Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (29)

Search Parameters:
Keywords = Schisandrin B

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 2573 KiB  
Article
Characterization of Differences in Chemical Profiles and Antioxidant Activities of Schisandra chinensis and Schisandra sphenanthera Based on Multi-Technique Data Fusion
by Lujie Lin, Zhuqian Tang, Huijuan Xie, Lixin Yang, Bin Yang and Hua Li
Molecules 2024, 29(20), 4865; https://doi.org/10.3390/molecules29204865 - 14 Oct 2024
Cited by 1 | Viewed by 1441
Abstract
Schisandra chinensis (Turcz.) Baill. (S. chinensis) and Schisandra sphenanthera Rehd. et Wils (S. sphenanthera) are called “Wuweizi” in traditional Chinese medicine, and they have distinct clinical applications. To systematically compare the differential characteristics of S. chinensis and S. sphenanthera [...] Read more.
Schisandra chinensis (Turcz.) Baill. (S. chinensis) and Schisandra sphenanthera Rehd. et Wils (S. sphenanthera) are called “Wuweizi” in traditional Chinese medicine, and they have distinct clinical applications. To systematically compare the differential characteristics of S. chinensis and S. sphenanthera, this study employed ultra-performance liquid chromatography–quadrupole time-of-flight mass spectrometry (UPLC-QTOF-MS) and gas chromatography–mass spectrometry (GC-MS) to construct chemical profiles of these two species from different regions. In total, 31 non-volatiles and 37 volatiles were identified in S. chinensis, whereas 40 non-volatiles and 34 volatiles were detected in S. sphenanthera. A multivariate statistical analysis showed that the non-volatiles tigloygomisin P, schisandrol A, schisantherin C, and 6-O-benzoylgomisin O and the volatiles ylangene, γ-muurolene, and β-pinene distinguish these species. Additionally, the metabolism of oxygen free radicals can contribute to the development of various diseases, including cardiovascular and neurodegenerative diseases. Therefore, antioxidant activities were evaluated using 1,1-diphenyl-2-picrylhydrazyl (DPPH) and 2,2′-azino-bis-3-ethylbenzthiazoline-6-sulphonic acid (ABTS) scavenging assays. The results showed that S. sphenanthera exhibited significantly higher antioxidant potential. A gray relational analysis indicated that the key contributors to the antioxidant activity of S. chinensis were schisandrol A, gomisin G, schisantherin C, pregomisin, gomisin J, and schisantherin B. For S. sphenanthera, the key contributors included gomisin K2, schisantherin B, gomisin J, pregomisin, schisantherin C, schisandrin, gomisin G, schisantherin A, schisanhenol, and α-pinene. The identification of the differential chemical markers and the evaluation of the antioxidant activities provide a foundation for further research into the therapeutic applications of these species. This innovative study provides a robust framework for the quality control and therapeutic application of S. chinensis and S. sphenanthera, offering new insights into their medicinal potential. Full article
Show Figures

Graphical abstract

16 pages, 1681 KiB  
Article
Dibenzocyclooctadiene Lignans from Schisandra chinensis with Anti-Inflammatory Effects
by Michal Rybnikář, Milan Malaník, Karel Šmejkal, Emil Švajdlenka, Polina Shpet, Pavel Babica, Stefano Dall’Acqua, Ondřej Smištík, Ondřej Jurček and Jakub Treml
Int. J. Mol. Sci. 2024, 25(6), 3465; https://doi.org/10.3390/ijms25063465 - 19 Mar 2024
Cited by 5 | Viewed by 2670
Abstract
Schisandra chinensis (Schisandraceae) is a medicinal plant widely used in traditional Chinese medicine. Under the name Wu Wei Zi, it is used to treat many diseases, especially as a stimulant, adaptogen, and hepatoprotective. Dibenzocyclooctadiene lignans are the main compounds responsible for the effect [...] Read more.
Schisandra chinensis (Schisandraceae) is a medicinal plant widely used in traditional Chinese medicine. Under the name Wu Wei Zi, it is used to treat many diseases, especially as a stimulant, adaptogen, and hepatoprotective. Dibenzocyclooctadiene lignans are the main compounds responsible for the effect of S. chinensis. As a part of ongoing studies to identify and evaluate anti-inflammatory natural compounds, we isolated a series of dibenzocyclooctadiene lignans and evaluated their biological activity. Furthermore, we isolated new sesquiterpene 7,7-dimethyl-11-methylidenespiro[5.5]undec-2-ene-3-carboxylic acid. Selected dibenzocyclooctadiene lignans were tested to assess their anti-inflammatory potential in LPS-stimulated monocytes by monitoring their anti-NF-κB activity, antioxidant activity in CAA assay, and their effect on gap junction intercellular communication in WB-ras cells. Some S. chinensis lignans showed antioxidant activity in CAA mode and affected the gap junction intercellular communication. The anti-inflammatory activity was proven for (−)-gomisin N, (+)-γ-schisandrin, rubrisandrin A, and (−)-gomisin J. Full article
Show Figures

