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Abstract: The aim of this work is to perform an uncertainty propagation and global sensitivity
analysis of a surface acoustic wave (SAW) gas sensor using finite elements and sparse polynomial
chaos. The SAW gas sensor is modeled using finite elements (FEM) under COMSOL, and the
sensitivity to DCM of its Sezawa mode is considered to be the quantity of interest. The importance
of several geometrical (width and PIB thickness), material (PIB Young’s modulus and density), and
ambient (pressure, temperature, and concentration) parameters on the sensor’s sensitivity is figured
out by means of Sobol’ indices using sparse polynomial chaos expansions. It is shown that when the
variability of the input parameters is low (inferior to 5%), the only impacting parameter is the cell
width. However, when the variability of the input parameters reaches medium levels (around 10%),
all the input parameters except the ambient temperature are impacting the sensor’s sensitivity. It is
also reported that in the medium variability case, the sensor’s sensitivity experiences high variations
that can lead to a degradation of its performances.

Keywords: surface acoustic wave; gas sensor; sparse polynomial chaos; Sobol’ indices; global
sensitivity analysis

1. Introduction

Surface acoustic waves (SAW) were first described by Lord Rayleigh in his seminal
paper [1] as acoustic waves propagating along the surface of an elastic material with an
amplitude decaying exponentially with depth into the substrate. The resulting high energy
density in the surface region of the substrate is the key feature that explains the high sensitivity
of SAW-based sensors. In the past two decades, SAW have gained tremendous interest for
sensor applications where the delay line device composed of a transmitting and a receiving
interdigital transducer (IDT) on a piezoelectric substrate has become commonplace [2]. It must
be pointed out that the piezoelectric substrate is connected only with the ease of producing
SAW by IDTs [3]. In such a configuration, SAW propagation is characterized by an electric
field resulting in an acousto-electric coupling. Different types of SAW can be distinguished:
Rayleigh waves, Lamb waves, Love waves, and surface transverse waves—each of which has
its advantages advantages and disadvantages with respect to sensitivity, stability, usability
in liquids or gases, and fabrication complexity [4]. By placing the delay line in the feedback
loop of an amplifier, an acoustic-wave oscillator is formed. SAW gas sensors have a sensitive
layer, between the two IDTs transducers, that can absorb gas molecules from the surrounding
atmosphere. This changes the propagation characteristics of the SAW because of the variations
of the physical properties (density, conductivity, permittivity, etc.) of the sensing region.
For gas sensors, two parallel delay lines, one without a sensitive layer serving as a reference
and another with a sensitive layer are used. The response of the sensitive layer to the particular
gas is detected as a difference between the two oscillators frequencies f and f0. A large variety
of gas sensors have been conceived using such a configuration [5–8]. It is worth noting
that other versatile gas sensors have been developed as well, including field effect transistor
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(FET) [9], bulk acoustic wave [10], resistance [11], quartz crystal microbalance [12], and self-
powered [13]. Dichloromethane (or methylene dichloride, abbreviated herein as DCM) is
a volatile organic compound that has received attention for its concentration reduction as
it is known to be toxic to the central nervous system when the exposure level is high [14].
Recently, SAW have been used to identify the presence of VOCs in various applications [15,16]
by covering the acoustic path with a thin layer of sensitive material. Due to its low density,
low crystalline, good adhesion, and high permeability properties, PIB has demonstrated a
higher sensitivity than other polymers to DCM [17]. This setup has been analyzed numerically
by many authors in the literature [18–21]. Furthermore, over the years, many simulation
techniques and methods have been developed and applied to surface wave acoustic modeling
such as the coupling of modes method [22], Green’s function method [23], and finite element
methods [24–26]. However, none of these approaches have proposed to treat the impact of
uncertain parameters (geometry, materials properties, etc.) on the sensitivity of a SAW device.
To the author’s best knowledge, there is no study in the literature that proposes a systematic
way to propagate uncertainty of input parameters and to assess the impact of these parameters
on the sensitivity of a SAW based gas sensor. In this work, uncertainty propagation and global
sensitivity analyses based on finite elements and sparse polynomial chaos are proposed to
assess in a systematic way the impact of various parameters on the sensitivity of SAW gas
sensors. In Section 2, the finite element model of the SAW gas sensor is presented. Then in
Section 3, uncertainty propagation is introduced, and in Section 4 global sensitivity analysis
using Sobol’ indices is detailed. In Section 5, sparse polynomial chaos is introduced, and in
Section 6 results and discussion are presented.

