Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (633)

Search Parameters:
Keywords = Sentinel-1B

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 5146 KB  
Article
Remote Sensing Aboveground Biomass Inversion of Four Vegetation Types in the Nanji Wetland
by Xiahua Lai, Xiaomin Zhao, Chen Wang, Han Zeng and Yiwen Shao
Forests 2025, 16(9), 1376; https://doi.org/10.3390/f16091376 - 27 Aug 2025
Abstract
Aboveground biomass (AGB) serves as a crucial indicator for assessing vegetation carbon sequestration capacity. While AGB levels vary significantly across different vegetation types and regions, the spatial distribution of AGB for specific wetland communities remains poorly characterized. To address this, we integrated field-collected [...] Read more.
Aboveground biomass (AGB) serves as a crucial indicator for assessing vegetation carbon sequestration capacity. While AGB levels vary significantly across different vegetation types and regions, the spatial distribution of AGB for specific wetland communities remains poorly characterized. To address this, we integrated field-collected data with Sentinel-2 spectral bands and remote sensing indices, employing random forest (RF) regression and Backpropagation Neural Network (BPNN) for AGB modeling. Through comparative evaluation of their inversion performance, the optimal model was selected to estimate vegetation AGB in the Nanji Wetland. By incorporating wetland classification data, we further generated spatial distribution maps of AGB for four dominant vegetation types during the dry season. The main findings are as follows. Important variables for the RF model included spectral bands B12, B11, B3, B2, B9, B1, B8, B6, and B4 and the Modified Normalized Difference Water Index (MNDWI), Normalized Difference Water Index (NDWI), Kernel Normalized Difference Vegetation Index (KNDVI), and Simple Ratio Index (SR). RF demonstrated significantly higher predictive accuracy (R2 = 0.945, RMSE = 109.205 g·m−2) compared to the BPNN (R2 = 0.821, RMSE = 176.025 g·m−2). The total estimated AGB reached 4.03 × 109 g; Carex spp. dominated AGB accumulation (1.49 × 109 g), followed by P. australis spp. (6.69 × 108 g), M. lutarioriparius spp. (4.60 × 108 g), and Polygonum spp. (3.61 × 108 g). The AGB exhibited a clear spatial gradient, decreasing from higher-elevation lakeshore areas towards the central lake. The results provide detailed spatial quantification of AGB stocks across dominant vegetation types, revealing distinct spatial characteristics and interspecies variations in AGB. This study offers a valuable baseline and methodological framework for monitoring wetland carbon dynamics. Full article
(This article belongs to the Special Issue Forest Inventory: The Monitoring of Biomass and Carbon Stocks)
Show Figures

Figure 1

20 pages, 29547 KB  
Technical Note
Air Moving-Target Detection Based on Sub-Aperture Segmentation and GoDec+ Decomposition with Spaceborne SAR Time-Series Imagery
by Yanping Wang, Yunzhen Jia, Wenjie Shen, Yun Lin, Yang Li, Lei Liu, Aichun Wang, Hongyu Liu and Qingjun Zhang
Remote Sens. 2025, 17(16), 2918; https://doi.org/10.3390/rs17162918 - 21 Aug 2025
Viewed by 376
Abstract
Air moving-target detection is crucial for national defense, civil aviation, and airspace supervision. Spaceborne synthetic aperture radar (SAR) provides high-resolution, continuous observations for this task, but faces challenges including target attitude variation-induced weak signals and Doppler defocusing from targets’ high-speed motion, which hinder [...] Read more.
Air moving-target detection is crucial for national defense, civil aviation, and airspace supervision. Spaceborne synthetic aperture radar (SAR) provides high-resolution, continuous observations for this task, but faces challenges including target attitude variation-induced weak signals and Doppler defocusing from targets’ high-speed motion, which hinder target-background separation. To address this, we propose a novel method combining sub-aperture segmentation with GoDec+ low-rank decomposition to enhance signal-to-noise ratio and suppress defocusing. Critically, ADS-B flight data is integrated as ground truth for spatio-temporal validation. Experiments using Sentinel-1 SM mode SLC imagery across farmland, forest, and mountainous regions confirm the method’s effectiveness and robustness in real airspace scenarios. Full article
Show Figures