Figure 1

17 pages, 25291 KiB  
Article
Identification of Quality Markers in Schisandra chinensis (Turcz.) Baill. Using UPLC-Q-Extractive Orbitrap/MS, Chemometric Analysis, and Network Pharmacology
by Yinpeng Wang, Yumei Li, Yan Ding, Xinxin Du and Jingbo Zhu
Separations 2024, 11(3), 88; https://doi.org/10.3390/separations11030088 - 18 Mar 2024
Cited by 3 | Viewed by 2273
Abstract
Chemical composition is a critical factor for determining the efficacy of any traditional Chinese medicine (TCM) and can be used as an indicator of commercial quality. To develop a new strategy for discovering potential quality markers (Q-markers) of TCM by integrating ultra-performance liquid [...] Read more.
Chemical composition is a critical factor for determining the efficacy of any traditional Chinese medicine (TCM) and can be used as an indicator of commercial quality. To develop a new strategy for discovering potential quality markers (Q-markers) of TCM by integrating ultra-performance liquid chromatography-Q-extractive orbitrap/mass spectrometry (UPLC-Q-Extractive Orbitrap/MS), chemometric analysis, and network pharmacology, using Schisandra chinensis (Turcz.) Baill. (S. chinensis) as an example. The chemical profiling of S. chinensis was performed using UPLC-Q-Extractive Orbitrap/MS, followed by identification of hepatoprotective Q-markers through a comprehensive understanding of chemometric analysis and virtual target prediction of network pharmacology. Six compounds were considered potent candidates for Q-markers, which were identified as schisandrol A (6), angeloylgomisin H (10), schisantherin A (17), schisantherin B (18), schisandrin A (23), and schisandrin C (26). All Q-markers exhibited significant hepatoprotective activity, as evidenced by in vitro experiments. Subsequently, a method for simultaneous quantification was established and employed to analyse seven batches of S. chinensis. Therefore, the integrated approach of UPLC-Q-Extractive Orbitrap/MS, chemometrics, and network pharmacology proved to be an effective strategy for the discovery of Q-markers that can assist in assessing the overall chemical consistency of samples and provide a basis for quality evaluation of the material basis of S. chinensis. Full article
(This article belongs to the Section Analysis of Natural Products and Pharmaceuticals)
Show Figures

Figure 1

14 pages, 4297 KiB  
Article
The Use of Schisandrin B to Combat Triple-Negative Breast Cancers by Inhibiting NLRP3-Induced Interleukin-1β Production
by Chun-Ming Chang, Ting-Ruei Liang and Ho Yin Pekkle Lam
Biomolecules 2024, 14(1), 74; https://doi.org/10.3390/biom14010074 - 5 Jan 2024
Cited by 10 | Viewed by 2571
Abstract
Triple-negative breast cancer (TNBC) is the most aggressive and fatal breast cancer subtype. Nowadays, chemotherapy remains the standard treatment of TNBC, and immunotherapy has emerged as an important alternative. However, the high rate of TNBC recurrence suggests that new treatment is desperately needed. [...] Read more.
Triple-negative breast cancer (TNBC) is the most aggressive and fatal breast cancer subtype. Nowadays, chemotherapy remains the standard treatment of TNBC, and immunotherapy has emerged as an important alternative. However, the high rate of TNBC recurrence suggests that new treatment is desperately needed. Schisandrin B (Sch B) has recently revealed its anti-tumor effects in cancers such as cholangiocarcinoma, hepatoma, glioma, and multi-drug-resistant breast cancer. However, there is still a need to investigate using Sch B in TNBC treatment. Interleukin (IL)-1β, an inflammatory cytokine that can be expressed and produced by the cancer cell itself, has been suggested to promote BC proliferation and progression. In the current study, we present evidence that Sch B can significantly suppress the growth, migration, and invasion of TNBC cell lines and patient-derived TNBC cells. Through inhibition of inflammasome activation, Sch B inhibits interleukin (IL)-1β production of TNBC cells, hindering its progression. This was confirmed using an NLRP3 inhibitor, OLT1177, which revealed a similar beneficial effect in combating TNBC progression. Sch B treatment also inhibits IL-1β-induced EMT expression of TNBC cells, which may contribute to the anti-tumor response. Full article
Show Figures

