A Theoretical Study of Surface Mode Propagation with a Guiding Layer of GaN/Sapphire Hetero-Structure in Liquid Medium
Abstract
:1. Introduction
2. Simulation of Surface Wave Phase Velocity
3. Results and Discussion
3.1. Phase Velocities
3.2. The Displacement Field
3.3. Investigating Different Materials as Guiding and Sensing Layers
3.4. Q-Factor for Free Surface and Under Liquid Loading
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Lu, C.C.; Liao, K.H.; Udrea, F.; Covington, J.A.; Gardner, J.W. Multi-field simulations and characterization of CMOS-MEMS high-temperature smart gas sensors based on SOI technology. J. Micromech. Microeng. 2008, 18, 075010. [Google Scholar] [CrossRef]
- Stefanescu, A.; Müller, A.; Giangu, I.; Dinescu, A.; Konstantinidis, G. Influence of Au-based metallization on the phase velocity of GaN on Si surface acoustic wave resonators. IEEE Electron Device Lett. 2016, 37, 321–324. [Google Scholar] [CrossRef]
- Ding, X.; Li, P.; Lin, S.C.S.; Stratton, Z.S.; Nama, N.; Guo, F.; Slotcavage, D.; Mao, X.; Shi, J.; Costanzo, F.; et al. Surface acoustic wave microfluidics. Lab Chip 2013, 13, 3626–3649. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- An, Y.K.; Kim, M.; Sohn, H. 4-Piezoelectric transducers for assessing and monitoring civil infrastructures. In Sensor Technologies for Civil Infrastructures; Wang, M., Lynch, J., Sohn, H., Eds.; Woodhead Publishing: Cambridge, UK, 2014; pp. 86–120. [Google Scholar]
- Uchino, K. Glory of piezoelectric perovskites. Sci. Technol. Adv. Mater. 2015, 16, 046001. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hashimoto, K.Y.; Hashimoto, K.Y. Surface Acoustic Wave Devices in Telecommunications; Springer: Berlin/Heidelberg, Germany, 2000. [Google Scholar]
- Müller, A.; Konstantinidis, G.; Giangu, I.; Buiculescu, V.; Dinescu, A.; Stefanescu, A.; Stavrinidis, A.; Stavrinidis, G.; Ziaei, A. GaN-based SAW structures resonating within the 5.4–8.5 GHz frequency range, for high sensitivity temperature sensors. In Proceedings of the 2014 IEEE MTT-S International Microwave Symposium (IMS2014), Tampa, FL, USA, 1–6 June 2014; pp. 1–4. [Google Scholar] [CrossRef]
- Hudgins, J.L.; Simin, G.S.; Santi, E.; Khan, M.A. An assessment of wide bandgap semiconductors for power devices. IEEE Trans. Power Electron. 2003, 18, 907–914. [Google Scholar] [CrossRef]
- Cai, Y.; Cheng, Z.; Yang, Z.; Tang, C.W.; Lau, K.M.; Chen, K.J. High-Temperature Operation of AlGaN/GaN HEMTs Direct-Coupled FET Logic (DCFL) Integrated Circuits. IEEE Electron Device Lett. 2007, 28, 328–331. [Google Scholar] [CrossRef]
- Pedrós, J.; Calle, F.; Grajal, J.; Riobóo, R.J.; Takagaki, Y.; Ploog, K.; Bougrioua, Z. Anisotropy-induced polarization mixture of surface acoustic waves in Ga N/c-sapphire heterostructures. Phys. Rev. B 2005, 72, 075306. [Google Scholar] [CrossRef]
- Wright, J.; Lim, W.; Gila, B.; Pearton, S.; Johnson, J.L.; Ural, A.; Ren, F. Hydrogen sensing with Pt-functionalized GaN nanowires. Sens. Actuators B Chem. 2009, 140, 196–199. [Google Scholar] [CrossRef]
- Kim, S.S.; Park, J.Y.; Choi, S.W.; Kim, H.S.; Na, H.G.; Yang, J.C.; Lee, C.; Kim, H.W. Room temperature sensing properties of networked GaN nanowire sensors to hydrogen enhanced by the Ga2Pd5 nanodot functionalization. Int. J. Hydrogen Energy 2011, 36, 2313–2319. [Google Scholar] [CrossRef]
