model-to-Model Cloud Comparison (M3C2) analysis was used to quantify the surface changes. The study found a volumetric increase of 7744.04 m3 in the dump zones accompanied by an excavation loss of 8359.72 m3, so producing a net difference of almost 615.68 m3. Surface risk factors were evaluated holistically using a variety of morphometric criteria. These measures covered surface variation in several respects: their degree of homogeneity, presence of any unevenness or texture, verticality, planarity, and linearity. Surface variation > 0.20, roughness > 0.15, and verticality > 0.25 help one to identify zones of increased instability. Point cloud modeling derived from UAVs and GIS-based spatial analysis were integrated to show that morphological anomalies are spatially correlated with possible failure zones. Full article
Show Figures

Figure 1

21 pages, 6037 KiB  
Article
Storm-Induced Evolution on an Artificial Pocket Gravel Beach: A Numerical Study with XBeach-Gravel
by Hanna Miličević, Dalibor Carević, Damjan Bujak, Goran Lončar and Andrea Tadić
J. Mar. Sci. Eng. 2025, 13(7), 1209; https://doi.org/10.3390/jmse13071209 - 22 Jun 2025
Viewed by 220
Abstract
Coarse-grained beaches consisting of gravel, pebbles, and cobbles play a crucial role in coastal protection. On the Croatian Adriatic coast, there are artificial gravel pocket beaches created for recreational and protective purposes. However, these beaches are subject to constant morphological changes due to [...] Read more.
Coarse-grained beaches consisting of gravel, pebbles, and cobbles play a crucial role in coastal protection. On the Croatian Adriatic coast, there are artificial gravel pocket beaches created for recreational and protective purposes. However, these beaches are subject to constant morphological changes due to natural forces and human intervention. This study investigates the morphodynamics of artificial gravel pocket beaches, focusing on berm formation and crest build-up processes characteristic for low to moderate wave conditions. Despite mimicking natural formations, artificial beaches require regular maintenance due to sediment shifts dominantly caused by wave action and storm surges. Structure-from-Motion (SfM) photogrammetry and UAV-based surveys were used to monitor morphological changes on the artificial gravel pocket beach Ploče (City of Rijeka). The XBeach-Gravel model, originally adapted to simulate the effects of high-energy waves, was calibrated and validated to analyze low to moderate wave dynamics on gravel pocket beaches. The calibration includes adjustments to the inertia coefficient (ci), which influences sediment transport by shear stress at the bottom; the angle of repose (ϕ), which controls avalanching and influences sediment transport on sloping beds; and the bedload transport calibration coefficient (γ), which scales the transport rates linearly. By calibrating XBeach-G for low to moderate wave conditions, this research improves the accuracy of the model for the cases of morphological responses “berm formation” and “crest build-up”. Full article
(This article belongs to the Section Marine Hazards)
Show Figures

Figure 1

18 pages, 3938 KiB  
Article
Indeterminacy of Camera Intrinsic Parameters in Structure from Motion Using Images from Constant-Pitch Flight Design
by Truc Thanh Ho, Riku Sato, Ariyo Kanno, Tsuyoshi Imai, Koichi Yamamoto and Takaya Higuchi
Remote Sens. 2025, 17(12), 2030; https://doi.org/10.3390/rs17122030 - 12 Jun 2025
Viewed by 907
Abstract
Intrinsic parameter estimation by self-calibration is commonly used in Unmanned aerial vehicle (UAV)-based photogrammetry with Structure from Motion (SfM). However, obtaining stable estimates of these parameters from image-based SfM—which relies solely on images, without auxiliary data such as ground control points (GCPs)—remains challenging. [...] Read more.
Intrinsic parameter estimation by self-calibration is commonly used in Unmanned aerial vehicle (UAV)-based photogrammetry with Structure from Motion (SfM). However, obtaining stable estimates of these parameters from image-based SfM—which relies solely on images, without auxiliary data such as ground control points (GCPs)—remains challenging. Aerial imagery acquired with the constant-pitch (CP) flight pattern often exhibits non-linear deformations, highly unstable intrinsic parameters, and even alignment failures. We hypothesize that CP flights form a “critical configuration” that renders certain intrinsic parameters indeterminate. Through numerical experiments, we confirm that a CP flight configuration does not provide sufficient constraints to estimate focal length (f) and the principal point coordinate (cy) in image-based SfM. Real-world CP datasets further demonstrate the pronounced instability of these parameters. As a remedy, we show that by introducing intermediate strips into the CP flight plan—what we call a CP-Plus flight—can effectively mitigate the indeterminacy of f and cy in simulations and markedly improve their stability in all tested cases. This approach enables more effective image-only SfM workflows without auxiliary data, simplifies data acquisition, and improves three-dimensional reconstruction accuracy. Full article
Show Figures