Figure 1

18 pages, 5336 KiB  
Article
Schisandrin B Alleviates Renal Tubular Cell Epithelial–Mesenchymal Transition and Mitochondrial Dysfunction by Kielin/Chordin-like Protein Upregulation via Akt Pathway Inactivation and Adenosine 5′-Monophosphate (AMP)-Activated Protein Kinase Pathway Activation in Diabetic Kidney Disease
by Weilin Liu, Fan Li, Dongwei Guo, Congyuan Du, Song Zhao, Juan Li, Zhe Yan and Jun Hao
Molecules 2023, 28(23), 7851; https://doi.org/10.3390/molecules28237851 - 29 Nov 2023
Cited by 6 | Viewed by 2424
Abstract
Diabetic kidney disease is a common complication of diabetes and remains the primary cause of end-stage kidney disease in the general population. Schisandrin B (Sch B) is an active ingredient in Schisandra chinensis. Our study illustrates that Sch B can mitigate renal tubular [...] Read more.
Diabetic kidney disease is a common complication of diabetes and remains the primary cause of end-stage kidney disease in the general population. Schisandrin B (Sch B) is an active ingredient in Schisandra chinensis. Our study illustrates that Sch B can mitigate renal tubular cell (RTC) epithelial–mesenchymal transition (EMT) and mitochondrial dysfunction in db/db mice, accompanied by the downregulation of TGF-β1 and the upregulation of PGC-1α. Similarly, Sch B demonstrated a protective effect by reducing the expression of TGF-β1, α-SMA, fibronectin, and Col I, meanwhile enhancing the expression of E-cadherin in human RTCs (HK2 cells) stimulated with high glucose. Moreover, under high glucose conditions, Sch B effectively increased mitochondrial membrane potential, lowered ROS production, and increased the ATP content in HK2 cells, accompanied by the upregulation of PGC-1α, TFAM, MFN1, and MFN2. Mechanistically, the RNA-seq results showed a significant increase in KCP mRNA levels in HK2 cells treated with Sch B in a high glucose culture. The influence of Sch B on KCP mRNA levels was confirmed by real-time PCR in high glucose-treated HK2 cells. Depletion of the KCP gene reversed the impact of Sch B on TGF-β1 and PGC-1α in HK2 cells with high glucose level exposure, whereas overexpression of the KCP gene blocked EMT and mitochondrial dysfunction. Furthermore, the PI3K/Akt pathway was inhibited and the AMPK pathway was activated in HK2 cells exposed to a high concentration of glucose after the Sch B treatment. Treatment with the PI3K/Akt pathway agonist insulin and the AMPK pathway antagonist compound C attenuated the Sch B-induced KCP expression in HK2 cells exposed to a high level of glucose. Finally, molecular autodock experiments illustrated that Sch B could bind to Akt and AMPK. In summary, our findings suggested that Sch B could alleviate RTC EMT and mitochondrial dysfunction by upregulating KCP via inhibiting the Akt pathway and activating the AMPK pathway in DKD. Full article
(This article belongs to the Special Issue Antidiabetic Natural Products)
Show Figures