2. Simulation Model

A FEM simulation of the SAW gas sensor is performed using COMSOL.

2.1. Geometry

The sensor consists of an IDT etched onto a piezoelectric YZ-cut LiNbO3 (lithium
niobate) substrate and covered with a thin polyisobutylene (PIB) film. IDTs used in SAW
devices consist of hundreds of identical electrodes that can be each about 100 times longer
than they are wide. The edge effects can therefore be neglected and the model geometry
can be reduced to a periodic unit cell.

The width of the unit cell is equal to the acoustic wavelength λ that is fixed to 4 µm.
The PIB layer thickness tPIB is 0.5 µm. Aluminum electrodes height is equal to 0.4 tPIB and

their width is
λ

4
while the space between them is

λ

4
. The height of the unit cell does not

have to extend all the way to the bottom of the substrate but only a few wavelengths down,
so that the SAW has almost died out at the lower boundary. The total height of the unit cell
is chosen to be 6 λ + tPIB as shown in Figure 1.

Figure 1. Boundaries conditions.
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2.2. Sensing Model

The mass of the PIB film increases as PIB selectively adsorbs DCM from the surround-
ing air. The adsorption of DCM gas is represented as a change in the density of the PIB film
as follows:

ρPIB = ρ0 + ρDCM−PIB (1)

with
ρDCM−PIB =

K M p
R T

c0 (2)

where K = 101.4821 [27] is the air/PIB partition coefficient for DCM, M its molar mass and
c0 its concentration in parts per million, p the air pressure, T the ambient temperature, and
R the gas constant. Any effects of the DCM adsorption on the material properties other
than the density are neglected.

2.3. Material Properties

The material properties of the Al and LiNbO3 are implemented from the accessible
built-in library of the COMSOL software. The density ρ0 of PIB is 0.918 g/cm3 [27]. It is
assumed that its Young’s modulus is 10 GPa, its Poisson’s ratio is 0.48, and its relative
permittivity is 0.22.

2.4. Boundary Conditions

A 2D model with a plane strain (see Figure 1) hypothesis is adopted with periodic
boundary conditions for displacement and electrical potential imposed at the left (ΓL1 , ΓL2 )
and right (ΓR1 , ΓR2) vertical boundaries. A zero displacement boundary condition is en-
forced at the bottom of the structure (Γ1). This does not contribute to any significant
reflection from the lower boundary back into the bulk of the substrate as long as we are
observing surface waves and in particular Rayleigh waves. As the electrodes have a much
higher electrical conductivity compared to PIB and LiNbO3, one can expect that each of
them is iso-potential. The boundaries of the left electrode are set to electrical ground,
and those of the right one are assigned to a floating potential with zero surface charge
accumulation. This combination of electrical boundary conditions corresponds to an open
circuit configuration, which is typically suitable for sensing applications. The boundary (Γ1)
is left mechanically free and with zero surface charge accumulation. All other boundaries
are left to the default boundary conditions which are free for the solid mechanics interface
and zero charge for the electrostatics interface, respectively.

2.5. Mesh

A structured quadrangular mesh is used for the whole geometry as shown in Figure 2.

Figure 2. Mesh distribution for the top of the SAW unit cell. The length of one electrode is 1 µm.
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For the PIB layer, a uniform distribution of 25 elements is used along the vertical edges
(left and right) which results in a uniform distribution of more than 100 elements along the
wavelength. It has been confirmed that the output did not change by increasing the number
of elements along this edge. For the LiNbO3 region, 50 elements along the vertical edges
with an arithmetic growing sequence are employed. It has been confirmed that the output
did not vary by increasing the number of elements along this edge. The displacement and
electrical potential discretized using quadratic serendipity elements.

