Antimicrobial Resistance and Wildlife: Occurrence of Antimicrobial Resistance Genes in Red Foxes (Vulpes vulpes, Linnaeus, 1758), in Italy
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Sampling
2.2. Molecular Analysis
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Baros Jorquera, C.; Moreno-Switt, A.I.; Sallaberry-Pincheira, N.; Munita, J.M.; Flores Navarro, C.; Tardone, R.; González-Rocha, G.; Singer, R.S.; Bueno, I. Antimicrobial resistance in wildlife and in the built environment in a wildlife rehabilitation center. One Health 2021, 13, 100298. [Google Scholar] [PubMed]
- Wright, G.D. Environmental and clinical antibiotic resistomes, same only different. Curr. Opin. Microbiol. 2019, 51, 57–63. [Google Scholar]
- Ramey, A.M. Antimicrobial resistance: Wildlife as indicators of anthropogenic environmental contamination across space and through time. Curr. Biol. 2021, 31, R1381–R1402. [Google Scholar]
- Ventola, C.L. The antibiotic resistance crisis: Part 1: Causes and threats. Pharm. Ther. 2015, 40, 277–283. [Google Scholar]
- Plaza-Rodríguez, C.; Alt, K.; Grobbel, M.; Hammerl, J.A.; Irrgang, A.; Szabo, I.; Stingl, K.; Schuh, E.; Wiehle, L.; Pfefferkorn, B.; et al. Wildlife as sentinels of antimicrobial resistance in Germany? Front. Vet. Sci. 2021, 7, 627821. [Google Scholar]
- Reshamwala, H.S.; Mahar, N.; Dirzo, R.; Habib, B. Successful neighbour: Interactions of the generalist carnivore red fox with dogs, wolves and humans for continued survival in dynamic anthropogenic landscapes. GECCO 2021, 25, e01446. [Google Scholar]
- Martinez, J.L. The role of natural environments in the evolution of resistance traits in pathogenic bacteria. Proc. Biol. Sci. 2009, 276, 2521–2530. [Google Scholar]
- Radhouani, H.; Igrejas, G.; Carvalho, C.; Pinto, L.; Gonçalves, A.; Lopez, M.; Sargo, R.; Cardoso, L.; Martinho, A.; Rego, V.; et al. Clonal lineages, antibiotic resistance and virulence factors in vancomycin-resistant enterococci isolated from fecal samples of red foxes (Vulpes vulpes). J. Wildl. Dis. 2011, 47, 769–773. [Google Scholar]
- Carson, M.; Meredith, A.L.; Shaw, D.J.; Giotis, E.S.; Lloyd, D.H.; Loeffler, A. Foxes as a potential wildlife reservoir for mecA-positive staphylococci. Vector Borne Zoonotic Dis. 2012, 12, 583–587. [Google Scholar]
- Botti, V.; Navillod, F.V.; Domenis, L.; Orusa, R.; Pepe, E.; Robetto, S.; Guidetti, C. Salmonella spp. and antibiotic-resistant strains in wild mammals and birds in north-western Italy from 2002 to 2010. Vet. It. 2013, 49, 195–202. [Google Scholar]
- Radhouani, H.; Igrejas, G.; Gonçalves, A.; Pacheco, R.; Monteiro, R.; Sargo, R.; Brito, F.; Torres, C.; Poeta, P. Antimicrobial resistance and virulence genes in Escherichia coli and enterococci from red foxes (Vulpes vulpes). Anaerobe 2013, 23, 82–86. [Google Scholar]
- Mo, S.S.; Urdahl, A.M.; Madslien, K.; Sunde, M.; Nesse, L.L.; Slettemeås, J.S.; Norström, M. What does the fox say? Monitoring antimicrobial resistance in the environment using wild red foxes as an indicator. PLoS ONE 2018, 13, e0198019. [Google Scholar]