Figure 1

15 pages, 9419 KiB  
Article
Simultaneous Extraction and Determination of Lignans from Schisandra chinensis (Turcz.) Baill. via Diol-Based Matrix Solid-Phase Dispersion with High-Performance Liquid Chromatography
by Yinpeng Wang, Jingbo Zhu, Xinxin Du and Yumei Li
Molecules 2023, 28(18), 6448; https://doi.org/10.3390/molecules28186448 - 5 Sep 2023
Cited by 5 | Viewed by 2247
Abstract
The quality of Schisandra chinensis (Turcz.) Baill. (S. chinensis) is principally attributed to lignan compounds. In this paper, a simple and rapid strategy for simultaneous extraction and determination of 10 lignans from S. chinensis was established through matrix solid-phase dispersion (MSPD) [...] Read more.
The quality of Schisandra chinensis (Turcz.) Baill. (S. chinensis) is principally attributed to lignan compounds. In this paper, a simple and rapid strategy for simultaneous extraction and determination of 10 lignans from S. chinensis was established through matrix solid-phase dispersion (MSPD) assisted by diol-functionalized silica (Diol). The experimental parameters for MSPD extraction were screened using the response surface methodology (RSM). Diol (800 mg) was used as a dispersant and methanol (MeOH, 85%, v/v) as an eluting solvent (10 mL), resulting in a high extraction efficiency. MSPD extraction facilitated the combination of extraction and purification in a single step, which was less time-consuming than and avoided the thermal treatment involved in traditional methods. The simultaneous qualification and quantification of 10 lignans was achieved by combining MSPD and high-performance liquid chromatography (HPLC). The proposed method offered good linearity and a low limit of detection starting from 0.04 (schisandrin C) to 0.43 μg/mL (schisantherin B) for lignans, and the relative standard deviation (RSD, %) values of precision were acceptable, with a maximum value of 1.15% (schisantherin B and schisanhenol). The methodology was successfully utilized to analyze 13 batches of S. chinensis from different cultivated areas of China, which proved its accuracy and practicability in the quantitative analysis of the quality control of S. chinensis. Full article
(This article belongs to the Section Natural Products Chemistry)
Show Figures

Graphical abstract

29 pages, 8340 KiB  
Article
In Silico Analysis, Anticonvulsant Activity, and Toxicity Evaluation of Schisandrin B in Zebrafish Larvae and Mice
by Dorota Nieoczym, Nancy Saana Banono, Katarzyna Stępnik, Agnieszka A. Kaczor, Przemysław Szybkowski, Camila Vicencio Esguerra, Wirginia Kukula-Koch and Kinga Gawel
Int. J. Mol. Sci. 2023, 24(16), 12949; https://doi.org/10.3390/ijms241612949 - 18 Aug 2023
Cited by 6 | Viewed by 2690
Abstract
The aim of this study is to evaluate the anticonvulsant potential of schisandrin B, a main ingredient of Schisandra chinensis extracts. Schisandrin B showed anticonvulsant activity in the zebrafish larva pentylenetetrazole acute seizure assay but did not alter seizure thresholds in the intravenous [...] Read more.
The aim of this study is to evaluate the anticonvulsant potential of schisandrin B, a main ingredient of Schisandra chinensis extracts. Schisandrin B showed anticonvulsant activity in the zebrafish larva pentylenetetrazole acute seizure assay but did not alter seizure thresholds in the intravenous pentylenetetrazole test in mice. Schisandrin B crosses the blood–brain barrier, which we confirmed in our in silico and in vivo analyses; however, the low level of its unbound fraction in the mouse brain tissue may explain the observed lack of anticonvulsant activity. Molecular docking revealed that the anticonvulsant activity of the compound in larval zebrafish might have been due to its binding to a benzodiazepine site within the GABAA receptor and/or the inhibition of the glutamate NMDA receptor. Although schisandrin B showed a beneficial anticonvulsant effect, toxicological studies revealed that it caused serious developmental impairment in zebrafish larvae, underscoring its teratogenic properties. Further detailed studies are needed to precisely identify the properties, pharmacological effects, and safety of schisandrin B. Full article
(This article belongs to the Special Issue Epilepsy: Molecular Mechanisms and Therapies)
Show Figures