Figure 1

22 pages, 9182 KB  
Article
Sensor Synergy in Bathymetric Mapping: Integrating Optical, LiDAR, and Echosounder Data Using Machine Learning
by Emre Gülher and Ugur Alganci
Remote Sens. 2025, 17(16), 2912; https://doi.org/10.3390/rs17162912 - 21 Aug 2025
Viewed by 448
Abstract
Bathymetry, the measurement of water depth and underwater terrain, is vital for scientific, commercial, and environmental applications. Traditional methods like shipborne echosounders are costly and inefficient in shallow waters due to limited spatial coverage and accessibility. Emerging technologies such as satellite imagery, drones, [...] Read more.
Bathymetry, the measurement of water depth and underwater terrain, is vital for scientific, commercial, and environmental applications. Traditional methods like shipborne echosounders are costly and inefficient in shallow waters due to limited spatial coverage and accessibility. Emerging technologies such as satellite imagery, drones, and spaceborne LiDAR offer cost-effective and efficient alternatives. This research explores integrating multi-sensor datasets to enhance bathymetric mapping in coastal and inland waters by leveraging each sensor’s strengths. The goal is to improve spatial coverage, resolution, and accuracy over traditional methods using data fusion and machine learning. Gülbahçe Bay in İzmir, Turkey, serves as the study area. Bathymetric modeling uses Sentinel-2, Göktürk-1, and aerial imagery with varying resolutions and sensor characteristics. Model calibration evaluates independent and integrated use of single-beam echosounder (SBE) and satellite-based LiDAR (ICESat-2) during training. After preprocessing, Random Forest and Extreme Gradient Boosting algorithms are applied for bathymetric inference. Results are assessed using accuracy metrics and IHO CATZOC standards, achieving A1 level for 0–10 m, A2/B for 0–15 m, and C level for 0–20 m depth intervals. Full article
(This article belongs to the Section Environmental Remote Sensing)
Show Figures

Figure 1

23 pages, 13439 KB  
Article
Precision Identification of Irrigated Areas in Semi-Arid Regions Using Optical-Radar Time-Series Features and Ensemble Machine Learning
by Weifeng Li, Changlai Xiao, Xiujuan Liang, Weifei Yang, Jiang Zhang, Rongkun Dai, Yuhan La, Le Kang and Deyu Zhao
Hydrology 2025, 12(8), 214; https://doi.org/10.3390/hydrology12080214 - 14 Aug 2025
Viewed by 335
Abstract
Addressing limitations in remote sensing irrigation monitoring (insufficient resolution, single-source constraints, poor terrain adaptability), this study developed a high-precision identification framework for Jianping County, China, a semi-arid region. We integrated Sentinel-1 SAR (VV/VH), Sentinel-2 multispectral, and MOD11A1 land surface temperature data. Savitzky–Golay (S-G) [...] Read more.
Addressing limitations in remote sensing irrigation monitoring (insufficient resolution, single-source constraints, poor terrain adaptability), this study developed a high-precision identification framework for Jianping County, China, a semi-arid region. We integrated Sentinel-1 SAR (VV/VH), Sentinel-2 multispectral, and MOD11A1 land surface temperature data. Savitzky–Golay (S-G) filtering reconstructed time-series datasets for NDVI, SAVI, TVDI, and VV/VH backscatter coefficients. Irrigation mapping employed random forest (RF), Support Vector Machine (SVM), and K-Nearest Neighbors (KNN) algorithms. Key results demonstrate the following. (1) RF achieved superior performance with overall accuracies of 91.00% (2022), 88.33% (2023), and 87.78% (2024), and Kappa coefficients of 86.37%, 80.96%, and 80.40%, showing minimal deviation (0.66–3.44%) from statistical data; (2) SAVI and VH exhibited high irrigation sensitivity, with peak differences between irrigated/non-irrigated areas reaching 0.48 units (SAVI, July–August) and 2.78 dB (VH); (3) cropland extraction accuracy showed <3% discrepancy versus governmental statistics. The “Multi-temporal Feature Fusion + S-G Filtering + RF Optimization” framework provides an effective solution for precision irrigation monitoring in complex semi-arid environments. Full article
Show Figures