- Skarżyńska, M.; Leekitcharoenphon, P.; Hendriksen, R.S.; Aarestrup, F.M.; Wasyl, D. A metagenomic glimpse into the gut of wild and domestic animals: Quantification of antimicrobial resistance and more. PLoS ONE 2020, 15, e0242987. [Google Scholar]
- Dias, D.; Hipólito, D.; Figueiredo, A.; Fonseca, C.; Caetano, T.; Mendo, S. Unravelling the diversity and abundance of the red fox (Vulpes vulpes) faecal resistome and the phenotypic antibiotic susceptibility of indicator bacteria. Animals 2022, 12, 2572. [Google Scholar] [CrossRef] [PubMed]
- Terentjeva, M.; Ķibilds, J.; Avsejenko, J.; Cīrulis, A.; Labecka, L.; Bērziņš, A. Antimicrobial resistance in Enterococcus spp. isolates from red foxes (Vulpes vulpes) in Latvia. Antibiotics 2024, 13, 114. [Google Scholar] [CrossRef]
- Hahaj-Siembida, A.; Nowakiewicz, A.; Korzeniowska-Kowal, A.; Szecówka, K.; Trościańczyk, A.; Zięba, P.; Kania, M.G. Red foxes (Vulpes vulpes) as a specific and underappreciated reservoir of resistant and virulent coagulase-positive Staphylococcus spp. strains. Res. Vet. Sci. 2024, 166, 105111. [Google Scholar] [PubMed]
- Benavides, J.A.; Salgado-Caxito, M.; Torres, C.; Godreuil, S. Public health implications of antimicrobial resistance in wildlife at the One Health interface. Med. Sci. Forum 2024, 25, 1. [Google Scholar]
- Ng, L.K.; Martin, I.; Alfa, M.; Mulvey, M. Multiplex PCR for the detection of tetracycline resistant genes. Mol. Cell Probes 2001, 15, 209–215. [Google Scholar]
- Sáenz, Y.; Briñas, L.; Domínguez, E.; Ruiz, J.; Zarazaga, M.; Vila, J.; Torres, C. Mechanisms of resistance in multiple-antibiotic-resistant Escherichia coli strains of human, animal, and food origins. Antimicrob. Agents Chemother. 2004, 48, 3996–4001. [Google Scholar]
- Batchelor, M.; Hopkins, K.; Threlfall, E.J.; Clifton-Hadley, F.A.; Stallwood, A.D.; Davies, R.H.; Liebana, E. bla(CTX-M) genes in clinical Salmonella isolates recovered from humans in England and Wales from 1992 to 2003. Antimicrob. Agents Chemother. 2005, 49, 1319–1322. [Google Scholar]
- Jouini, A.; Vinué, L.; Slama, K.B.; Sáenz, Y.; Klibi, N.; Hammami, S.; Boudabous, A.; Torres, C. Characterization of CTX-M and SHV extended-spectrum beta-lactamases and associated resistance genes in Escherichia coli strains of food samples in Tunisia. J. Antimicrob. Chemother. 2007, 60, 1137–1141. [Google Scholar]
- Liu, Y.-Y.; Wang, Y.; Walsh, T.R.; Yi, L.-X.; Zhang, R.; Spencer, J.; Doi, Y.; Tian, G.; Dong, B.; Huang, X.; et al. Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: A microbiological and molecular biological study. Lancet Infect. Dis. 2016, 16, 161–168. [Google Scholar]
- Hoffmann, M.; Sillero-Zubiri, C. Vulpes vulpes (amended version of 2016 assessment). IUCN Red List. Threat. Species 2021, 2021, e.T23062A193903628. [Google Scholar] [CrossRef]
- Kalisinska, E.; Kot, K.; Łanocha-Arendarczyk, N. Red fox as a potential bioindicator of metal contamination in a European environment. Chemosphere 2023, 319, 138037. [Google Scholar]
- Garcês, A.; Pires, I. Secrets of the astute red fox (Vulpes vulpes, Linnaeus, 1758): An inside-ecosystem secret agent serving One Health. Environments 2021, 8, 103. [Google Scholar] [CrossRef]
- Colombi, D.; Roppa, F.; Mutinelli, F.; Zanetti, M. La Volpe. Aspetti ecologici, biologici e gestionali in Friuli Venezia Giulia. Reg. Auton. Friuli Venezia Giulia Udine 2009, 1–36. [Google Scholar]