Figure 1

16 pages, 4470 KiB  
Article
Prevention of the Pro-Aggressive Effects of Ethanol-Intoxicated Mice by Schisandrin B
by Ho Yin Pekkle Lam, Ting-Ruei Liang and Shih-Yi Peng
Nutrients 2023, 15(8), 1909; https://doi.org/10.3390/nu15081909 - 15 Apr 2023
Cited by 4 | Viewed by 2287
Abstract
Excessive alcohol consumption can lead to serious health complications, with liver and neurological complications being the most important. In Western nations, alcoholic liver disease accounts for 50% of mortality from end-stage liver disease and is the second most common cause of liver transplants. [...] Read more.
Excessive alcohol consumption can lead to serious health complications, with liver and neurological complications being the most important. In Western nations, alcoholic liver disease accounts for 50% of mortality from end-stage liver disease and is the second most common cause of liver transplants. In addition to direct damage, hepatic encephalopathy may also arise from alcohol consumption. However, effective treatment for liver disease, as well as neurological injury, is still lacking today; therefore, finding an efficacious alternative is urgently needed. In the current study, the preventive and therapeutic effects of Schisandrin B (Sch B) against ethanol-induced liver and brain injuries were investigated. By using two treatment models, our findings indicated that Sch B can effectively prevent and ameliorate alcoholic liver diseases, such as resolving liver injuries, lipid deposition, inflammasome activation, and fibrosis. Moreover, Sch B reverses brain damage and improves the neurological function of ethanol-treated mice. Therefore, Sch B may serve as a potential treatment option for liver diseases, as well as subsequential brain injuries. Furthermore, Sch B may be useful in preventive drug therapy against alcohol-related diseases. Full article
(This article belongs to the Special Issue Phytochemicals and Chronic Diseases Prevention)
Show Figures

Figure 1

14 pages, 2432 KiB  
Article
Optimized Extraction, Identification and Anti-Biofilm Action of Wu Wei Zi (Fructus Schisandrae Chinensis) Extracts against Vibrio parahaemolyticus
by Zongyi Zhang, Yanan Zhao, Jing Cai, Tong Wang, Yujie Song, Jingyi Lu, Hairuo Du, Wenfang Wang, Yan Zhao and Lei Guo
Molecules 2023, 28(5), 2268; https://doi.org/10.3390/molecules28052268 - 28 Feb 2023
Cited by 8 | Viewed by 2184
Abstract
The pathogenicity of foodborne Vibrio parahaemolyticus is a major concern for global public health. This study aimed to optimize the liquid–solid extraction of Wu Wei Zi extracts (WWZE) against Vibrio parahaemolyticus, identify its main components, and investigate the anti-biofilm action. The extraction [...] Read more.
The pathogenicity of foodborne Vibrio parahaemolyticus is a major concern for global public health. This study aimed to optimize the liquid–solid extraction of Wu Wei Zi extracts (WWZE) against Vibrio parahaemolyticus, identify its main components, and investigate the anti-biofilm action. The extraction conditions optimized by the single-factor test and response surface methodology were ethanol concentration of 69%, temperature at 91 °C, time of 143 min, and liquid–solid ratio of 20:1 mL/g. After high performance liquid chromatography (HPLC) analysis, it was found that the main active ingredients of WWZE were schisandrol A, schisandrol B, schisantherin A, schisanhenol, and schisandrin A–C. The minimum inhibitory concentration (MIC) of WWZE, schisantherin A, and schisandrol B measured by broth microdilution assay was 1.25, 0.625, and 1.25 mg/mL, respectively, while the MIC of the other five compounds was higher than 2.5 mg/mL, indicating that schisantherin A and schizandrol B were the main antibacterial components of WWZE. Crystal violet, Coomassie brilliant blue, Congo red plate, spectrophotometry, and Cell Counting Kit-8 (CCK-8) assays were used to evaluate the effect of WWZE on the biofilm of V. parahaemolyticus. The results showed that WWZE could exert its dose-dependent potential to effectively inhibit the formation of V. parahaemolyticus biofilm and clear mature biofilm by significantly destroying the cell membrane integrity of V. parahaemolyticus, inhibiting the synthesis of intercellular polysaccharide adhesin (PIA), extracellular DNA secretion, and reducing the metabolic activity of biofilm. This study reported for the first time the favorable anti-biofilm effect of WWZE against V. parahaemolyticus, which provides a basis for deepening the application of WWZE in the preservation of aquatic products. Full article
(This article belongs to the Special Issue Natural Products: Isolation, Analysis and Biological Activity)
Show Figures