Figure 1

22 pages, 4725 KB  
Article
Diverse Techniques in Estimating Integrated Water Vapor for Calibration and Validation of Satellite Altimetry
by Stelios P. Mertikas, Craig Donlon, Achilles Tripolitsiotis, Costas Kokolakis, Antonio Martellucci, Ermanno Fionda, Maria Cadeddu, Dimitrios Piretzidis, Xenofon Frantzis, Theodoros Kalamarakis and Pierre Femenias
Remote Sens. 2025, 17(16), 2779; https://doi.org/10.3390/rs17162779 - 11 Aug 2025
Viewed by 342
Abstract
In satellite altimetry calibration, the atmosphere’s integrated water vapor content has been customarily derived through the Global Navigation Satellite Systems (GNSS), principally over land where the satellite radiometer is not operational. Progressively, several alternative methods have emerged to estimate this wet troposphere component [...] Read more.
In satellite altimetry calibration, the atmosphere’s integrated water vapor content has been customarily derived through the Global Navigation Satellite Systems (GNSS), principally over land where the satellite radiometer is not operational. Progressively, several alternative methods have emerged to estimate this wet troposphere component with ground instruments, alternative satellite sensors, and global models. For any ground calibration facility, integration of various approaches is required to arrive at an optimum value of a calibration constituent and in accordance with the strategy of Fiducial Reference Measurements (FRM). In this work, different estimation methods and instruments are evaluated for wet troposphere delays, especially when transponder and corner reflectors are employed at the Permanent Facility for Altimetry Calibration of the European Space Agency. Evaluation includes, first, ground instruments with microwave radiometers and radiosondes; second, satellite sensors with the Ocean Land Color Instrument (OLCI) and the Sea Land Surface Temperature Radiometer (SLSTR) of the Copernicus Sentinel-3 altimeter, as well as the TROPOMI spectrometer on the Sentinel-5P satellite; and finally with global atmospheric models, such as the European Center for Medium-Range Weather Forecasts. Along these lines, multi-sensor and redundant values for the troposphere delays are thus integrated and used for the calibration of Sentinel-6 MF and Sentinel-3A/B satellite altimeters. All in all, the integrated water vapor value of the troposphere is estimated with an FRM uncertainty of ±15 mm. In the absence of GNSS stations, it is recommended that the OLCI and SLSTR measurements be used for determining tropospheric delays in daylight and night operations, respectively. Ground microwave radiometers can also be used to retrieve tropospheric data with high temporal resolution and accuracy, provided that they are properly installed and calibrated and operated with site-specific parameters. Finally, the synergy of ground radiometers with instruments on board other Copernicus satellites should be further investigated to ensure redundancy and diversity of the produced values for the integrated water vapor. Full article
(This article belongs to the Special Issue Applications of Satellite Geodesy for Sea-Level Change Observation)
Show Figures

Figure 1

24 pages, 6356 KB  
Article
Sandy Beach Extraction Method Based on Multi-Source Data and Feature Optimization: A Case in Fujian Province, China
by Jie Meng, Duanyang Xu, Zexing Tao and Quansheng Ge
Remote Sens. 2025, 17(16), 2754; https://doi.org/10.3390/rs17162754 - 8 Aug 2025
Viewed by 454
Abstract
Sandy beaches are vital geomorphic units with ecological, social, and economic significance, playing a key role in coastal protection and ecosystem regulation. However, they are increasingly threatened by climate change and human activities, highlighting the need for large-scale, high-precision monitoring to support sustainable [...] Read more.
Sandy beaches are vital geomorphic units with ecological, social, and economic significance, playing a key role in coastal protection and ecosystem regulation. However, they are increasingly threatened by climate change and human activities, highlighting the need for large-scale, high-precision monitoring to support sustainable management. Existing remote-sensing-based sandy beach extraction methods face challenges such as suboptimal feature selection and reliance on single data sources, limiting their generalization and accuracy. This study proposes a novel sandy beach extraction framework that integrates multi-source data, feature optimization, and collaborative modeling, with Fujian Province, China, as the study area. The framework combines Sentinel-1/2 imagery, nighttime light data, and terrain data to construct a comprehensive feature set containing 44 spectrum, index, polarization, texture, and terrain variables. The optimal feature subsets are selected using the Recursive Feature Elimination (RFE) algorithm. Six machine learning models—Random Forest (RF), Extreme Gradient Boosting (XGBoost), Light Gradient Boosting Machine (LGBM), Gradient Boosting Machine (GBM), Adaptive Boosting (AdaBoost), and Categorical Boosting (CatBoost)—along with an ensemble learning model, are employed for comparative analysis and performance optimization. The results indicate the following. (1) All models achieved the best performance when integrating all five types of features, with the average overall F1-score and accuracy reaching 0.9714 and 0.9733, respectively. (2) The number of optimal features selected by RFE varied by model, ranging from 19 to 36. The ten most important features across models were Band 2 (B2), Elevation, Band 3 (B3), VVVH_SUM, Spatial Average (SAVG), VH, Enhanced Water Index (EWI), Slope, Variance (VAR), and Normalized Difference Vegetation Index (NDVI). (3) The ensemble learning model outperformed all others, achieving an average overall accuracy, precision, recall, and F1-score of 0.9750, 0.9733, 0.9725, and 0.9734, respectively, under the optimal feature subset. A total of 555 sandy beaches were extracted in Fujian Province, covering an area of 43.60 km2 with a total perimeter of 1263.59 km. This framework demonstrates strong adaptability and robustness in complex coastal environments, providing a scalable solution for intelligent sandy beach monitoring and refined resource management. Full article
(This article belongs to the Section Ocean Remote Sensing)
Show Figures