Graphical abstract

21 pages, 33456 KiB  
Article
Evolution of Rockfall Based on Structure from Motion Reconstruction of Street View Imagery and Unmanned Aerial Vehicle Data: Case Study from Koto Panjang, Indonesia
by Tiggi Choanji, Michel Jaboyedoff, Yuniarti Yuskar, Anindita Samsu, Li Fei and Marc-Henri Derron
Remote Sens. 2025, 17(11), 1888; https://doi.org/10.3390/rs17111888 - 29 May 2025
Viewed by 495
Abstract
This study explores the growing application of 3D remote sensing in geohazard studies, particularly for rock slope monitoring. It highlights the use of cost-effective Street View Imagery (SVI) and Unmanned Aerial Vehicles (UAV) through Structure-from-Motion (SfM) photogrammetry as tools for 3D rockfall monitoring. [...] Read more.
This study explores the growing application of 3D remote sensing in geohazard studies, particularly for rock slope monitoring. It highlights the use of cost-effective Street View Imagery (SVI) and Unmanned Aerial Vehicles (UAV) through Structure-from-Motion (SfM) photogrammetry as tools for 3D rockfall monitoring. Using multi-temporal SVI and UAV Imagery from the Koto Panjang cliff in Indonesia, we quantify rockfall volume changes over seven years and assess associated geohazards. The results reveal a total rockfall retreat of 5270 m3, with an average annual rate of 7.53 m3/year. Structural analysis identified six major discontinuity sets and confirmed inherent instability within the rock mass. Kinematic simulations using SVI and UAV-derived data further assessed rockfall trajectories and potential impact zones. Results indicate that 40% of simulated rockfall deposits accumulated near existing roads, with significant differences in distribution based on scree slope angles. This emphasizes the role of scree slope in influencing rockfall propagation. In conclusion, SVI and UAV imagery presents a valuable tool for 3D point cloud reconstruction and rockfall hazard assessment, particularly in areas lacking historical data. The study showcases the effectiveness of using SVI and UAV imagery in quantifying historical past rockfall volume and identifies critical areas for mitigation strategies, highlighting the importance of scree slope angle in managing rockfall hazard. Full article
Show Figures

