Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (12)

Search Parameters:
Keywords = Sezawa wave

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 3673 KiB  
Article
High Q GaN/SiC-Based SAW Resonators for Humidity Sensor Applications
by Dan Vasilache, Claudia Nastase, George Boldeiu, Monica Nedelcu, Catalin Parvulescu, Adrian Dinescu and Alexandru Muller
Micromachines 2025, 16(2), 150; https://doi.org/10.3390/mi16020150 - 28 Jan 2025
Viewed by 2961
Abstract
This paper presents the simulation and experimental results for high-frequency surface acoustic wave (SAW) sensors for humidity detection. The SAW structures with a wavelength of 680 nm are fabricated on GaN/SiC and presented two resonance frequencies: ~6.66 GHz for the Rayleigh propagation mode [...] Read more.
This paper presents the simulation and experimental results for high-frequency surface acoustic wave (SAW) sensors for humidity detection. The SAW structures with a wavelength of 680 nm are fabricated on GaN/SiC and presented two resonance frequencies: ~6.66 GHz for the Rayleigh propagation mode and ~8 GHz for the Sezawa mode. A SiO2 thin layer (~50 nm thick) was employed for the functionalization of the SAW. Relative humidity characterization was performed in the range of 20–90%. The SAW sensors achieved high values of humidity sensitivity for both adsorption and desorption. The Sezawa mode showed about 2.5 times higher humidity sensitivity than the Rayleigh mode: 17.2 KHz/%RH versus 6.17 KHz/%RH for adsorption and 8.88 KHz/%RH versus 3.79 KHz/%RH for desorption. Full article
(This article belongs to the Special Issue Surface and Bulk Acoustic Wave Devices)
Show Figures

Figure 1

14 pages, 3908 KiB  
Article
Experimental and Theoretical Analysis of Rayleigh and Leaky-Sezawa Waves Propagating in ZnO/Fused Silica Substrates
by Cinzia Caliendo, Massimiliano Benetti, Domenico Cannatà, Farouk Laidoudi and Gaetana Petrone
Micromachines 2024, 15(8), 974; https://doi.org/10.3390/mi15080974 - 29 Jul 2024
Cited by 3 | Viewed by 1522
Abstract
Piezoelectric c-axis oriented zinc oxide (ZnO) thin films, from 1.8 up to 6.6 µm thick, have been grown by the radio frequency magnetron sputtering technique onto fused silica substrates. A delay line consisting of two interdigital transducers (IDTs) with wavelength λ = 80 [...] Read more.
Piezoelectric c-axis oriented zinc oxide (ZnO) thin films, from 1.8 up to 6.6 µm thick, have been grown by the radio frequency magnetron sputtering technique onto fused silica substrates. A delay line consisting of two interdigital transducers (IDTs) with wavelength λ = 80 µm was photolithographically implemented onto the surface of the ZnO layers. Due to the IDTs’ split-finger configuration and metallization ratio (0.5), the propagation of the fundamental, third, and ninth harmonic Rayleigh waves is excited; also, three leaky surface acoustic waves (SAWs) were detected travelling at a velocity close to that of the longitudinal bulk wave in SiO2. The acoustic waves’ propagation in ZnO/fused silica was simulated by using the 2D finite-element method (FEM) technique to identify the nature of the experimentally detected waves. It turned out that, in addition to the fundamental and harmonic Rayleigh waves, high-frequency leaky surface waves are also excited by the harmonic wavelengths; such modes are identified as Sezawa waves under the cut-off, hereafter named leaky Sezawa (LS). The velocities of all the modes was found to be in good agreement with the theoretically calculated values. The existence of a low-loss region in the attenuation vs. layer thickness curve for the Sezawa wave below the cut-off was theoretically predicted and experimentally assessed. Full article
(This article belongs to the Special Issue Novel Surface and Bulk Acoustic Wave Devices)
Show Figures