Figure 1

19 pages, 17281 KB  
Article
Retrieving Chlorophyll-a Concentrations in Baiyangdian Lake from Sentinel-2 Data Using Kolmogorov–Arnold Networks
by Wenlong Han and Qichao Zhao
Water 2025, 17(15), 2346; https://doi.org/10.3390/w17152346 - 7 Aug 2025
Viewed by 468
Abstract
This study pioneers the integration of Sentinel-2 satellite imagery with Kolmogorov–Arnold networks (KAN) for the evaluation of chlorophyll-a (Chl-a) concentrations in inland lakes. Using Baiyangdian Lake in Hebei Province, China, as a case study, a specialized KAN architecture was designed to extract spectral [...] Read more.
This study pioneers the integration of Sentinel-2 satellite imagery with Kolmogorov–Arnold networks (KAN) for the evaluation of chlorophyll-a (Chl-a) concentrations in inland lakes. Using Baiyangdian Lake in Hebei Province, China, as a case study, a specialized KAN architecture was designed to extract spectral features from Sentinel-2 data, and a robust algorithm was developed for Chl-a estimation. The results demonstrate that the KAN model outperformed traditional feature-engineering-based machine learning (ML) methods and standard multilayer perceptron (MLP) deep learning approaches, achieving an R2 of 0.8451, with MAE and RMSE as low as 1.1920 μg/L and 1.6705 μg/L, respectively. Furthermore, attribution analysis was conducted to quantify the importance of individual features, highlighting the pivotal role of bands B3 and B5 in Chl-a retrieval. Furthermore, spatio-temporal distributions of Chl-a concentrations in Baiyangdian Lake from 2020 to 2024 were generated leveraging the KAN model, further elucidating the underlying causes of water quality changes and examining the driving factors. Compared to previous studies, the proposed approach leverages the high spatial resolution of Sentinel-2 imagery and the accuracy and interpretability of the KAN model, offering a novel framework for monitoring water quality parameters in inland lakes. These findings may guide similar research endeavors and provide valuable decision-making support for environmental agencies. Full article
(This article belongs to the Special Issue AI, Machine Learning and Digital Twin Applications in Water)
Show Figures