- Johnson, J.L.; Choi, Y.; Ural, A.; Lim, W.; Wright, J.; Gila, B.; Ren, F.; Pearton, S. Growth and characterization of GaN nanowires for hydrogen sensors. J. Electron. Mater. 2009, 38, 490–494. [Google Scholar] [CrossRef]
- Lim, W.; Wright, J.; Gila, B.; Johnson, J.L.; Ural, A.; Anderson, T.; Ren, F.; Pearton, S. Room temperature hydrogen detection using Pd-coated GaN nanowires. Appl. Phys. Lett. 2008, 93, 072109. [Google Scholar] [CrossRef]
- Müller, A.; Giangu, I.; Stavrinidis, A.; Stefanescu, A.; Stavrinidis, G.; Dinescu, A.; Konstantinidis, G. Sezawa propagation mode in GaN on Si surface acoustic wave type temperature sensor structures operating at GHz frequencies. IEEE Electron Device Lett. 2015, 36, 1299–1302. [Google Scholar] [CrossRef]
- Pearton, S.J.; Kang, B.S.; Kim, S.; Ren, F.; Gila, B.P.; Abernathy, C.R.; Lin, J.; Chu, S.N.G. GaN-based diodes and transistors for chemical, gas, biological and pressure sensing. J. Phys. Cond. Matter 2004, 16, R961. [Google Scholar] [CrossRef]
- Wong, K.; Tang, W.; Lau, K.M.; Chen, K.J. Planar Two-dimensional Electron Gas (2DEG) IDT SAW Filter on AlGaN/GaN Heterostructure. In Proceedings of the 2007 IEEE/MTT-S International Microwave Symposium, Honolulu, HI, USA, 3–8 June 2007; pp. 2043–2046. [Google Scholar] [CrossRef]
- Petroni, S.; Tripoli, G.; Combi, C.; Vigna, B.; De Vittorio, M.; Todaro, M.; Epifani, G.; Cingolani, R.; Passaseo, A. GaN-based surface acoustic wave filters for wireless communications. Superlattices Microstruct. 2004, 36, 825–831. [Google Scholar] [CrossRef]
- Muller, A.; Neculoiu, D.; Konstantinidis, G.; Deligeorgis, G.; Dinescu, A.; Stavrinidis, A.; Cismaru, A.; Dragoman, M.; Stefanescu, A. SAW devices manufactured on GaN/Si for frequencies beyond 5 GHz. IEEE Electron Device Lett. 2010, 31, 1398–1400. [Google Scholar] [CrossRef]
- Müller, A.; Konstantinidis, G.; Buiculescu, V.; Dinescu, A.; Stavrinidis, A.; Stefanescu, A.; Stavrinidis, G.; Giangu, I.; Cismaru, A.; Modoveanu, A. GaN/Si based single SAW resonator temperature sensor operating in the GHz frequency range. Sens. Actuators A Phys. 2014, 209, 115–123. [Google Scholar] [CrossRef]
- Palacios, T.; Calle, F.; Grajal, J.; Monroy, E.; Eickhoff, M.; Ambacher, O.; Omnes, F. High frequency SAW devices on AlGaN: fabrication, characterization and integration with optoelectronics. In Proceedings of the Ultrasonics Symposium, Munich, Germany, 8–11 October 2002; Volume 1, pp. 57–60. [Google Scholar]
- Chen, Y.C.; Chang, W.T.; Cheng, C.C.; Shen, J.Y.; Kao, K.S. Development of human IgE biosensor using Sezawa-mode SAW devices. Curr. Appl. Phys. 2014, 14, 608–613. [Google Scholar] [CrossRef]
- Shiokawa, S.; Moriizumi, T. Design of SAW sensor in liquid. Jpn. J. Appl. Phys. 1988, 27, 142. [Google Scholar] [CrossRef]
- Herrmann, F.; Weihnacht, M.; Buttgenbach, S. Properties of sensors based on shear-horizontal surface acoustic waves in LiTaO3//SiO2 and quartz SiO2 structures. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2001, 48, 268–273. [Google Scholar] [CrossRef]
- Brookes, J.; Bufacchi, R.; Kondoh, J.; Duffy, D.M.; McKendry, R.A. Determining biosensing modes in SH-SAW device using 3D finite element analysis. Sens. Actuators B Chem. 2016, 234, 412–419. [Google Scholar] [CrossRef]