Figure 1

15 pages, 53844 KiB  
Article
Disseminating the Past in 3D: O Corro dos Mouros and Its Ritual Landscape (Galicia, Spain)
by Mariluz Gil-Docampo, Rocío López-Juanes, Simón Peña-Villasenín, Pablo López-Fernández, Juan Ortiz-Sanz and María Pilar Prieto-Martinez
Appl. Sci. 2025, 15(11), 6025; https://doi.org/10.3390/app15116025 - 27 May 2025
Viewed by 423
Abstract
This research presents a methodological approach combining UAV-LiDAR technology and SfM photogrammetry for the comprehensive documentation and analysis of O Corro dos Mouros, a Bronze-to-Iron Age archaeological site in the northwest of the Iberian Peninsula. The study evaluates both the capabilities and limitations [...] Read more.
This research presents a methodological approach combining UAV-LiDAR technology and SfM photogrammetry for the comprehensive documentation and analysis of O Corro dos Mouros, a Bronze-to-Iron Age archaeological site in the northwest of the Iberian Peninsula. The study evaluates both the capabilities and limitations of this integrated approach, focusing on a recently identified Roda-type structure, characterised by circular stone architecture and funerary-ritual functionality, dating between the 15th and 3rd centuries BC. The methodology combines RTK-corrected LiDAR (150 pts/m2, ±5 cm accuracy) with 20.4 MP RGB imaging, overcoming vegetation cover while capturing surface details. The results demonstrate the superior performance of the proposed methodology compared to public LiDAR (1 m resolution), offering more detailed and precise microtopographic data of the circular structure. The approach successfully addresses three key challenges: (1) dense vegetation penetration, (2) multi-phase stratigraphic documentation, and (3) non-invasive monitoring of sensitive sites. The centimetre-accurate 3D models (publicly available via Sketchfab) provide both research-grade data for analysing construction phases and contextual relationships with nearby rock art/megaliths, and engaging visualisations for heritage interpretation. This work establishes a replicable technical framework optimised for high-resolution archaeological documentation, with direct applicability to similar ritual landscapes (hillforts, burial mounds) across the region. Full article
(This article belongs to the Special Issue Application of Digital Technology in Cultural Heritage)
Show Figures

Figure 1

18 pages, 7880 KiB  
Technical Note
The Synergistic Effects of GCPs and Camera Calibration Models on UAV-SfM Photogrammetry
by Zixin Wang, Leyan Shi, Jinzhou Li, Wen Dai, Wangda Lu and Mengqi Li
Drones 2025, 9(5), 343; https://doi.org/10.3390/drones9050343 - 1 May 2025
Viewed by 1184
Abstract
Previous studies have shown that the use of appropriate ground control points (GCPs) and camera calibration models can optimize photogrammetry. However, the synergistic effects of GCPs and camera calibration models on UAV-SfM photogrammetry are still unknown. This study used camera models with varying [...] Read more.
Previous studies have shown that the use of appropriate ground control points (GCPs) and camera calibration models can optimize photogrammetry. However, the synergistic effects of GCPs and camera calibration models on UAV-SfM photogrammetry are still unknown. This study used camera models with varying complexities under different GCP conditions (in terms of number and quality) for UAV-SfM photogrammetry. The correlation matrix and root mean squared error (RMSE) were used to analyze the synergistic effects of GCPs and camera models. The results show that (1) without GCPs, complex camera models reduce distortion parameter correlation and improve terrain modeling accuracy by about 70%, with Model C (with F, Cx, Cy, K1–K4, and P1–P4) being the most widely applicable. (2) Increasing the number of GCPs enhances the terrain modeling accuracy more effectively than increasing the camera model complexity, reducing the RMSE by 45–70%, while the model complexity does not affect the required GCP number. (3) A strong interaction exists between the GCP quality and camera models: High-quality GCPs enhance camera model performance, while complex camera models reduce the requirement of GCP quality. This study provides both theoretical insights and practical guidance for efficient and low-cost UAV-SfM photogrammetry in different scenarios. Full article
(This article belongs to the Special Issue Applications of UVs in Digital Photogrammetry and Image Processing)
Show Figures