- Chiari, M.; Ferrari, N.; Giardiello, D.; Lanfranchi, P.; Zanoni, M.; Lavazza, A.; Alborali, L.G. Isolation and identification of Salmonella spp. from red foxes (Vulpes vulpes) and badgers (Meles meles) in northern Italy. Acta Vet. Scand. 2014, 56, 86. [Google Scholar] [PubMed]
- Rubini, S.; Ravaioli, C.; Previato, S.; D’Incau, M.; Tassinari, M.; Guidi, E.; Lupi, S.; Merialdi, G.; Bergamini, M. Prevalence of Salmonella strains in wild animals from a highly populated area of north-eastern Italy. Ann. Ist. Super. Sanità 2016, 52, 277–280. [Google Scholar]
- Parisi, A.; Chiara, M.; Caffara, M.; Mion, D.; Miller, W.G.; Caruso, M.; Manzari, C.; Florio, D.; Capozzi, L.; D’Erchia, A.M.; et al. Campylobacter vulpis sp. nov. isolated from wild red foxes. Syst. Appl. Microbiol. 2021, 44, 126204. [Google Scholar]
- Gambino, D.; Vicari, D.; Vitale, M.; Schirò, G.; Mira, F.; Giglia, M.; Riccardi, A.; Gentile, A.; Giardina, S.; Carrozzo, A.; et al. Study on bacteria isolates and antimicrobial resistance in wildlife in Sicily, southern Italy. Microorganisms 2021, 9, 203. [Google Scholar] [CrossRef]
- Bertelloni, F.; Cagnoli, G.; Biagini, F.; Poli, A.; Bibbiani, C.; Ebani, V.V. Virulence genes of pathogenic Escherichia coli in wild red foxes (Vulpes vulpes). Animals 2022, 12, 1959. [Google Scholar] [CrossRef] [PubMed]
- Gambi, L.; Ravaioli, V.; Rossini, R.; Tranquillo, V.; Boscarino, A.; Mattei, S.; D’incau, M.; Tosi, G.; Fiorentini, L.; Donato, A.D. Prevalence of different Salmonella enterica subspecies and serotypes in wild carnivores in Emilia-Romagna Region, Italy. Animals 2022, 12, 3368. [Google Scholar] [CrossRef] [PubMed]
- Carella, E.; Romano, A.; Domenis, L.; Robetto, S.; Spedicato, R.; Guidetti, C.; Pitti, M.; Orusa, R. Characterisation of Yersinia enterocolitica strains isolated from wildlife in the northwestern Italian Alps. J. Vet. Res. 2022, 66, 141–149. [Google Scholar]
- Ebani, V.V.; Trebino, C.; Guardone, L.; Bertelloni, F.; Cagnoli, G.; Nardoni, S.; Sel, E.; Wilde, E.; Poli, A.; Mancianti, F. Occurrence of bacterial and protozoan pathogens in red foxes (Vulpes vulpes) in central Italy. Animals 2022, 12, 2891. [Google Scholar] [CrossRef] [PubMed]
- Ferrara, G.; Brocherel, G.; Falorni, B.; Gori, R.; Pagnini, U.; Montagnaro, S. A retrospective serosurvey of selected pathogens in red foxes (Vulpes vulpes) in the Tuscany region, Italy. Acta Vet. Scand. 2023, 65, 35. [Google Scholar]
- Wang, S.; Gao, X.; Gao, Y.; Li, Y.; Cao, M.; Xi, Z.; Zhao, L.; Feng, Z. Tetracycline resistance genes identified from distinct soil environments in China by functional metagenomics. Front. Microbiol. 2017, 8, 1406. [Google Scholar]
- Roberts, M.C. Distribution of Tet Resistance Genes Among Gram-Negative Bacteria. Available online: https://faculty.washington.edu/marilynr/tetweb2.pdf (accessed on 17 March 2025).
- Roberts, M.C. Distribution of Tet Resistance Genes Among Gram-Positive Bacteria, Mycobacterium, Mycoplasma, Nocardia, Streptomyces and Ureaplasma. Available online: https://faculty.washington.edu/marilynr/tetweb3.pdf (accessed on 17 March 2025).