Figure 1

13 pages, 10405 KiB  
Article
Analysis of the Effects of Parameters on the Performance of Resonators Based on a ZnO/SiO2/Diamond Structure
by Gang Cao, Hongliang Wang and Peng Zhang
Appl. Sci. 2024, 14(2), 874; https://doi.org/10.3390/app14020874 - 19 Jan 2024
Viewed by 1489
Abstract
With the development of communications technology, surface acoustic wave (SAW) and bulk acoustic wave (BAW) devices have become hotspots of the competitive research in the frequency band above GHz. It imposes higher requirements on the operating frequency, temperature coefficient of frequency (TCF [...] Read more.
With the development of communications technology, surface acoustic wave (SAW) and bulk acoustic wave (BAW) devices have become hotspots of the competitive research in the frequency band above GHz. It imposes higher requirements on the operating frequency, temperature coefficient of frequency (TCF), and electromechanical coupling coefficient (k2) of SAW devices. In this work, we reported on a novel ZnO/SiO2/diamond-layered resonator structure and systematically investigated its propagation characteristics by using finite element methods. A comparative study and analysis of k2 and acoustic velocity (vp) for both the excited Rayleigh mode and the Sezawa mode were conducted. By selecting the appropriate ZnO piezoelectric film, SiO2, and electrode thickness, the Sezawa mode was chosen as the main mode, effectively improving both k2 and vp. It was observed that the k2 of the Sezawa mode is 7.5 times that of the excited Rayleigh mode and nearly 5 times that of piezoelectric single-crystal ZnO; vp is 1.7 times that of the excited Rayleigh mode and nearly 1.5 times that of piezoelectric single-crystal ZnO. Furthermore, the proposed multilayer structure achieves a TCF close to 0 while maintaining a substantial k2. In practical applications, increasing the thickness of SiO2 can compensate for the device’s TCF reduction caused by the interdigital transducer (IDT). Finally, this study explored the impact of increasing the aperture width and IDT pairs on the performance of the single-port resonator, revealing the changing patterns of quality factor (Q) values. The results reported here show that the structure has great promise for the fabrication of high-frequency and low-TCF SAW devices. Full article
Show Figures

Figure 1

15 pages, 1354 KiB  
Article
Uncertainty Propagation and Global Sensitivity Analysis of a Surface Acoustic Wave Gas Sensor Using Finite Elements and Sparse Polynomial Chaos Expansions
by Mohamed Hamdaoui
Vibration 2023, 6(3), 610-624; https://doi.org/10.3390/vibration6030038 - 1 Aug 2023
Cited by 2 | Viewed by 1863
Abstract
The aim of this work is to perform an uncertainty propagation and global sensitivity analysis of a surface acoustic wave (SAW) gas sensor using finite elements and sparse polynomial chaos. The SAW gas sensor is modeled using finite elements (FEM) under COMSOL, and [...] Read more.
The aim of this work is to perform an uncertainty propagation and global sensitivity analysis of a surface acoustic wave (SAW) gas sensor using finite elements and sparse polynomial chaos. The SAW gas sensor is modeled using finite elements (FEM) under COMSOL, and the sensitivity to DCM of its Sezawa mode is considered to be the quantity of interest. The importance of several geometrical (width and PIB thickness), material (PIB Young’s modulus and density), and ambient (pressure, temperature, and concentration) parameters on the sensor’s sensitivity is figured out by means of Sobol’ indices using sparse polynomial chaos expansions. It is shown that when the variability of the input parameters is low (inferior to 5%), the only impacting parameter is the cell width. However, when the variability of the input parameters reaches medium levels (around 10%), all the input parameters except the ambient temperature are impacting the sensor’s sensitivity. It is also reported that in the medium variability case, the sensor’s sensitivity experiences high variations that can lead to a degradation of its performances. Full article
(This article belongs to the Special Issue Aeroacoustics and Advanced Noise Control)
Show Figures