Figure 1

17 pages, 4193 KiB  
Article
Supplementation of Schisandrin B in Semen Extender Improves Quality and Oxidation Resistance of Boar Spermatozoa Stored at 4 °C
by Yunfa Xie, Zhiying Chen, Yanling Wang, Xiayun Peng, Ni Feng, Xiaoye Wang, Yinsheng Tang, Xun Li, Chunrong Xu and Chuanhuo Hu
Animals 2023, 13(5), 848; https://doi.org/10.3390/ani13050848 - 25 Feb 2023
Cited by 3 | Viewed by 2519
Abstract
During cold storage, boar spermatozoa undergo oxidative stress, which can impair sperm function and fertilizing capacity. The objective of the present study was to assess the effects of Schisandrin B (Sch B) in semen extenders on the quality of boar semen stored at [...] Read more.
During cold storage, boar spermatozoa undergo oxidative stress, which can impair sperm function and fertilizing capacity. The objective of the present study was to assess the effects of Schisandrin B (Sch B) in semen extenders on the quality of boar semen stored at hypothermia. Semen was collected from twelve Duroc boars and diluted in extenders supplemented with different concentrations of Sch B (0 μmol/L, 2.5 μmol/L, 5 μmol/L, 10 μmol/L, 20 μmol/L, and 40 μmol/L). Here, we demonstrated that 10 μmol/L Sch B provided the best effects on motility, plasma membrane integrity, acrosome integrity, sperm normality rate, average movement velocity, wobbility, mitochondrial membrane potential (MMP), and DNA integrity of sperm. The results of Sch B effects on antioxidant factors in boar sperm showed that Sch B significantly elevated the total antioxidant capacity (T-AOC) and markedly decreased the reactive oxygen species (ROS) and malondialdehyde (MDA) content of sperm. The expression of catalase (CAT) and superoxide dismutase (SOD) mRNA was increased, while the expression of glutathione peroxidase (GPx) mRNA demonstrated no change compared to non-treated boar sperm. Compared to the non-treated group, Sch B triggered a decrease in Ca2+/protein kinase A (PKA) and lactic acid content in boar sperm. Similarly, Sch B led to a statistically higher quantitative expression of AWN mRNA and a lower quantitative expression of porcine seminal protein I (PSP-I) and porcine seminal protein II (PSP-II) mRNA. In a further reverse validation test, no significant difference was observed in any of the parameters, including adhesion protein mRNA, calcium content, lactic acid content, PKA, and protein kinase G (PKG) activity after sperm capacitation. In conclusion, the current study indicates the efficient use of Sch B with a 10 μmol/L concentration in the treatment of boar sperm through its anti-apoptosis, antioxidative, and decapacitative mechanisms, suggesting that Sch B is a novel candidate for improving antioxidation and decapacitation factors in sperm in liquid at 4 °C. Full article
Show Figures

Figure 1

12 pages, 1480 KiB  
Review
Cardioprotective Potential of Berries of Schisandra chinensis Turcz. (Baill.), Their Components and Food Products
by Beata Olas
Nutrients 2023, 15(3), 592; https://doi.org/10.3390/nu15030592 - 23 Jan 2023
Cited by 18 | Viewed by 4756
Abstract
Schisandra chinensis (S. chinensis) berries, originally a component of traditional herbal medicine in China, Korea, and other east Asian countries, are also valuable agents in modern phototherapy. S. chinensis berry preparations, including extracts and their chemical components, demonstrate anti-cancer, hepatoprotective, anti-inflammatory, [...] Read more.
Schisandra chinensis (S. chinensis) berries, originally a component of traditional herbal medicine in China, Korea, and other east Asian countries, are also valuable agents in modern phototherapy. S. chinensis berry preparations, including extracts and their chemical components, demonstrate anti-cancer, hepatoprotective, anti-inflammatory, and antioxidant properties, among others. These valuable properties, and their therapeutic potential, are conditioned by the unique chemical composition of S. chinensis berries, particularly their lignan content. About 40 of these compounds, mainly dibenzocyclooctane type, were isolated from S. chinensis. The most important bioactive lignans are schisandrin (also denoted as schizandrin or schisandrol A), schisandrin B, schisantherin A, schisantherin B, schisanhenol, deoxyschisandrin, and gomisin A. The present work reviews newly-available literature concerning the cardioprotective potential of S. chinensis berries and their individual components. It places special emphasis on the cardioprotective properties of the selected lignans related to their antioxidant and anti-inflammatory characteristis. Full article
Show Figures