- Li, R.; Reyes, P.I.; Ragavendiran, S.; Shen, H.; Lu, Y. Tunable surface acoustic wave device based on acoustoelectric interaction in ZnO/GaN heterostructures. Appl. Phys. Lett. 2015, 107, 073504. [Google Scholar] [CrossRef]
- Aslam, M.Z.; Jeoti, V.; Karuppanan, S.; Malik, A.F.; Iqbal, A. FEM Analysis of Sezawa Mode SAW Sensor for VOC Based on CMOS Compatible AlN/SiO2/Si Multilayer Structure. Sensors 2018, 18, 1687. [Google Scholar] [CrossRef] [PubMed]
- Kondoh, J. Theoretical consideration of high-sensitivity biosensor using shear horizontal acoustic waves in layered structures. Electron. Commun. Jpn. 2012, 95, 27–32. [Google Scholar] [CrossRef]
- Pomorska, A.; Shchukin, D.; Hammond, R.; Cooper, M.A.; Grundmeier, G.; Johannsmann, D. Positive frequency shifts observed upon adsorbing micron-sized solid objects to a quartz crystal microbalance from the liquid phase. Anal. Chem. 2010, 82, 2237–2242. [Google Scholar] [CrossRef]
- Mohanan, A.A.; Islam, M.S.; Ali, S.H.M.; Parthiban, R.; Ramakrishnan, N. Investigation into mass loading sensitivity of sezawa wave mode-based surface acoustic wave sensors. Sensors 2013, 13, 2164–2175. [Google Scholar] [CrossRef]
- Tetelin, A.; Blanc, L.; Tortissier, G.; Dejous, C.; Rebière, D.; Boissière, C. Guided SH-SAW characterization of elasticity variations of mesoporous TiO2 sensitive films during humidity sorption. In Proceedings of the Sensors, Kona, HI, USA, 1–4 November 2010; pp. 2136–2140. [Google Scholar]
- Su, H.; Williams, P.; Thompson, M. Platinum anticancer drug binding to DNA detected by thickness-shear-mode acoustic wave sensor. Anal. Chem. 1995, 67, 1010–1013. [Google Scholar] [CrossRef]
Parameter | Value | |
---|---|---|
Substrate thickness | 40 m | |
GaN thickness | 8 m | |
Wavelength | 10 m | |
finger width | 2.5 m | |
Width | W | 2 m |
Sensing layer thickness | h | 100–2000 nm |
Fluid domain thickness | hf | 20 m |
Properties | Gold | Platinum | Titanium | ZnO | SiO |
---|---|---|---|---|---|
Density (kg/m) | 19,300 | 21,450 | 4940 | 5676 | 2200 |
Young Modulus (GPa) | 70 | 168 | 105 | 210 | 70 |
Poisson ratio | 0.44 | 0.33 | 0.38 | 0.33 | 0.17 |
Shear velocity (m/s) | 1122 | 2827 | 1685 | 2747 | 3766 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mohd Razip Wee, M.F.; Jaafar, M.M.; Faiz, M.S.; Dee, C.F.; Yeop Majlis, B. A Theoretical Study of Surface Mode Propagation with a Guiding Layer of GaN/Sapphire Hetero-Structure in Liquid Medium. Biosensors 2018, 8, 124. https://doi.org/10.3390/bios8040124
Mohd Razip Wee MF, Jaafar MM, Faiz MS, Dee CF, Yeop Majlis B. A Theoretical Study of Surface Mode Propagation with a Guiding Layer of GaN/Sapphire Hetero-Structure in Liquid Medium. Biosensors. 2018; 8(4):124. https://doi.org/10.3390/bios8040124
Chicago/Turabian StyleMohd Razip Wee, M. F., Muhammad Musoddiq Jaafar, Mohd Syafiq Faiz, Chang Fu Dee, and Burhanuddin Yeop Majlis. 2018. "A Theoretical Study of Surface Mode Propagation with a Guiding Layer of GaN/Sapphire Hetero-Structure in Liquid Medium" Biosensors 8, no. 4: 124. https://doi.org/10.3390/bios8040124
APA StyleMohd Razip Wee, M. F., Jaafar, M. M., Faiz, M. S., Dee, C. F., & Yeop Majlis, B. (2018). A Theoretical Study of Surface Mode Propagation with a Guiding Layer of GaN/Sapphire Hetero-Structure in Liquid Medium. Biosensors, 8(4), 124. https://doi.org/10.3390/bios8040124