Figure 1

20 pages, 13920 KiB  
Article
Acoustoelectric Effect of Rayleigh and Sezawa Waves in ZnO/Fused Silica Produced by an Inhomogeneous In-Depth Electrical Conductivity Profile
by Cinzia Caliendo
Sensors 2023, 23(6), 2988; https://doi.org/10.3390/s23062988 - 9 Mar 2023
Cited by 4 | Viewed by 2350
Abstract
The acousto-electric (AE) effect associated with the propagation of Rayleigh and Sezawa surface acoustic waves (SAWs) in ZnO/fused silica was theoretically investigated under the hypothesis that the electrical conductivity of the piezoelectric layer has an exponentially decaying profile akin to the photoconductivity effect [...] Read more.
The acousto-electric (AE) effect associated with the propagation of Rayleigh and Sezawa surface acoustic waves (SAWs) in ZnO/fused silica was theoretically investigated under the hypothesis that the electrical conductivity of the piezoelectric layer has an exponentially decaying profile akin to the photoconductivity effect induced by ultra-violet illumination in wide-band-gap photoconducting ZnO. The calculated waves’ velocity and attenuation shift vs. ZnO conductivity curves have the form of a double-relaxation response, as opposed to a single-relaxation response which characterizes the AE effect due to surface conductivity changes. Two configurations were studied which reproduced the effect of UV light illumination from the top or from the bottom side of the ZnO/fused silica substrate: 1. the ZnO conductivity inhomogeneity starts from the free surface of the layer and decreases exponentially in depth; 2. the conductivity inhomogeneity starts from the lower surface of the ZnO layer contacting the fused silica substrate. To the author’s knowledge, this is the first time the double-relaxation AE effect has been theoretically studied in bi-layered structures. Full article
(This article belongs to the Special Issue Piezoelectric Resonator-Based Sensors)
Show Figures

Figure 1

10 pages, 1532 KiB  
Article
Surface Acoustic Wave Propagation of GaN/Sapphire Integrated with a Gold Guiding Layer
by Muhammad Musoddiq Jaafar, Mohd Farhanulhakim Mohd Razip Wee, Hoang-Tan-Ngoc Nguyen, Le Trung Hieu, Rahul Rai, Ashish Kumar Sahoo, Chang Fu Dee, Edward Yi Chang, Burhanuddin Yeop Majlis and Clarence Augustine TH Tee
Sensors 2023, 23(5), 2464; https://doi.org/10.3390/s23052464 - 23 Feb 2023
Cited by 2 | Viewed by 2766
Abstract
Gallium nitride (GaN), widely known as a wide bandgap semiconductor material, has been mostly employed in high power devices, light emitting diodes (LED), and optoelectronic applications. However, it could be exploited differently due to its piezoelectric properties, such as its higher SAW velocity [...] Read more.
Gallium nitride (GaN), widely known as a wide bandgap semiconductor material, has been mostly employed in high power devices, light emitting diodes (LED), and optoelectronic applications. However, it could be exploited differently due to its piezoelectric properties, such as its higher SAW velocity and strong electromechanical coupling. In this study, we investigated the affect of the presence of a guiding layer made from titanium/gold on the surface acoustic wave propagation of the GaN/sapphire substrate. By fixing the minimum thickness of the guiding layer at 200 nm, we could observe a slight frequency shift compared to the sample without a guiding layer, with the presence of different types of surface mode waves (Rayleigh and Sezawa). This thin guiding layer could be efficient in transforming the propagation modes, acting as a sensing layer for the binding of biomolecules to the gold layer, and influencing the output signal in terms of frequency or velocity. The proposed GaN/sapphire device integrated with a guiding layer could possibly be used as a biosensor and in wireless telecommunication applications. Full article
(This article belongs to the Special Issue Sensors and Actuators for Wearable and Implantable Devices)
Show Figures