Figure 1

15 pages, 3267 KB  
Article
Monitoring and Analyzing Aquatic Vegetation Using Sentinel-2 Imagery Time Series: A Case Study in Chimaditida Shallow Lake in Greece
by Maria Kofidou and Vasilios Ampas
Limnol. Rev. 2025, 25(3), 35; https://doi.org/10.3390/limnolrev25030035 - 1 Aug 2025
Viewed by 374
Abstract
Aquatic vegetation plays a crucial role in freshwater ecosystems by providing habitats, regulating water quality, and supporting biodiversity. This study aims to monitor and analyze the dynamics of aquatic vegetation in Chimaditida Shallow Lake, Greece, using Sentinel-2 satellite imagery, with validation from field [...] Read more.
Aquatic vegetation plays a crucial role in freshwater ecosystems by providing habitats, regulating water quality, and supporting biodiversity. This study aims to monitor and analyze the dynamics of aquatic vegetation in Chimaditida Shallow Lake, Greece, using Sentinel-2 satellite imagery, with validation from field measurements. Data processing was performed using Google Earth Engine and QGIS. The study focuses on discriminating and mapping two classes of aquatic surface conditions: areas covered with Floating and Emergent Aquatic Vegetation and open water, covering all seasons from 1 March 2024, to 28 February 2025. Spectral bands such as B04 (red), B08 (near infrared), B03 (green), and B11 (shortwave infrared) were used, along with indices like the Modified Normalized Difference Water Index and Normalized Difference Vegetation Index. The classification was enhanced using Otsu’s thresholding technique to distinguish accurately between Floating and Emergent Aquatic Vegetation and open water. Seasonal fluctuations were observed, with significant peaks in vegetation growth during the summer and autumn months, including a peak coverage of 2.08 km2 on 9 September 2024 and a low of 0.00068 km2 on 28 December 2024. These variations correspond to the seasonal growth patterns of Floating and Emergent Aquatic Vegetation, driven by temperature and nutrient availability. The study achieved a high overall classification accuracy of 89.31%, with producer accuracy for Floating and Emergent Aquatic Vegetation at 97.42% and user accuracy at 95.38%. Validation with Unmanned Aerial Vehicle-based aerial surveys showed a strong correlation (R2 = 0.88) between satellite-derived and field data, underscoring the reliability of Sentinel-2 for aquatic vegetation monitoring. Findings highlight the potential of satellite-based remote sensing to monitor vegetation health and dynamics, offering valuable insights for the management and conservation of freshwater ecosystems. The results are particularly useful for governmental authorities and natural park administrations, enabling near-real-time monitoring to mitigate the impacts of overgrowth on water quality, biodiversity, and ecosystem services. This methodology provides a cost-effective alternative for long-term environmental monitoring, especially in regions where traditional methods are impractical or costly. Full article
Show Figures

Figure 1

19 pages, 13565 KB  
Article
Estimation of Ultrahigh Resolution PM2.5 in Urban Areas by Using 30 m Landsat-8 and Sentinel-2 AOD Retrievals
by Hao Lin, Siwei Li, Jiqiang Niu, Jie Yang, Qingxin Wang, Wenqiao Li and Shengpeng Liu
Remote Sens. 2025, 17(15), 2609; https://doi.org/10.3390/rs17152609 - 27 Jul 2025
Viewed by 446
Abstract
Ultrahigh resolution fine particulate matter (PM2.5) mass concentration remote sensing products are crucial for atmospheric environmental monitoring, pollution source verification, health exposure risk assessment, and other fine-scale applications in urban environments. This study developed an ultrahigh resolution retrieval algorithm to estimate [...] Read more.
Ultrahigh resolution fine particulate matter (PM2.5) mass concentration remote sensing products are crucial for atmospheric environmental monitoring, pollution source verification, health exposure risk assessment, and other fine-scale applications in urban environments. This study developed an ultrahigh resolution retrieval algorithm to estimate 30 m resolution PM2.5 mass concentrations over urban areas from Landsat-8 and Sentinel-2A/B satellite measurements. The algorithm utilized aerosol optical depth (AOD) products retrieved from the Landsat-8 OLI and Sentinel-2 MSI measurements from 2017 to 2020, combined with multi-source auxiliary data to establish a PM2.5-AOD relationship model across China. The results showed an overall high coefficient of determination (R2) of 0.82 and 0.76 for the model training accuracy based on samples and stations, respectively. The model prediction accuracy in Beijing and Wuhan reached R2 values of 0.86 and 0.85. Applications in both cities demonstrated that ultrahigh resolution PM2.5 has significant advantages in resolving fine-scale spatial patterns of urban air pollution and pinpointing pollution hotspots. Furthermore, an analysis of point source pollution at a typical heavy pollution emission enterprise confirmed that ultrahigh spatial resolution PM2.5 can accurately identify the diffusion trend of point source pollution, providing fundamental data support for refined monitoring of urban air pollution and air pollution prevention and control. Full article
Show Figures