2.6. Sensor Sensitivity

The SAW frequency should be an integer fraction of the width λ of the geometry.
It can be determined by performing an eigenvalue analysis under COMSOL around a
reference frequency. As the Rayleigh velocity vR in LiNbO3 is around 3488 m/s, the lowest

SAW frequency f0, whose wavelength is equal to λ, should be around
vR
λ

. Using f0

as a reference frequency one can estimate the resonant frequencies of interest with the
eigensolver ARPACK under COMSOL. As stated earlier, the adsorption of DCM on the
PIB layer results in a change of density of the PIB layer which produces a frequency shift
of the SAW sensor that is proportional to the DCM gas concentration. By conducting an
eigenvalue analysis at c0 = 0 (without DCM) and c0 > 0 (with DCM), one can quantify this
frequency shift ∆ f . The sensitivity of the sensor is defined by:

ν =
∆ f
c0

(3)

3. Uncertainty Propagation (UP)

Uncertainty propagation aims at determining the output model response statistical
characteristics (moments, probability density function, cumulative density function, etc.)
knowing the probability distributions of the input parameters. A probabilistic framework
is adopted with (Γ,F ,P) a complete probability space, where Γ ∈ RM is a sample space,
F is a σ-algebra on the subsets of Γ, P a probability measure on F , and M a strictly
positive natural integer. Let X = [x1, . . . , xM] ∈ Γ a random parameter vector, whose
joint probability density function is denoted by p(X), which represents the input uncertain
parameters. We suppose, the existence of a computational modelM whose entries are
defined by X. The real output Y of this model is defined by the mapping Y = M(X).
In the last few years several methods for UP have been developed so far such as Monte
Carlo simulation (MCS) [28] and polynomial chaos expansions (PCE) [29]. To mitigate
the “curse of dimensionality” [30] alternatives approaches such as sparse polynomial
chaos expansions [31,32], tensor decompositions [33], low-rank approximations [34], sparse
grids [35,36], and their dimension adaptive [37] and spatially adaptive [38] variants have
been established.

4. Global Sensitivity Analysis (GSA)
4.1. Generalities

Sensitivity analysis aims to describe how the variability of a model response is affected
by the variability of each input. It is worth recalling that the variability of a parameter is
quantified by its coefficient of variation which is equal to its standard deviation divided by
its mean.

It is useful to spot unimportant variables and help reduce the dimension of the problem.
It is generally performed in a black-box fashion, i.e., only based on the model response
evaluations for a certain sample of inputs. Furthermore, it is often the case that each run
of the model is expensive in terms of computer time and, therefore, sensitivity methods
generally aim at reducing the number of model evaluations as much as possible. More
specifically, global sensitivity analysis takes into account the whole input parameter domain
and aims at decomposing the variance of the model output in terms of contributions of each
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single input parameter or combinations thereof. For an up-to-date review and classification
of sensitivity analysis techniques one can see [39].

4.2. Sobol’ Indices

In this work, a variance based method is used for GSA. Sobol’ indices [40] are based on
the idea of defining the expansion of the computational model into summands of increasing
dimension. This decomposition only holds for independent input variables and is often
referred to as ANOVA (ANalysis Of VAriance). The Sobol’s decomposition of a function
f (X) of the random input parameter vector X is defined as follows:

f (X) = f0 +
i=M

∑
i=1

fi(xi) + ∑
1<i<j<M

fi j(xi, xj) + . . . + f1,2,...,M(x1, . . . , xM), (4)

in such a way that

• The term f0 is equal to the expected value of f (X);
• The expected value of the summands with respect to their own variables in (4) is equal

to zero.