Figure 1

9 pages, 1311 KiB  
Article
SAW Resonators and Filters Based on Sc0.43Al0.57N on Single Crystal and Polycrystalline Diamond
by Miguel Sinusia Lozano, Laura Fernández-García, David López-Romero, Oliver A. Williams and Gonzalo F. Iriarte
Micromachines 2022, 13(7), 1061; https://doi.org/10.3390/mi13071061 - 30 Jun 2022
Cited by 8 | Viewed by 3263
Abstract
The massive data transfer rates of nowadays mobile communication technologies demand devices not only with outstanding electric performances but with example stability in a wide range of conditions. Surface acoustic wave (SAW) devices provide a high Q-factor and properties inherent to the employed [...] Read more.
The massive data transfer rates of nowadays mobile communication technologies demand devices not only with outstanding electric performances but with example stability in a wide range of conditions. Surface acoustic wave (SAW) devices provide a high Q-factor and properties inherent to the employed materials: thermal and chemical stability or low propagation losses. SAW resonators and filters based on Sc0.43Al0.57N synthetized by reactive magnetron sputtering on single crystal and polycrystalline diamond substrates were fabricated and evaluated. Our SAW resonators showed high electromechanical coupling coefficients for Rayleigh and Sezawa modes, propagating at 1.2 GHz and 2.3 GHz, respectively. Finally, SAW filters were fabricated on Sc0.43Al0.57N/diamond heterostructures, with working frequencies above 4.7 GHz and ~200 MHz bandwidths, confirming that these devices are promising candidates in developing 5G technology. Full article
Show Figures

Figure 1

11 pages, 2935 KiB  
Article
Enhanced Coupling Coefficient in Dual-Mode ZnO/SiC Surface Acoustic Wave Devices with Partially Etched Piezoelectric Layer
by Huiping Xu, Sulei Fu, Rongxuan Su, Junyao Shen, Fei Zeng, Cheng Song and Feng Pan
Appl. Sci. 2021, 11(14), 6383; https://doi.org/10.3390/app11146383 - 10 Jul 2021
Cited by 12 | Viewed by 3175
Abstract
Surface acoustic wave (SAW) devices based on multi-layer structures have been widely used in filters and sensors. The electromechanical coupling factor (K2), which reflects energy-conversion efficiency, directly determines the bandwidth of the filter and the sensitivity of sensor. In this [...] Read more.
Surface acoustic wave (SAW) devices based on multi-layer structures have been widely used in filters and sensors. The electromechanical coupling factor (K2), which reflects energy-conversion efficiency, directly determines the bandwidth of the filter and the sensitivity of sensor. In this work, a new configuration of dual-mode (quasi-Rayleigh and quasi-Sezawa) SAW devices on a ZnO/SiC layered structure exhibiting significantly enhanced K2 was studied using the finite element method (FEM), which features in the partial etching of the piezoelectric film between the adjacent interdigitated electrodes (IDTs). The influences of piezoelectric film thickness, etching ratio, top electrodes, bottom electrodes, and the metallization ratio on the K2 were systematically investigated. The optimum K2 for the quasi-Rayleigh mode and quasi-Sezawa mode can exceed 12% and 8%, respectively, which increases by nearly 12 times and 2 times that of the conventional ZnO/SiC structure. Such significantly promoted K2 is of great benefit for better comprehensive performance of SAW devices. More specifically, a quasi-Rayleigh mode with relatively low acoustic velocity (Vp) can be applied into the miniaturization of SAW devices, while a quasi-Sezawa mode exhibiting a Vp value higher than 5000 m/s is suitable for fabricating SAW devices requiring high frequency and large bandwidth. This novel structure has proposed a viable route for fabricating SAW devices with excellent overall performance. Full article
(This article belongs to the Special Issue Element-Based Methods for the Solution of Engineering Problems)
Show Figures