Figure 1

20 pages, 2305 KB  
Article
Research on Accurate Inversion Techniques for Forest Cover Using Spaceborne LiDAR and Multi-Spectral Data
by Yang Yi, Mingchang Shi, Jin Yang, Jinqi Zhu, Jie Li, Lingyan Zhou, Luqi Xing and Hanyue Zhang
Forests 2025, 16(8), 1215; https://doi.org/10.3390/f16081215 - 24 Jul 2025
Viewed by 382
Abstract
Fractional Vegetation Cover (FVC) is an important parameter to reflect vegetation growth and describe plant canopy structure. This study integrates both active and passive remote sensing, capitalizing on the complementary strengths of optical and radar data, and applies various machine learning algorithms to [...] Read more.
Fractional Vegetation Cover (FVC) is an important parameter to reflect vegetation growth and describe plant canopy structure. This study integrates both active and passive remote sensing, capitalizing on the complementary strengths of optical and radar data, and applies various machine learning algorithms to retrieve FVC. The results demonstrate that, for FVC retrieval, the optimal combination of optical remote sensing bands includes B2 (490 nm), B5 (705 nm), B8 (833 nm), B8A (865 nm), and B12 (2190 nm) from Sentinel-2, achieving an Optimal Index Factor (OIF) of 522.50. The LiDAR data of ICESat-2 imagery is more suitable for extracting FVC than that of GEDI imagery, especially at a height of 1.5 m, and the correlation coefficient with the measured FVC is 0.763. The optimal feature variable combinations for FVC retrieval vary among different vegetation types, including synthetic aperture radar, optical remote sensing, and terrain data. Among the three models tested—multiple linear regression, random forest, and support vector machine—the random forest model outperformed the others, with fitting correlation coefficients all exceeding 0.974 and root mean square errors below 0.084. Adding LiDAR data on the basis of optical remote sensing combined with machine learning can effectively improve the accuracy of remote sensing retrieval of vegetation coverage. Full article
(This article belongs to the Section Forest Inventory, Modeling and Remote Sensing)
Show Figures

Figure 1

16 pages, 2052 KB  
Article
Prognostic Implications of T Cell Receptor Repertoire Diversity in Cervical Lymph Nodes of Oral Squamous Cell Carcinoma Patients
by Kenichi Kumagai, Yoshiki Hamada, Akihisa Horie, Yudai Shimizu, Yoshihiro Ohashi, Reo Aoki, Taiki Suzuki, Koji Kawaguchi, Akihiro Kuroda, Takahiro Tsujikawa, Kazuto Hoshi and Kazuhiro Kakimi
Int. J. Mol. Sci. 2025, 26(15), 7073; https://doi.org/10.3390/ijms26157073 - 23 Jul 2025
Viewed by 325
Abstract
The immune landscape of tumor-draining lymph nodes (TDLNs) plays a critical role in shaping antitumor responses and influencing prognosis in oral squamous cell carcinoma (OSCC). Among patients with lymph node (LN) metastasis, clinical outcomes vary widely, yet reliable biomarkers for prognostic stratification remain [...] Read more.
The immune landscape of tumor-draining lymph nodes (TDLNs) plays a critical role in shaping antitumor responses and influencing prognosis in oral squamous cell carcinoma (OSCC). Among patients with lymph node (LN) metastasis, clinical outcomes vary widely, yet reliable biomarkers for prognostic stratification remain limited. This study aimed to identify immune features in tumors and LNs that differentiate between favorable and poor outcomes in OSCC patients with nodal metastasis. We analyzed T cell receptor (TCR) CDR3 repertoires and the expression of immune-related genes in primary tumors and paired sentinel LNs from OSCC patients who underwent tumor resection and lymphadenectomy. Patients were divided into three groups: Group A (no nodal metastasis), Group B1 (metastasis without recurrence), and Group B2 (metastasis with recurrence). TCR diversity was assessed using the Shannon index. The expression of immune-related genes (e.g., CD3E, CD4, CD8B, FOXP3, CTLA4, IL2, IL4) was measured by quantitative PCR and normalized to GAPDH. TCR diversity was lower in tumors than in non-metastatic LNs, reflecting clonal expansion. Metastatic LNs exhibited tumor-like diversity, suggesting infiltration by tumor-reactive clones. Tumor gene expression did not differ across groups, but LNs from metastatic cases showed the reduced expression of several immune genes. Notably, CD3E, CD8B, CTLA4, IL2, and IL4 distinguished B1 from B2. The immune profiling of LNs offers superior prognostic value over tumor analysis in OSCC patients with LN metastasis. LN-based evaluation may aid in postoperative risk stratification and personalized postoperative management and could inform decisions regarding adjuvant therapy and follow-up strategies. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Graphical abstract