Figure 1

17 pages, 4433 KiB  
Article
Growing Stock Volume Estimation in Forest Plantations Using Unmanned Aerial Vehicle Stereo Photogrammetry and Machine Learning Algorithms
by Mei Li, Zengyuan Li, Qingwang Liu and Erxue Chen
Forests 2025, 16(4), 663; https://doi.org/10.3390/f16040663 - 10 Apr 2025
Cited by 1 | Viewed by 448
Abstract
Currently, it is very important to accurately estimate growing stock volumes; it is crucial for quantitatively assessing forest growth and formulating forest management plans. It is convenient and quick to use the Structure from Motion (SfM) algorithm in computer vision to obtain 3D [...] Read more.
Currently, it is very important to accurately estimate growing stock volumes; it is crucial for quantitatively assessing forest growth and formulating forest management plans. It is convenient and quick to use the Structure from Motion (SfM) algorithm in computer vision to obtain 3D point cloud data from captured highly overlapped stereo photogrammetry images, while the optimal algorithm for estimating growing stock volume varies across different data sources and forest types. In this study, the performance of UAV stereo photogrammetry (USP) in estimating the growing stock volume (GSV) using three machine learning algorithms for a coniferous plantation in Northern China was explored, as well as the impact of point density on GSV estimation. The three machine learning algorithms used were random forest (RF), K-nearest neighbor (KNN), and support vector machine (SVM). The results showed that USP could accurately estimate the GSV with R2 = 0.76–0.81, RMSE = 30.11–35.46, and rRMSE = 14.34%–16.78%. Among the three machine learning algorithms, the SVM showed the best results, followed by RF. In addition, the influence of point density on the estimation accuracy for the USP dataset was minimal in terms of R2, RMSE, and rRMSE. Meanwhile, the estimation accuracies of the SVM became stable with a point density of 0.8 pts/m2 for the USP data. This study evidences that the low-density point cloud data derived from USP may be a good alternative for UAV Laser Scanning (ULS) to estimate the growing stock volume of coniferous plantations in Northern China. Full article
(This article belongs to the Section Forest Inventory, Modeling and Remote Sensing)
Show Figures

Figure 1

17 pages, 13837 KiB  
Article
Mapping, Modeling and Designing a Marble Quarry Using Integrated Electric Resistivity Tomography and Unmanned Aerial Vehicles: A Study of Adaptive Decision-Making
by Zahid Hussain, Hanan ud Din Haider, Jiajie Li, Zhengxing Yu, Jianxin Fu, Siqi Zhang, Sitao Zhu, Wen Ni and Michael Hitch
Drones 2025, 9(4), 266; https://doi.org/10.3390/drones9040266 - 31 Mar 2025
Cited by 4 | Viewed by 726
Abstract
The characterization of dimensional stone deposits is essential for quarry assessment and design. However, uncertainties in mapping and designing pose significant challenges. To address this issue, an innovative approach is initiated to develop a virtual reality model by integrating unmanned aerial vehicle (UAV) [...] Read more.
The characterization of dimensional stone deposits is essential for quarry assessment and design. However, uncertainties in mapping and designing pose significant challenges. To address this issue, an innovative approach is initiated to develop a virtual reality model by integrating unmanned aerial vehicle (UAV) photogrammetry for surface modeling and Electric Resistivity Tomography (ERT) for subsurface deposit imaging. This strategy offers a cost-effective, time-efficient, and safer alternative to traditional surveying methods for challenging mountainous terrain. UAV methodology involved data collection using a DJI Mavic 2 Pro (20 MP camera) with 4 K resolution images captured at 221 m altitude and 80 min flight duration. Images were taken with 75% frontal and 70% side overlaps. The Structure from Motion (SfM) processing chain generated high-resolution outputs, including point clouds, Digital Elevation Models (DEMs), Digital Surface Models (DSMs), and orthophotos. To ensure accuracy, five ground control points (GCPs) were established by a Real-Time Kinematic Global Navigation Satellite System (RTK GNSS). An ERT method known as vertical electric sounding (VES) revealed subsurface anomalies like solid rock mass, fractured zones and areas of iron leaching within marble deposits. Three Schlumberger (VES-1, 2, 3) and two parallel Wenner (VES-4, 5) arrays to a depth of 60 m were employed. The resistivity signature acquired by PASI RM1 was analyzed using 1D inversion technique software (ZondP1D). The integrated outputs of photogrammetry and subsurface imaging were used to design an optimized quarry with bench heights of 30 feet and widths of 50 feet, utilizing open-source 3D software (Blender, BIM, and InfraWorks). This integrated approach provides a comprehensive understanding of deposit surface and subsurface characteristics, facilitating optimized and sustainable quarry design and extraction. This research demonstrates the value of an innovative approach in synergistic integration of UAV photogrammetry and ERT, which are often used separately, for enhanced characterization, decision-making and promoting sustainable practices in dimensional stone deposits. Full article
Show Figures