The expansion (4) is shown to be unique for integrable functions f and independent
input vectors X. The summands can be computed in a recursive manner as follows:

f0 =
∫

f (X)p(X)dX, (5)

fi(xi) =
∫

f (X)p(X∼i)dX∼i − f0, (6)

fij(xi, xj) =
∫

f (X)p(X∼i,j)dX∼i,j − f0 − fi(xi)− f j(xj), (7)

where the notation ∼ indicates that variables are excluded. The total variance can be
computed by V =

∫
f (X)2 p(X)dX− f 2

0 and the partial variances by

Vi1,...,is =
∫

f 2
i1,...,is(xi1 , . . . , xis)dxi1 p(X) . . . dxis . (8)

The latter equations have the property that they sum up to the total variance. A natural
sensitivity measure can be defined by

Si1,...,is =
Vi1,...,is

V
, (9)

which represents the contribution of the random variables (xi1 , . . . , xis) to the total variance.
Si is called first order Sobol’ index as it represents the effect of xi alone. The total Sobol’
index of variable xi is given by

ST
i = ∑

i∈(i1,...,is)
Si1,...,is , (10)

ST
i = 1− S1,...,i−1,i+1,...,M. (11)

Sobol’ indexes can be estimated using Monte-Carlo simulations [41,42], sparse PCE [43]
or LRA [34]. In this work, sparse polynomial chaos expansions will be used to evaluate
Sobol’ indices.

5. Sparse Polynomial Chaos Expansions
5.1. Polynomial Chaos Expansion

We recall the existence of a computational modelM whose entries are defined by
the random parameter vector X = [x1, . . . , xM] and its real output Y by the mapping
Y = M(X). Hence as outlined in Section 4, Sobol’ indices can be computed for each
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entry of the random parameter vector X. In the sequel, these entries are supposed to be
independent. The polynomial chaos expansion of Y is defined as:

Y = ∑
α∈NM

yαΨα(X), (12)

where Ψα are multivariate polynomials orthonormal with respect to p(X) and α = [α1, . . . , αM]
is a multi-index. The polynomials Ψα are built as product of one-dimensional orthonormal
polynomials such as:

Ψα(X) =
i=M

∏
i=1

φαi (xi), (13)

where αi is the order of the polynomial φαi (xi). Classical families of univariate orthonormal
polynomials and the distributions to which they are orthonormal, also called Askey scheme
orthonormal polynomials, are given in [29]. In practice the polynomial chaos expansion is
truncated such as:

Y ≈ ∑
α∈AM,p

yαΨα(X), (14)

where AM,p =

{
α ∈ NM, ∑

i
αi ≤ p

}
is the set of multi-indices that corresponds to the

total-degree truncation scheme. The total number of multivariate polynomial terms in this

expansion is P =
(M + p)!
p ! M !

. The hyperbolic truncation scheme corresponds to a set defined

by AM,p,q =

{
α ∈ AM,p, (∑

i
α

q
i )

1
q ≤ p

}
with q a real number. It is worth noticing that

this set is less populated than the total degree truncation set that corresponds to q = 1.
In practice, nor p or q are known and it is possible to infer them from the data with a basis
adaptive approach that increases gradually p and/or q and takes the combination that
decreases the leave-one-out error.

5.2. Sparse Least Squares Coefficients Computation

Once a set A of multi-indices α is chosen, the polynomials Ψα can be numbered from 0
to P− 1 with P = card(A) such that Ψ0 = 1. The truncated polynomial chaos expansion
can also be re-written such as:

Y ≈ YPCE =
P−1

∑
j=0

yjΨj(X), (15)

The first step is to evaluate the computational modelM at well chosen ND design
points Xi of the multi-variate parameter space. The model response at these locations are
denoted by Yi =M(Xi) and the experimental design matrix A is given by Aij = Ψj(Xi).
Then the coefficients y = [y0, . . . , yP−1] can be computed by ordinary least-squares [44]
such as:

y = (ATA)−1ATY , (16)

where Y = [Y1, . . . , YND ] is the vector of model responses. The vector of coefficients y can
also be computed by projection such as yα = E(ΨαM(X)) which needs the use of Gaussian
or sparse quadrature schemes. To favor sparsity in high dimensions, a penalized or con-
strained least-squares problem can be solved, as proposed by the least angle regression (LAR)
algorithm [32] or the orthogonal matching pursuit (OMP) algorithm [45]. These methods
iteratively retrieve the polynomial basis elements that are most correlated with the current
approximation residual and add them to the active set of regressors. The accuracy of the
PCE for both algorithms through the iterations can be assessed by the computation of a
posteriori error estimates such as leave-one-out error [31,46] as follows:
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εLOO =
∑i=ND