- Roberts, M.C. Update on acquired tetracycline resistance genes. FEMS Microbiol. Lett. 2005, 245, 195–203. [Google Scholar]
- Ovung, A.; Bhattacharyya, J. Sulfonamide drugs: Structure, antibacterial property, toxicity, and biophysical interactions. Biophys. Rev. 2021, 13, 259–272. [Google Scholar]
- Pavelquesi, S.L.S.; de Oliveira Ferreira, A.C.A.; Rodrigues, A.R.M.; de Souza Silva, C.M.; Orsi, D.C.; da Silva, I.C.R. Presence of tetracycline and sulfonamide resistance genes in Salmonella spp: Literature review. Antibiotics 2021, 10, 1314. [Google Scholar] [CrossRef]
- Wang, N.; Yang, X.; Jiao, S.; Zhang, J.; Ye, B.; Gao, S. Sulfonamide-resistant bacteria and their resistance genes in soils fertilized with manures from Jiangsu Province, southeastern China. PLoS ONE 2014, 9, e112626. [Google Scholar]
- Castanheira, M.; Simner, J.; Bradford, P.J. Extended-spectrum β-lactamases: An update on their characteristics, epidemiology and detection. JAC-AMR 2021, 3, dlab092. [Google Scholar] [PubMed]
- Muhammad, I.; Golparian, D.; Dillon, J.A.; Johansson, A.; Ohnishi, M.; Sethi, S.; Chen, S.C.; Nakayama, S.; Sundqvist, M.; Bala, M.; et al. Characterisation of blaTEM genes and types of β-lactamase plasmids in Neisseria gonorrhoeae—The prevalent and conserved blaTEM–135 has not recently evolved and existed in the Toronto plasmid from the origin. BMC Infect. Dis. 2014, 14, 454. [Google Scholar]
- Galhano, B.S.P.; Ferrari, R.G.; Panzenhagen, P.; de Jesus, A.C.S.; Conte-Junior, C.A. Antimicrobial resistance gene detection methods for bacteria in animal-based foods: A brief review of highlights and advantages. Microorganisms 2021, 9, 923. [Google Scholar] [CrossRef] [PubMed]
- Blanco-Peña, K.; Esperón, F.; Torres-Mejía, A.M.; de la Torre, A.; de la Cruz, E.; Jiménez-Soto, M. Antimicrobial resistance genes in pigeons from public parks in Costa Rica. Zoonoses Public Health 2017, 64, e23–e30. [Google Scholar]
- Di Francesco, A.; Renzi, M.; Borel, N.; Marti, H.; Salvatore, D. Detection of tetracycline resistance genes in European hedgehogs (Erinaceus europaeus) and crested porcupines (Hystrix cristata). J. Wildl. Dis. 2020, 56, 219–223. [Google Scholar]
- Di Francesco, A.; Salvatore, D.; Gobbi, M.; Morandi, B. Antimicrobial resistance genes in a golden jackal (Canis aureus L. 1758) from central Italy. Vet. Res. Commun. 2023, 47, 2351–2355. [Google Scholar]
- Di Francesco, A.; Salvatore, D.; Ranucci, A.; Gobbi, M.; Morandi, B. Antimicrobial resistance in wildlife: Detection of antimicrobial resistance genes in Apennine wolves (Canis lupus italicus Altobello, 1921) from central Italy. Vet. Res. Comm. 2024, 48, 1941–1947. [Google Scholar]
- Dolejska, M.; Literak, I. Wildlife is overlooked in the epidemiology of medically important antibiotic-resistant bacteria. Antimicrob. Agents Chemother. 2019, 63, e01167-19. [Google Scholar]
- Zeballos-Gross, D.; Rojas-Sereno, Z.; Salgado-Caxito, M.; Poeta, P.; Torres, C.; Benavides, J.A. The role of gulls as reservoirs of antibiotic resistance in aquatic environments: A scoping review. Front. Microbiol. 2021, 12, 703886. [Google Scholar]
ID | ARGs | ID | ARGs | ID | ARGs | ID | ARGs | ID | ARGs | ID | ARGs |
---|---|---|---|---|---|---|---|---|---|---|---|