Figure 1

25 pages, 53077 KiB  
Article
Close-Range Photogrammetry and RTI for 2.5D Documentation of Painted Surfaces: A Tiryns Mural Case Study
by Georgios Tsairis, Athina Georgia Alexopoulou, Nicolaos Zacharias and Ioanna Kakoulli
Coatings 2025, 15(4), 388; https://doi.org/10.3390/coatings15040388 - 26 Mar 2025
Viewed by 734
Abstract
Painted surfaces, regardless of their substrate, possess unique elements crucial for their study and interpretation. These elements include geometric characteristics, surface texture, brushwork relief, color layer morphology, and preservation state indicators like overpainting, interventions, cracks, and mechanical deformations. Traditional recording methods such as [...] Read more.
Painted surfaces, regardless of their substrate, possess unique elements crucial for their study and interpretation. These elements include geometric characteristics, surface texture, brushwork relief, color layer morphology, and preservation state indicators like overpainting, interventions, cracks, and mechanical deformations. Traditional recording methods such as handwritten or digital descriptions, 2D scale drawings, calipers, rulers, tape measures, sketches, tracings, and conventional or technical photography fall short in capturing the three-dimensional detail necessary for comprehensive analysis. To overcome these limitations, this paper proposes the integration of two digital tools, Close-Range Photogrammetry (SfM-MVS) and Reflectance Transformation Imaging (RTI), which have become accessible with the advancement of computing power. While other 3D imaging tools like laser scanners and structured light systems exist and may be preferred for very specialized applications, such as capturing the texture of the surface with sub-millimeter accuracy, SfM-MVS and RTI offer a cost-efficient and highly accurate alternative, with 3D modeling capabilities and advanced pixel color fidelity, essential for documenting the geometric and color details of painted artifacts. The application of these highly promising methods to the mural paintings from the Palace of Tiryns (Nafplion, Greece) demonstrates their potential, providing significant insights for art historians, researchers, conservators, and curators. Full article
(This article belongs to the Special Issue Coatings for Cultural Heritage: Cleaning, Protection and Restoration)
Show Figures

Figure 1

23 pages, 10385 KiB  
Article
Combined Use of Spectral and Structural Features for Improved Early Detection of Pine Shoot Beetle Attacks in Yunnan Pines
by Yujie Liu, Youqing Luo, Run Yu, Lili Ren, Qi Jiang, Shaoshun He, Xinqiang Chen and Guangzhao Yang
Remote Sens. 2025, 17(7), 1109; https://doi.org/10.3390/rs17071109 - 21 Mar 2025
Cited by 1 | Viewed by 581
Abstract
The long-lasting outbreak of the pine shoot beetle (PSB, Tomicus spp.) threatens forest ecological security. Effective monitoring is urgently needed for the Integrated Pest Management (IPM) of this pest. UAV-based hyperspectral remote sensing (HRS) offers opportunities for the early and accurate detection of [...] Read more.
The long-lasting outbreak of the pine shoot beetle (PSB, Tomicus spp.) threatens forest ecological security. Effective monitoring is urgently needed for the Integrated Pest Management (IPM) of this pest. UAV-based hyperspectral remote sensing (HRS) offers opportunities for the early and accurate detection of PSB attacks. However, the insufficient exploration of spectral and structural information from early-attacked crowns and the lack of suitable detection models limit UAV applications. This study developed a UAV-based framework for detecting early-stage PSB attacks by integrating hyperspectral images (HSIs), LiDAR point clouds, and structure from motion (SfM) photogrammetry data. Individual tree segmentation algorithms were utilized to extract both spectral and structural variables of damaged tree crowns. Random forest (RF) was employed to determine the optimal detection model as well as to clarify the contributions of the candidate variables. The results are as follows: (1) Point cloud segmentation using the Canopy Height Model (CHM) yielded the highest crown segmentation accuracy (F-score: 87.80%). (2) Near-infrared reflectance exhibited the greatest decrease for early-attacked crowns, while the structural variable intensity percentile (int_P50-int_P95) showed significant differences (p < 0.05). (3) In the RF model, spectral variables were predominant, with LiDAR structural variables serving as a supplement. The anthocyanin reflectance index and int_kurtosis were identified as the best indicators for early detection. (4) Combining HSI with LiDAR data obtained the best RF model accuracy (classification accuracy: 87.31%; Kappa: 0.8275; SDR estimation accuracy: R2 = 0.8485; RMSEcv = 3.728%). RF integrating HSI and SfM data exhibited similar performance. In conclusion, this study identified optimal spectral and structural variables for UAV monitoring and improved HRS model accuracy and thereby provided technical support for the IPM of PSB outbreaks. Full article
(This article belongs to the Section Forest Remote Sensing)
Show Figures