i=1 (Yi−M(Xi)
1−hi

)2

∑i=ND
i=1 (Yi − µY)2

, (17)

where hi is ith component of the vector diag(A(ATA)−1AT) and

µY =
1

ND

i=N

∑
i=1

Yi (18)

5.3. Sobol’ Indices Computation

As the polynomials are orthonormal, it is easy to show that the mean and variance of
polynomial chaos expansion are given by:

µPCE = E(YPCE) = y0

DPCE = V(YPCE) =
P−1

∑
j=0

y2
j E(Ψj(X)2)

Let us define the Ii1,...,is = αk > 0, ∀k = 1, . . . , M, k ∈ (i1, . . . , is) as the set of α tuples
such that only the indices (i1, . . . , is) are nonzero. It has been shown in [43] that first order
polynomial chaos based Sobol’ indices can be computed by

SPCE
i1,...,is =

∑α∈Ii1,...,is
y2

αE(Ψα(X)2)

DPCE
(19)

The total Sobol’ indices follow from (10) after replacing Si1,...,is by SPCE
i1,...,is .

5.4. Steps for Uncertainty Propagation and Global Sensitivity Analysis with Sparse
Polynomial Chaos

The different steps involving the computation of Sobol’ indices are as follows:

1. Form a DoCE by choosing ND appropriate design points Xi of the multi-variate
parameter space by a suitable sampling method (Monte Carlo, LHS, Sobol sequence,
Halton sequence, etc.);

2. Evaluate the computational model M at these points Xi and obtain the model
responses Yi =M(Xi);

3. Compute the polynomial chaos coefficients using sparse least squares (LAR or
OMP algorithms);

4. Use the polynomial chaos expansion to determine mean, variance, higher order
moments and density of the output;

5. Compute total Sobol’ indices for each variable using (19).

6. Results
6.1. Model Validation

To validate our finite element simulation model, we impose short circuit conditions
by imposing a tension of 1 V on the right electrode while the left one is set to the ground.
By performing a frequency analysis we can plot the logarithm of the admittance in seconds
in function of the frequency in MHz as shown in Figure 3.

One can see the existence of two peaks, the first corresponding to a resonant mode and
the second to an anti-resonant mode whose respective frequencies f− and f+ are 839 MHz
and 855 MHz. The interval between these two frequencies can be used to determine the
electro-mechanical coupling coefficient κ2 using [47]:

κ2 =
π2

4
f+ − f−

f− (20)
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which results for the present model in a value of 0.0471. This implies a relative error less
than 2% in comparison with the value of 0.048 documented in the literature [48]. Hence,
we can conclude that the finite element model is reliable.

Figure 3. Logarithm of the admittance (in seconds) versus the frequency in MHz.

6.2. SAW Modes and Resonant Frequencies

The open circuit conditions are imposed again by specifying a floating potential with
zero charge accumulation for the right electrode. The eigenvalue analysis allows to identify
two SAW modes, the first at a frequency f1 of 849 MHz (see Figure 4) that is a Rayleigh mode
and the second at a frequency f2 of 855 MHz (see Figure 5). The latter is called a Sezawa mode
after the two seismologists Sezawa and Kanai that revealed it in 1935. The frequency of the
second mode is confirmed by the work of [19].

Figure 4. Rayleigh mode (displacement).
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Figure 5. Sezawa mode (displacement).

It can be visually seen in Figures 4 and 5 that for the two modes the displacements
fields are localized in the vicinity of the surface, acknowledging the denomination of
surface acoustic waves. The Sesawa mode will be used in the sequel for frequency shift com-
putation as it presents a higher phase velocity and electro-mechanical coupling coefficient
than the Rayleigh mode [49].