3 | tet(M), tet(O) | 28 | tet(A), tet(B), tetA(P), sul1, sul2, blaTEM-1 | 47 | tetA(P) | 63 | tet(M), tet(O), tetA(P) | 91 | tet(M), tetA(P) | 111 | sul1 |
4 | tetA(P), sul1 | 29 | sul1, blaTEM-1 | 49 | tetA(P) | 64 | tet(L), tet(M), tet(S) | 95 | tet(A), tet(L), tet(M), tetA(P), tet(S) | 113 | tet(O) |
5 | tet(O) | 33 | tet(O) | 50 | tet(O) | 65 | tet(B), tet(M), tet(S), sul1, blaTEM-1 | 96 | tet(M), tet(O) | 114 | tet(B), tet(L), tet(M), tet(X), blaTEM-1 |
6 | tet(M) | 34 | tetA(P), sul1 | 51 | sul1 | 66 | tet(M), tetA(P), tet(S), sul1 | 97 | tet(L), tet(M), tet(O) | 117 | tet(O), tet(S) |
7 | tet(O), tetA(P) | 36 | tet(O) | 52 | tet(O) | 67 | tetA(P) | 98 | tet(L), tet(M), tet(O) | 118 | tet(B), tet(L), tet(M), tet(S), tet(X), sul1 |
9 | tet(O), sul1 | 37 | sul2, blaTEM-1 | 53 | tet(O), tet(Q), tet(X) | 68 | tet(B), tet(M), tetA(P), sul1 | 99 | tet(L), tet(M), tet(O), blaTEM-1 | 120 | tet(X) |
10 | tet(O) | 38 | tet(A), tet(B), tet(M), tetA(P), sul1, sul2, blaTEM-1 | 55 | tet(K), tet(L), tet(M), tet(O), tet(Q), tet(X), sul2 | 75 | tet(M) | 100 | tet(X) | 122 | tet(M) |
12 | sul1 | 39 | tet(M) | 56 | tet(M), tetA(P) | 76 | tet(L), tet(O) | 101 | tet(M), tet(O), tet(X), sul2 | 123 | tet(B) |
13 | tet(M), tet(O), tet(X) | 40 | tet(L), tet(M), tetA(P) | 57 | sul1 | 82 | tet(B), tet(O), tetA(P), tet(Q), tet(X) | 103 | tet(A), tet(M), tetA(P), sul2, blaTEM-1 | ||
14 | tet(O) | 41 | tet(B) | 58 | tet(A), tet(M), tet(Q), sul1 | 83 | tet(M), tet(O) | 105 | tet(O) | ||
16 | tet(M), tet(O), tetA(P), tet(Q), tet(X), sul1, blaTEM-1 | 43 | tetA(P) | 59 | tet(L), tet(M), tetA(P) | 85 | tet(M) | 106 | sul2 | ||
17 | tet(M), tet(S) | 44 | tet(M), tetA(P) | 60 | tet(M), tet(O) | 86 | tet(M), tet(S) | 108 | tet(L), tet(M), tet(X), sul2 | ||
18 | tet(M), tet(O), tet(S) | 45 | tetA(P) | 61 | tetA(P) | 89 | tet(A) | 109 | tet(O), tet(X) | ||
27 | tetA(P), sul1 | 46 | tet(O), tetA(P) | 62 | tet(M), tet(O), tetA(P) | 90 | tet(L), tet(M), tet(O) | 110 | tet(M), tet(O), tetA(P), blaTEM-1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Di Francesco, A.; Salvatore, D.; Taddei, R.; Bertelloni, F.; Lupini, C.; Cagnoli, G.; Ebani, V.V. Antimicrobial Resistance and Wildlife: Occurrence of Antimicrobial Resistance Genes in Red Foxes (Vulpes vulpes, Linnaeus, 1758), in Italy. Animals 2025, 15, 2022. https://doi.org/10.3390/ani15142022
Di Francesco A, Salvatore D, Taddei R, Bertelloni F, Lupini C, Cagnoli G, Ebani VV. Antimicrobial Resistance and Wildlife: Occurrence of Antimicrobial Resistance Genes in Red Foxes (Vulpes vulpes, Linnaeus, 1758), in Italy. Animals. 2025; 15(14):2022. https://doi.org/10.3390/ani15142022
Chicago/Turabian StyleDi Francesco, Antonietta, Daniela Salvatore, Roberta Taddei, Fabrizio Bertelloni, Caterina Lupini, Giulia Cagnoli, and Valentina Virginia Ebani. 2025. "Antimicrobial Resistance and Wildlife: Occurrence of Antimicrobial Resistance Genes in Red Foxes (Vulpes vulpes, Linnaeus, 1758), in Italy" Animals 15, no. 14: 2022. https://doi.org/10.3390/ani15142022
APA StyleDi Francesco, A., Salvatore, D., Taddei, R., Bertelloni, F., Lupini, C., Cagnoli, G., & Ebani, V. V. (2025). Antimicrobial Resistance and Wildlife: Occurrence of Antimicrobial Resistance Genes in Red Foxes (Vulpes vulpes, Linnaeus, 1758), in Italy. Animals, 15(14), 2022. https://doi.org/10.3390/ani15142022