Figure 1

31 pages, 21485 KiB  
Article
UAV-SfM Photogrammetry for Canopy Characterization Toward Unmanned Aerial Spraying Systems Precision Pesticide Application in an Orchard
by Qi Bing, Ruirui Zhang, Linhuan Zhang, Longlong Li and Liping Chen
Drones 2025, 9(2), 151; https://doi.org/10.3390/drones9020151 - 18 Feb 2025
Cited by 3 | Viewed by 1032
Abstract
The development of unmanned aerial spraying systems (UASSs) has significantly transformed pest and disease control methods of crop plants. Precisely adjusting pesticide application rates based on the target conditions is an effective method to improve pesticide use efficiency. In orchard spraying, the structural [...] Read more.
The development of unmanned aerial spraying systems (UASSs) has significantly transformed pest and disease control methods of crop plants. Precisely adjusting pesticide application rates based on the target conditions is an effective method to improve pesticide use efficiency. In orchard spraying, the structural characteristics of the canopy are crucial for guiding the pesticide application system to adjust spraying parameters. This study selected mango trees as the research sample and evaluated the differences between UAV aerial photography with a Structure from Motion (SfM) algorithm and airborne LiDAR in the results of extracting canopy parameters. The maximum canopy height, canopy projection area, and canopy volume parameters were extracted from the canopy height model of SfM (CHMSfM) and the canopy height model of LiDAR (CHMLiDAR) by grids with the same width as the planting rows (5.0 m) and 14 different heights (0.2 m, 0.3 m, 0.4 m, 0.5 m, 0.6 m, 0.8 m, 1.0 m, 2.0 m, 3.0 m, 4.0 m, 5.0 m, 6.0 m, 8.0 m, and 10.0 m), respectively. Linear regression equations were used to fit the canopy parameters obtained from different sensors. The correlation was evaluated using R2 and rRMSE, and a t-test (α = 0.05) was employed to assess the significance of the differences. The results show that as the grid height increases, the R2 values for the maximum canopy height, projection area, and canopy volume extracted from CHMSfM and CHMLiDAR increase, while the rRMSE values decrease. When the grid height is 10.0 m, the R2 for the maximum canopy height extracted from the two models is 92.85%, with an rRMSE of 0.0563. For the canopy projection area, the R2 is 97.83%, with an rRMSE of 0.01, and for the canopy volume, the R2 is 98.35%, with an rRMSE of 0.0337. When the grid height exceeds 1.0 m, the t-test results for the three parameters are all greater than 0.05, accepting the hypothesis that there is no significant difference in the canopy parameters obtained by the two sensors. Additionally, using the coordinates x0 of the intersection of the linear regression equation and y=x as a reference, CHMSfM tends to overestimate lower canopy maximum height and projection area, and underestimate higher canopy maximum height and projection area compared to CHMLiDAR. This to some extent reflects that the surface of CHMSfM is smoother. This study demonstrates the effectiveness of extracting canopy parameters to guide UASS systems for variable-rate spraying based on UAV oblique photography combined with the SfM algorithm. Full article
(This article belongs to the Special Issue Recent Advances in Crop Protection Using UAV and UGV)
Show Figures