Graphical abstract

15 pages, 4912 KiB  
Article
Experimental and Theoretical Study of Multifrequency Surface Acoustic Wave Devices in a Single Si/SiO2/ZnO Piezoelectric Structure
by Cinzia Caliendo and Farouk Laidoudi
Sensors 2020, 20(5), 1380; https://doi.org/10.3390/s20051380 - 3 Mar 2020
Cited by 26 | Viewed by 4225
Abstract
The propagation of surface acoustic waves (SAWs) along a ZnO/SiO2/Si piezoelectric structure is experimentally and theoretically studied. Six surface acoustic modes were experimentally detected in the 134 to 570 MHz frequency range, for acoustic wavelength λ = 30 μm, and for [...] Read more.
The propagation of surface acoustic waves (SAWs) along a ZnO/SiO2/Si piezoelectric structure is experimentally and theoretically studied. Six surface acoustic modes were experimentally detected in the 134 to 570 MHz frequency range, for acoustic wavelength λ = 30 μm, and for SiO2 and ZnO layers with a thickness of 1 and 2.4 μm. The numerical and three-dimensional (3D) finite element method analysis revealed that the multilayered substrate supports the propagation of Rayleigh and Sezawa modes (Rm and Sm), their third and fifth harmonics at λ/3 and λ/5. The velocity of all the modes was found in good agreement with the theoretically predicted values. Eigenfrequency, frequency domain, and time domain studies were performed to calculate the velocity, the electroacoustic coupling coefficient, the shape of the modes, the propagation loss, and the scattering parameter S21 of the SAW delay lines based on the propagation of these modes. The sensitivity to five different gases (dichloromethane, trichloromethane, carbontetrachloride, tetrachloroethylene, and trichloroethylene) was calculated under the hypothesis that the ZnO surface is covered by a polyisobutylene (PIB) layer 0.8 µm thick. The results show that the modes resonating at different frequencies exhibit different sensitivities toward the same gas. The multi-frequency ZnO/SiO2/Si single device structure is a promising solution for the development of a multiparameters sensing platform; multiple excitation frequencies with different sensing properties can allow the parallel analysis of the same gas with improved accuracy. Full article
(This article belongs to the Special Issue Acoustic Wave Sensors for Gaseous and Liquid Environments)
Show Figures

Figure 1

10 pages, 4192 KiB  
Communication
A Theoretical Study of Surface Mode Propagation with a Guiding Layer of GaN/Sapphire Hetero-Structure in Liquid Medium
by M. F. Mohd Razip Wee, Muhammad Musoddiq Jaafar, Mohd Syafiq Faiz, Chang Fu Dee and Burhanuddin Yeop Majlis
Biosensors 2018, 8(4), 124; https://doi.org/10.3390/bios8040124 - 5 Dec 2018
Viewed by 4350
Abstract
Gallium Nitride (GaN) is considered as the second most popular semiconductor material in industry after silicon. This is due to its wide applications encompassing Light Emitting Diode (LED) and power electronics. In addition, its piezoelectric properties are fascinating to be explored as electromechanical [...] Read more.
Gallium Nitride (GaN) is considered as the second most popular semiconductor material in industry after silicon. This is due to its wide applications encompassing Light Emitting Diode (LED) and power electronics. In addition, its piezoelectric properties are fascinating to be explored as electromechanical material for the development of diverse microelectromechanical systems (MEMS) application. In this article, we conducted a theoretical study concerning surface mode propagation, especially Rayleigh and Sezawa mode in the layered GaN/sapphire structure with the presence of various guiding layers. It is demonstrated that the increase in thickness of guiding layer will decrease the phase velocities of surface mode depending on the material properties of the layer. In addition, the Q-factor value indicating the resonance properties of surface mode appeared to be affected with the presence of fluid domain, particularly in the Rayleigh mode. Meanwhile, the peak for Sezawa mode shows the highest Q factor and is not altered by the presence of fluid. Based on these theoretical results using the finite element method, it could contribute to the development of a GaN-based device to generate surface acoustic wave, especially in Sezawa mode which could be useful in acoustophoresis, lab on-chip and microfluidics applications. Full article
(This article belongs to the Special Issue Acoustic Wave Sensors for Biosensing Applications)
Show Figures