6.3. Global Sensitivity Analysis

The COMSOL simulation model is converted into a MATLAB script that can be run
using the COMSOL Livelink for MATLAB. It can then be used as a function with input
parameters and outputs. The parameters whose impact on the sensor sensitivity ν is of
interest are reported in Table 1 with their means or nominal values.

Table 1. Parameters and nominal values.

Parameter Nominal Value

Pressure p or X1 1 atm
Temperature T or X2 25 degrees

DCM gas concentration c0 or X3 100 ppm
PIB density ρ0 or X4 0.918 g/cm3

PIB thickness tPIB or X5 0.5 µm
PIB Young’s modulus EPIB or X5 10 GPa

Cell width w or X7 4 µm

It is worth noticing that the width of the electrodes is also changed since it depends
on w. These parameters are supposed to be independent and follow log-normal laws
with the same coefficient of variation δ% (the standard deviation being the mean times
the coefficient of variation) that will be varied in the sequel. In the present work we have
deliberately chosen to restrict our attention on the impact of ambient parameters such as
temperature or pressure as well as PIB layer related parameters such as thickness, modulus,
and density since the SAW velocity shift is induced by the interaction of VOC molecules
with the PIB sensing layer. It is beyond the scope of this article to study the effect of the
material and geometrical parameters relative to the LiBNO3 layer as it would have resulted
in a tedious high dimensional global sensitivity analysis problem requiring many resources
to be dealt with.

The sampling plan (DoCE) consists of a ND points Sobol sequence on which a sparse
PCE is fitted thanks to the UqLab toolbox [50]. The sparse regression problem is solved
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using the OMP algorithm with a degree adaptive strategy (the maximal degree being varied
from 1 to 17 and the sparse PCE with the lowest leave-one-out error is selected) along with
the total degree truncation scheme. The number of points of the DoCE are varied and the
convergence of Sobol’ indices monitored.

6.3.1. Low Input Variability δ = 5%

A scatter-plot matrix of a DoCE of 50 points is shown in Figure 6. It represents pairwise
scatterplots of one parameter versus the other and on the diagonal the histogram of the
sampled values for each parameter. One can notice that the parameter space is well covered
in all its dimensions with such a sampling as there are no gaps appearing in the scatter-plots.

Figure 6. Scatterplot of a sampling plan with 50 points using a Sobol sequence.

To check the convergence of Sobol’ indices, the number of points ND of the DoCE
is varied. The leave-one-out error of the obtained sparse PCE is less than 10−10 for each
sampling plan. Table 2 shows the Sobol’ indices for ND = 50 and ND = 150 points. It is
worth noticing that the Sobol’ indices do not vary much with increasing the number of
points of the sampling plan, pointing out that convergence is almost reached.

Table 2. Sobol’ indices for ND = 50 and ND = 150.

ST
i ND = 50 ND = 150

ST
1 0.2276 0.2473

ST
2 0.0748 0.0814

ST
3 0.0679 0.0866

ST
4 0.0898 0.1077

ST
5 0.2073 0.2089

ST
6 0.0487 0.1197

ST
7 0.6293 0.6407

For ND = 150 points, the sparse PCE has a maximal degree of 13, a leave-one-out
error of 1.3× 10−11, a sparse basis of 148 elements, a mean of 2.22, and a coefficient of
variation of 12.5%. The corresponding Sobol’ indices are represented in Figure 7 where
one can easily notice that only one parameter is of importance, the width of the unit cell
(parameter X7), all the other parameters having a minor effect on the sensor’s sensitivity.
Moreover, the a coefficient of variation in the output, i.e., the sensor’s sensitivity ν, is of
about 12.5% which is about 2.5 times as much as the input variability of 5%. So for low
input variability, the situation remains quite controllable since there is only one parameter
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to control to ensure robust performances of the gas sensor. This can be well understood
if a large number of SAW gas sensors for which the sensitivity could be measured are
considered if within the design process small variations are tolerated in the PIB thickness,
PIB modulus, PIB density, and cell width and that the ambient pressure, temperature
and DCM concentration also experience small variations then one could expect moderate
variations in SAW gas sensor’s sensitivity that could be attributed mainly to the variations
in the cell width. In the linear regime, in the case of mass loading, sensor’s sensitivity is
given by [51]:

ν =
∆ f
c0
≈ −cm

v2
0

λ2
KMp

RT
tPIB (21)

where v0 is the SAW velocity and cm a mass coefficient. This expression shows that the cell
width is twice as impacting as the others parameters which explains the high sensitivity to
sensor’s sensitivity to the cell width. Furthermore, by performing a Monte-Carlo simulation
on the sparse PCE, it is also possible to obtain the density of the sensor’s sensitivity ν as
can be seen in Figure 8. The output density is characteristic of a log normal distribution
with moderate dispersion.

Figure 7. Total Sobol’ indices of the parameters X1, . . . , X7.

Figure 8. Probability density of the sensor’s sensitivity ν using 105 evaluations of the sparse PCE for
low input variability.
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6.3.2. Medium Input Variability δ = 10%

A scatterplot matrix of a DoCE of 50 points is shown in Figure 9. One can notice that
the parameter space is well covered in all its dimensions with such a sampling as there are
no gaps appearing in the scatter-plots.

Figure 9. Scatterplot of a sampling plan with 50 points using a Sobol sequence.

To check the convergence of Sobol’ indices, the number of points ND of the DoCE
is varied. The leave-one-out error of the obtained sparse PCE is less than 10−10 for each
sampling plan. Figure 10 represents the Sobol’ indices for different values of ND. It is worth
noticing that beginning from 250 points there is a stabilization of the Sobol’ indices and the
indices obtained for ND = 300 are retained for analysis.

Figure 10. Sobol’ indices for ND varying between 50 and 300.

For ND = 300 points, the sparse PCE has a maximal degree of 16, a leave-one-out error
of 9.1× 10−12, a sparse basis of 297 elements, a mean of 2.24, and a coefficient of variation
of 95%. As can be seen in Figure 11, almost all the parameters impact the sensor sensitivity
ν except the ambient temperature X2 = T that seems to have little effect. One reason to
that may be that the model does not take into account thermomechanical effects. Moreover,
the coefficient of variation in the output, i.e., the sensor’s variability, is about 95% so about
ten times the input variability highlighting strong variations of the sensor’s sensitivity.
In this case, in order to guarantee robust performances of the gas sensor it is mandatory
to control all the parameters except one. This can be well understood if a large number of
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SAW gas sensors for which the sensitivity could be measured are considered if within the
design process moderate variations are tolerated in the PIB thickness, PIB modulus, PIB
density, and cell width and that the ambient pressure, temperature, and DCM concentration
also experience moderate variations then one could expect very high variations in SAW
gas sensor’s sensitivity that could be attributed to all the previously cited parameters. By
performing a Monte-Carlo simulation on the sparse PCE, it is also possible to obtain the
density of the sensor’s sensitivity ν as can be seen in Figure 12. The output density flattens
and its mode noting a characteristic behavior of log normal densities with high variance.

Figure 11. Total Sobol’ indices of the parameters X1, . . . , X7.

Figure 12. Probability density of the sensor’s sensitivity ν using 105 evaluations of the sparse PCE for
medium input variability.

7. Conclusions

In this work, a COMSOL finite element model of a SAW gas sensor have been used
to build a sparse PCE metamodel to estimate the impact of different parameters on the
sensor’s sensitivity. A highly accurate sparse PCE metamodel is obtained by using a Sobol
sequence sampling and a degree adaptive scheme along with the OMP algorithm for sparse
regression. The Sobol’ indices computed from this metamodel show that if the cell width
is the most impacting parameter when the variability of the input parameters is low, it is
not the case for the medium variability case where all the parameters except one become
important. It is also shown that the sensor’s sensitivity experiences high variations in the
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medium variability case that can degrade the performance of the sensor. In perspective,
the methodology can be easily applied to layered SAW gas sensor structures that show
promising results especially in the range of high sensitivities [2].
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