Figure 1

15 pages, 1022 KiB  
Article
Schisandra rubriflora Fruit and Leaves as Promising New Materials of High Biological Potential: Lignan Profiling and Effect-Directed Analysis
by Ewelina Sobstyl, Agnieszka Szopa, Michał Dziurka, Halina Ekiert, Hanna Nikolaichuk and Irena Maria Choma
Molecules 2022, 27(7), 2116; https://doi.org/10.3390/molecules27072116 - 25 Mar 2022
Cited by 9 | Viewed by 2988
Abstract
The effect-directed detection (EDD) of Schisandra rubriflora fruit and leaves extracts was performed to assess their pharmacological properties. The EDD comprised TLC—direct bioautography against Bacillus subtilis, a DPPH assay, as well as α-glucosidase, lipase, tyrosinase, and acetylcholinesterase (AChE) inhibition assays. The leaf [...] Read more.
The effect-directed detection (EDD) of Schisandra rubriflora fruit and leaves extracts was performed to assess their pharmacological properties. The EDD comprised TLC—direct bioautography against Bacillus subtilis, a DPPH assay, as well as α-glucosidase, lipase, tyrosinase, and acetylcholinesterase (AChE) inhibition assays. The leaf extracts showed stronger antioxidant activity than the fruit extract as well as inhibition of tyrosinase and lipase. The fruit extract was found to be extremely active against B. subtilis and to inhibit α-glucosidase and AChE slightly more than the leaf extracts. UHPLC–MS/MS analysis was carried out for the bioactive fractions and pointed to the possible anti-dementia properties of the dibenzocyclooctadiene lignans found in the upper TLC fractions. Gomisin N (518 mg/100 g DW), schisanhenol (454 mg/100 g DW), gomisin G (197 mg/100 g DW), schisandrin A (167 mg/100 g DW), and gomisin O (150 mg/100 g DW) were the quantitatively dominant compounds in the fruit extract. In total, twenty-one lignans were found in the bioactive fractions. Full article
Show Figures

Figure 1

16 pages, 3570 KiB  
Article
Screening of Botanical Drugs against SARS-CoV-2 Entry Reveals Novel Therapeutic Agents to Treat COVID-19
by Junyuan Cao, Yang Liu, Minmin Zhou, Siqi Dong, Yuxia Hou, Xiaoying Jia, Xiaohao Lan, Yueli Zhang, Jiao Guo, Gengfu Xiao and Wei Wang
Viruses 2022, 14(2), 353; https://doi.org/10.3390/v14020353 - 8 Feb 2022
Cited by 14 | Viewed by 3405
Abstract
An escalating pandemic caused by the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has severely impacted global health. There is a severe lack of specific treatment options for diseases caused by SARS-CoV-2. In this study, we used a pseudotype virus (pv) containing [...] Read more.
An escalating pandemic caused by the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has severely impacted global health. There is a severe lack of specific treatment options for diseases caused by SARS-CoV-2. In this study, we used a pseudotype virus (pv) containing the SARS-CoV-2 S glycoprotein to screen a botanical drug library containing 1037 botanical drugs to identify agents that prevent SARS-CoV-2 entry into the cell. Our study identified four hits, including angeloylgomisin O, schisandrin B, procyanidin, and oleanonic acid, as effective SARS-CoV-2 S pv entry inhibitors in the micromolar range. A mechanistic study revealed that these four agents inhibited SARS-CoV-2 S pv entry by blocking spike (S) protein-mediated membrane fusion. Furthermore, angeloylgomisin O and schisandrin B inhibited authentic SARS-CoV-2 with a high selective index (SI; 50% cytotoxic concentration/50% inhibition concentration). Our drug combination studies performed in cellular antiviral assays revealed that angeloylgomisin O has synergistic effects in combination with remdesivir, a drug widely used to treat SARS-CoV-2-mediated infections. We also showed that two hits could inhibit the newly emerged alpha (B.1.1.7) and beta (B.1.351) variants. Our findings collectively indicate that angeloylgomisin O and schisandrin B could inhibit SARS-CoV-2 efficiently, thereby making them potential therapeutic agents to treat the coronavirus disease of 2019. Full article
(This article belongs to the Section SARS-CoV-2 and COVID-19)
Show Figures