Figure 1

21 pages, 4483 KiB  
Article
DEM Generation Incorporating River Channels in Data-Scarce Contexts: The “Fluvial Domain Method”
by Jairo R. Escobar Villanueva, Jhonny I. Pérez-Montiel and Andrea Gianni Cristoforo Nardini
Hydrology 2025, 12(2), 33; https://doi.org/10.3390/hydrology12020033 - 14 Feb 2025
Cited by 1 | Viewed by 1664
Abstract
This paper presents a novel methodology to generate Digital Elevation Models (DEMs) in flat areas, incorporating river channels from relatively coarse initial data. The technique primarily utilizes filtered dense point clouds derived from SfM-MVS (Structure from Motion-Multi-View Stereo) photogrammetry of available crewed aerial [...] Read more.
This paper presents a novel methodology to generate Digital Elevation Models (DEMs) in flat areas, incorporating river channels from relatively coarse initial data. The technique primarily utilizes filtered dense point clouds derived from SfM-MVS (Structure from Motion-Multi-View Stereo) photogrammetry of available crewed aerial imagery datasets. The methodology operates under the assumption that the aerial survey was carried out during low-flow or drought conditions so that the dry (or almost dry) riverbed is detected, although in an imprecise way. Direct interpolation of the detected elevation points yields unacceptable river channel bottom profiles (often exhibiting unrealistic artifacts) and even distorts the floodplain. In our Fluvial Domain Method, channel bottoms are represented like “highways”, perhaps overlooking their (unknown) detailed morphology but gaining in general topographic consistency. For instance, we observed an 11.7% discrepancy in the river channel long profile (with respect to the measured cross-sections) and a 0.38 m RMSE in the floodplain (with respect to the GNSS-RTK measurements). Unlike conventional methods that utilize active sensors (satellite and airborne LiDAR) or classic topographic surveys—each with precision, cost, or labor limitations—the proposed approach offers a more accessible, cost-effective, and flexible solution that is particularly well suited to cases with scarce base information and financial resources. However, the method’s performance is inherently limited by the quality of input data and the simplification of complex channel morphologies; it is most suitable for cases where high-resolution geomorphological detail is not critical or where direct data acquisition is not feasible. The resulting DEM, incorporating a generalized channel representation, is well suited for flood hazard modeling. A case study of the Ranchería river delta in the Northern Colombian Caribbean demonstrates the methodology. Full article
(This article belongs to the Special Issue Hydrological Modeling and Sustainable Water Resources Management)
Show Figures

Figure 1

23 pages, 8858 KiB  
Article
Virtual 3D Reconstruction Hypothesis of the Mural Decorations in the Sala de los Amores, Castulo Archeological Site (Linares, Jaén, Spain)
by Ana Carrasco-Huertas, Ana I. Calero-Castillo, David Domínguez Rubio and Teresa López-Martínez
Heritage 2025, 8(2), 73; https://doi.org/10.3390/heritage8020073 - 14 Feb 2025
Viewed by 956
Abstract
The advancement of digital techniques and reduced costs have greatly facilitated their integration into cultural heritage preservation. These technologies are especially valuable in archaeology, where detailed documentation is crucial. However, minimal intervention in restorations often limits public understanding of archaeological spaces, making digital [...] Read more.
The advancement of digital techniques and reduced costs have greatly facilitated their integration into cultural heritage preservation. These technologies are especially valuable in archaeology, where detailed documentation is crucial. However, minimal intervention in restorations often limits public understanding of archaeological spaces, making digital tools essential for enhancing engagement. An example is the study and the virtual hypothesis of the mural decorations in the Sala del Mosaico de los Amores, located in the Castulo Archaeological Site (Linares, Jaén, Spain), dated to the late first and early second centuries AD. The hall originally featured an elaborate wall decoration, now largely lost due to the collapse of its walls, leaving only a few fragments in situ. Using SfM photogrammetry, the hall and the original paintings and cornices—restored in a laboratory—were documented and virtually reassembled. This process employed precise color calibration and dimensional scaling to ensure the faithful recreation of the original appearance. In addition to the anastylosis of the surviving fragments, a virtual reconstruction hypothesis was developed, offering the public an immersive visualization of how the space would have looked in its original state. Full article
Show Figures

Figure 1

Back to TopTop