Figure 1

13 pages, 6583 KiB  
Article
FEM Analysis of Sezawa Mode SAW Sensor for VOC Based on CMOS Compatible AlN/SiO2/Si Multilayer Structure
by Muhammad Zubair Aslam, Varun Jeoti, Saravanan Karuppanan, Aamir Farooq Malik and Asif Iqbal
Sensors 2018, 18(6), 1687; https://doi.org/10.3390/s18061687 - 24 May 2018
Cited by 37 | Viewed by 8179
Abstract
A Finite Element Method (FEM) simulation study is conducted, aiming to scrutinize the sensitivity of Sezawa wave mode in a multilayer AlN/SiO2/Si Surface Acoustic Wave (SAW) sensor to low concentrations of Volatile Organic Compounds (VOCs), that is, trichloromethane, trichloroethylene, carbon tetrachloride [...] Read more.
A Finite Element Method (FEM) simulation study is conducted, aiming to scrutinize the sensitivity of Sezawa wave mode in a multilayer AlN/SiO2/Si Surface Acoustic Wave (SAW) sensor to low concentrations of Volatile Organic Compounds (VOCs), that is, trichloromethane, trichloroethylene, carbon tetrachloride and tetrachloroethene. A Complimentary Metal-Oxide Semiconductor (CMOS) compatible AlN/SiO2/Si based multilayer SAW resonator structure is taken into account for this purpose. In this study, first, the influence of AlN and SiO2 layers’ thicknesses over phase velocities and electromechanical coupling coefficients (k2) of two SAW modes (i.e., Rayleigh and Sezawa) is analyzed and the optimal thicknesses of AlN and SiO2 layers are opted for best propagation characteristics. Next, the study is further extended to analyze the mass loading effect on resonance frequencies of SAW modes by coating a thin Polyisobutylene (PIB) polymer film over the AlN surface. Finally, the sensitivity of the two SAW modes is examined for VOCs. This study concluded that the sensitivity of Sezawa wave mode for 1 ppm of selected volatile organic gases is twice that of the Rayleigh wave mode. Full article
(This article belongs to the Special Issue Surface Acoustic Wave Sensors)
Show Figures

Figure 1

12 pages, 1049 KiB  
Communication
Investigation into Mass Loading Sensitivity of Sezawa Wave Mode-Based Surface Acoustic Wave Sensors
by Ajay Achath Mohanan, Md Shabiul Islam, Sawal Hamid Md Ali, R. Parthiban and N. Ramakrishnan
Sensors 2013, 13(2), 2164-2175; https://doi.org/10.3390/s130202164 - 6 Feb 2013
Cited by 27 | Viewed by 10805
Abstract
In this work mass loading sensitivity of a Sezawa wave mode based surface acoustic wave (SAW) device is investigated through finite element method (FEM) simulation and the prospects of these devices to function as highly sensitive SAW sensors is reported. A ZnO/Si layered [...] Read more.
In this work mass loading sensitivity of a Sezawa wave mode based surface acoustic wave (SAW) device is investigated through finite element method (FEM) simulation and the prospects of these devices to function as highly sensitive SAW sensors is reported. A ZnO/Si layered SAW resonator is considered for the simulation study. Initially the occurrence of Sezawa wave mode and displacement amplitude of the Rayleigh and Sezawa wave mode is studied for lower ZnO film thickness. Further, a thin film made of an arbitrary material is coated over the ZnO surface and the resonance frequency shift caused by mass loading of the film is estimated. It was observed that Sezawa wave mode shows significant sensitivity to change in mass loading and has higher sensitivity (eight times higher) than Rayleigh wave mode for the same device configuration. Further, the mass loading sensitivity was observed to be greater for a low ZnO film thickness to wavelength ratio. Accordingly, highly sensitive SAW sensors can be developed by coating a sensing medium over a layered SAW device and operating at Sezawa mode resonance frequency. The sensitivity can be increased by tuning the ZnO film thickness to wavelength ratio. Full article
(This article belongs to the Special Issue Piezoelectric Sensors and Actuators)
Show Figures

Back to TopTop