Figure 1

10 pages, 6054 KiB  
Article
Schisandrin B Attenuates Hepatic Stellate Cell Activation and Promotes Apoptosis to Protect against Liver Fibrosis
by Zhiman Li, Lijuan Zhao, Yunshi Xia, Jianbo Chen, Mei Hua and Yinshi Sun
Molecules 2021, 26(22), 6882; https://doi.org/10.3390/molecules26226882 - 15 Nov 2021
Cited by 20 | Viewed by 3209
Abstract
The activation of hepatic stellate cells (HSC) plays a key role in the progression of hepatic fibrosis, it is essential to remove activated HSC through apoptosis to reverse hepatic fibrosis. Schisandrin B (Sch B) is the main chemical component of schisandrin lignan, and [...] Read more.
The activation of hepatic stellate cells (HSC) plays a key role in the progression of hepatic fibrosis, it is essential to remove activated HSC through apoptosis to reverse hepatic fibrosis. Schisandrin B (Sch B) is the main chemical component of schisandrin lignan, and it has been reported to have good hepatoprotective effects. However, Schisandrin B on HSC apoptosis remains unclear. In our study, we stimulated the HSC-T6 and LX-2 cell lines with TGF-β1 to induce cell activation, and the proliferation and apoptosis of the activated HSC-T6 and LX-2 cells were detected after treatment with different doses of Schisandrin B. Flow cytometry results showed that Sch B significantly reduced the activity of activated HSC-T6 and LX-2 cells and significantly induced apoptosis. In addition, the cleaved-Caspase-3 levels were increased, the Bax activity was increased, and the Bcl-2 expression was decreased in HSC-T6 and LX-2 cells treated with Sch B. Our study showed that Sch B inhibited the TGF-β1-induced activity of hepatic stellate cells by promoting apoptosis. Full article
(This article belongs to the Special Issue Plant Foods Ingredients as Functional Foods and Nutraceuticals)
Show Figures

Figure 1

14 pages, 1250 KiB  
Article
Hepatoprotective Constituents of Total Dibenzocyclooctadiene Lignans from Schisandra chinensis Based on the Spectrum-Effect Relationship
by Lu-Lu Deng, Xu-Dong Xie, Jiang Li, Dao-Ping Wang, Xiao-Jiang Hao, Gang Chen and Shu-Zhen Mu
Molecules 2021, 26(21), 6554; https://doi.org/10.3390/molecules26216554 - 29 Oct 2021
Cited by 4 | Viewed by 2867
Abstract
To scientifically clarify the hepatoprotective constituents of Fructus Schizandrae chinensis, eleven batches samples of total dibenzocyclooctadiene lignans (TDL) from Schisandra chinensis were prepared by using the optimum extraction technique. Characteristic high-performance liquid chromatography (HPLC) chromatograms were obtained through HPLC analysis technology, and the [...] Read more.
To scientifically clarify the hepatoprotective constituents of Fructus Schizandrae chinensis, eleven batches samples of total dibenzocyclooctadiene lignans (TDL) from Schisandra chinensis were prepared by using the optimum extraction technique. Characteristic high-performance liquid chromatography (HPLC) chromatograms were obtained through HPLC analysis technology, and the hepatoprotective effects of the eleven batches of TDL were evaluated by MTT assay. Based on the chemical and biological activity results, the spectrum-effect relationship between the characteristic HPLC fingerprints and the hepatoprotective effect of TDL was established using Minitab 16.0 data analysis software. On the basis of the spectrum-effect relationship, thirteen compounds (113) were obtained from the TDL by chemical natural product chemical separation and purification technology, and their structures were identified on the basis of the spectral data and the literature. Based on these compounds, thirteen common peaks among the thirty-three chromatographic peaks in the above HPLC fingerprints were identified. Our findings showed that some components, including, schisandrin B (2), schisandrin A (3), and schisandrol B (7) had significant roles in promoting hepatoprotective activity. Preliminary verification of the spectrum-effect relationship of TDL from S. chinensis was carried out, and the results confirmed that the activity of a composite of these three key components in optimal ratios was better than that of any individual compound, which potentially confirmed the reliability of the spectrum-effect relationship and the synergistic effects of traditional Chinese medicine. Full article
(This article belongs to the Special Issue Natural Products: Isolation, Identification and Biological Activity)
Show Figures

Figure 1

Back to TopTop