15 pages, 12546 KB  
Article
Retrieval of Chlorophyll-a Concentration in Nanyi Lake Using the AutoGluon Framework
by Weibin Gu, Ji Liang, Lian Yang, Shanshan Guo and Ruixin Jia
Water 2025, 17(15), 2190; https://doi.org/10.3390/w17152190 - 23 Jul 2025
Viewed by 355
Abstract
The chlorophyll-a (Chl-a) concentration in lakes is a crucial parameter for monitoring water quality and assessing phytoplankton abundance. However, accurately retrieving Chl-a concentrations remains a significant challenge in remote sensing. To address the limitations of existing methods in terms of modeling efficiency and [...] Read more.
The chlorophyll-a (Chl-a) concentration in lakes is a crucial parameter for monitoring water quality and assessing phytoplankton abundance. However, accurately retrieving Chl-a concentrations remains a significant challenge in remote sensing. To address the limitations of existing methods in terms of modeling efficiency and adaptability, this study focuses on Lake Nanyi in Anhui Province. By integrating Sentinel-2 satellite imagery with in situ water quality measurements and employing the AutoML framework AutoGluon, a Chl-a inversion model based on narrow-band spectral features is developed. Feature selection and model ensembling identify bands B6 (740 nm) and B7 (783 nm) as the optimal combination, which are then applied to multi-temporal imagery from October 2022 to generate spatial mean distributions of Chl-a in Lake Nanyi. The results demonstrate that the AutoGluon framework significantly outperforms traditional methods in both model accuracy (R2: 0.94, RMSE: 1.67 μg/L) and development efficiency. The retrieval results reveal spatial heterogeneity in Chl-a concentration, with higher concentrations observed in the southern part of the western lake and the western side of the eastern lake, while the central lake area exhibits relatively lower concentrations, ranging from 3.66 to 21.39 μg/L. This study presents an efficient and reliable approach for lake ecological monitoring and underscores the potential of AutoML in water color remote sensing applications. Full article
(This article belongs to the Section Water Resources Management, Policy and Governance)
Show Figures

Figure 1

20 pages, 7401 KB  
Article
Measurement of Suspended Sediment Concentration at the Outlet of the Yellow River Canyon: Using Sentinel-2 Images and Machine Learning
by Genxin Song, Youjing Jiang, Xinyu Lei and Shiyan Zhai
Remote Sens. 2025, 17(14), 2424; https://doi.org/10.3390/rs17142424 - 12 Jul 2025
Viewed by 496
Abstract
The remote sensing inversion of the Suspended Sediment Concentration (SSC) at the Yellow River estuary is crucial for regional sediment management and the advancement of monitoring techniques for highly turbid waters. Traditional in situ methods and low-resolution imagery are no longer sufficient for [...] Read more.
The remote sensing inversion of the Suspended Sediment Concentration (SSC) at the Yellow River estuary is crucial for regional sediment management and the advancement of monitoring techniques for highly turbid waters. Traditional in situ methods and low-resolution imagery are no longer sufficient for high-accuracy studies. Using SSC data from the Longmen Hydrological Station (2019–2020) and Sentinel-2 imagery, multiple models were compared, and the random forest regression model was selected for its superior performance. A non-parametric regression model was developed based on optimal band combinations to estimate the SSC in high-sediment rivers. Results show that the model achieved a high coefficient of determination (R2 = 0.94) and met accuracy requirements considering the maximum SSC, MAPE, and RMSE. The B4, B7, B8A, and B9 bands are highly sensitive to high-concentration sediment rivers. SSC exhibited significant seasonal and spatial variation, peaking above 30,000 mg/L in summer (July–September) and dropping below 1000 mg/L in winter, with a positive correlation with discharge. Spatially, the SSC was higher in the gorge section than in the main channel during the flood season and higher near the banks than in the river center during the dry season. Overall, the random forest model outperformed traditional methods in SSC prediction for sediment-laden rivers. Full article
Show Figures

Figure 1

25 pages, 14195 KB  
Article
Maize Classification in Arid Regions via Spatiotemporal Feature Optimization and Multi-Source Remote Sensing Integration
by Guang Yang, Jun Wang and Zhengyuan Qi
Agronomy 2025, 15(7), 1667; https://doi.org/10.3390/agronomy15071667 - 10 Jul 2025
Viewed by 399
Abstract
This study addresses the challenges of redundant crop identification features and low computational efficiency in complex agricultural environments, particularly in arid regions. Focusing on the Hexi region of Gansu Province, we utilized the Google Earth Engine (GEE) to integrate Sentinel-2 optical imagery (10 [...] Read more.
This study addresses the challenges of redundant crop identification features and low computational efficiency in complex agricultural environments, particularly in arid regions. Focusing on the Hexi region of Gansu Province, we utilized the Google Earth Engine (GEE) to integrate Sentinel-2 optical imagery (10 bands) and Sentinel-1 radar data (VV/VH polarization), constructing a 96-feature set that comprises spectral, vegetation index, red-edge, and texture variables. The recursive feature elimination random forest (RF-RFE) algorithm was employed for feature selection and model optimization. Key findings include: (1) Variables driven by spatiotemporal differentiation were effectively selected, with red-edge bands (B5–B7) during the grain-filling stage in August accounting for 56.7% of the top 30 features, which were closely correlated with canopy chlorophyll content (p < 0.01). (2) A breakthrough in lightweight modeling was achieved, reducing the number of features by 69%, enhancing computational efficiency by 62.5% (from 8 h to 3 h), and decreasing memory usage by 66.7% (from 12 GB to 4 GB), while maintaining classification accuracy (PA: 97.69%, UA: 97.20%, Kappa: 0.89). (3) Multi-source data fusion improved accuracy by 11.54% compared to optical-only schemes, demonstrating the compensatory role of radar in arid, cloudy regions. This study offers an interpretable and transferable lightweight framework for precision crop monitoring in arid zones. Full article
(This article belongs to the Section Precision and Digital Agriculture)
Show Figures

Figure 1

9 pages, 235 KB  
Brief Report
Antimicrobial Resistance and Wildlife: Occurrence of Antimicrobial Resistance Genes in Red Foxes (Vulpes vulpes, Linnaeus, 1758), in Italy
by Antonietta Di Francesco, Daniela Salvatore, Roberta Taddei, Fabrizio Bertelloni, Caterina Lupini, Giulia Cagnoli and Valentina Virginia Ebani
Animals 2025, 15(14), 2022; https://doi.org/10.3390/ani15142022 - 9 Jul 2025
Viewed by 317
Abstract
Clinically significant antimicrobial-resistant bacteria and resistance genes are increasingly being reported in wildlife. In this study, 127 splenic samples from red foxes (Vulpes vulpes) from northern and central Italy were analysed for the presence of resistance genes against antimicrobials such as [...] Read more.
Clinically significant antimicrobial-resistant bacteria and resistance genes are increasingly being reported in wildlife. In this study, 127 splenic samples from red foxes (Vulpes vulpes) from northern and central Italy were analysed for the presence of resistance genes against antimicrobials such as tetracycline, sulphonamide, β-lactam, and colistin, which were previously extensively used in human and veterinary management of bacterial diseases. One or more antimicrobial resistance genes were detected in 78 (61%) of 127 splenic samples. Polymerase chain reaction positivity was revealed for 13 genes—tet(A), tet(B), tet(K), tet(L), tet(M), tet(O), tetA(P), tet(Q), tet(S), tet(X), sul1, sul2, and blaTEM-1—out of the 21 tested genes. Our results, corroborated by reports in the literature, confirm the potential role of the red fox as a sentinel for antimicrobial-resistant bacteria in contaminated environments and suggest that detecting resistance genes in biological samples by a culture-independent method might be an effective tool for the epidemiological study of antimicrobial resistance in wildlife. Full article
(This article belongs to the Section Wildlife)
Back to TopTop