Identification of Quality Markers in Schisandra chinensis (Turcz.) Baill. Using UPLC-Q-Extractive Orbitrap/MS, Chemometric Analysis, and Network Pharmacology
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals, Reagents, and Materials
2.2. Analysis of UPLC-Q-Extractive Orbitrap/MS
2.2.1. Sample Preparation
2.2.2. Data Acquisition
2.2.3. Data Analysis
2.3. Network Pharmacology
2.4. Molecular Docking
2.5. Impact of Predicted Compounds on Hepatoprotective Activity
2.6. Quantitative Analysis of Q-Markers
3. Results
3.1. Potential Chemical Markers of S. chinensis Fruit Maturation
3.1.1. Characterization of Chemical Components in S. chinensis
3.1.2. Chemometric Analysis of S. chinensis
3.2. Hepatoprotective Biomarkers of S. chinensis
3.2.1. Target Network Analysis
3.2.2. Molecular Docking Verification
3.3. Hepatoprotective Effects of Predicted Q-Markers
3.4. Simultaneous Quantitative Analysis of Q-Markers in S. chinensis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Jiang, Y.M.; Fan, X.M.; Wang, Y.; Tan, H.S.; Chen, P.; Zeng, H.; Huang, M.; Bi, H.C. Hepato-protective effects of six schisandra lignans on acetaminophen-induced liver injury are partially associated with the inhibition of CYP-mediated bioactivation. Chem. Biol. Interact. 2015, 231, 83–89. [Google Scholar] [CrossRef]
- Zhou, Y.; Men, L.H.; Sun, Y.X.; Wei, M.Y.; Fan, X. Pharmacodynamic effects and molecular mechanisms of lignans from Schisandra chinensis Turcz. (Baill.), a current review. Eur. J. Pharmacol. 2021, 892, 173796. [Google Scholar] [CrossRef]
- Yan, T.X.; Mao, Q.Q.; Zhang, X.Z.; Wu, B.; Bi, K.S.; He, B.S.; Jia, Y. Schisandra chinensis protects against dopaminergic neuronal oxidative stress, neuroinflammation and apoptosis via the BDNF/Nrf2/NF-κB pathway in 6-OHDA-induced Parkinson’s disease mice. Food Funct. 2021, 12, 4079–4091. [Google Scholar] [CrossRef] [PubMed]
- Yang, K.; Qiu, J.; Huang, Z.C.; Yu, Z.W.; Wang, W.J.; Hu, H.L.; You, Y. A comprehensive review of ethnopharmacology, phytochemistry, pharmacology, and pharmacokinetics of Schisandra chinensis (Turcz.) Baill. and Schisandra sphenanthera Rehd. et Wils. J. Ethnopharmacol. 2022, 284, 114759. [Google Scholar] [CrossRef]
- Chun, J.N.; Cho, M.S.; So, I.; Jeon, J.H. The protective effects of Schisandra chinensis fruit extract and its lignans against cardiovascular disease: A review of the molecular mechanisms. Fitoterapia 2014, 97, 224–233. [Google Scholar] [CrossRef] [PubMed]
- Kopustinskiene, D.M.; Bernatoniene, J. Antioxidant effects of Schisandra chinensis fruits and their active constituents. Antioxidants 2021, 10, 620. [Google Scholar] [CrossRef] [PubMed]
- Yan, T.X.; Wang, N.Z.; Liu, B.; Wu, B.; Xiao, F.; He, B.S.; Jia, Y. Schisandra chinensis ameliorates depressive-like behaviors by regulating microbiota-gut-brain axis via its anti-inflammation activity. Phytother. Res. 2020, 35, 289–296. [Google Scholar] [CrossRef]
- Chinese Pharmacopoeia Commission. Pharmacopoeia of the People’s Republic of China Chinese Pharmacopoeia Commission; China Medical Science Press: Beijing, China, 2020; Volume 1, p. 68. [Google Scholar]
- Lin, A.X.; Chan, G.; Hu, Y.; Ouyang, D.; Ung, C.O.L.; Shi, L.; Hu, H. Internationalization of traditional Chinese medicine: Current international market, internationalization challenges and prospective suggestions. Chin. Med. 2018, 13, 9. [Google Scholar] [CrossRef]
- Jiang, Y.; David, B.; Tu, P.; Barbin, Y. Recent analytical approaches in quality control of traditional Chinese medicines-A review. Anal. Chim. Acta 2010, 657, 9–18. [Google Scholar] [CrossRef]
- Min, G.H.; Min, W.Z.; YuJuan, L.; Zhi, Q.Z. Overview of the quality standard research of traditional Chinese medicine. Front. Med. 2011, 5, 195–202. [Google Scholar]
- Ahn, J.H.; Mo, E.J.; Jo, Y.H.; Kim, S.B.; Hwang, B.Y.; Lee, M.K. Variation of loganin content in Cornus officinalis fruits at different extraction conditions and maturation stages. Biosci. Biotechnol. Biochem. 2017, 81, 1973–1977. [Google Scholar] [CrossRef]
- Sun, D.; Li, Q.; Li, H.B.; Li, Y.H.; Piao, Z.Y. Quantitative analysis of six lignans in fruits with different colours of Schisandra chinensis by HPLC. Nat. Prod. Res. 2014, 28, 581–585. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.; Yeon, S.W.; Turk, A.; Ryu, S.H.; Seo, J.; Lee, K.Y.; Hwang, B.Y.; Shin, H.; Lee, M.K. Variation of lignan content and α-glucosidase inhibitory activity of Schisandra chinensis fruit at different maturation stages: Comparison with stem, leaf and seed. Sci. Hortic. 2022, 293, 110679. [Google Scholar] [CrossRef]
- Juan, Y.C.; Yang, X.; Ling, W.M.; Ye, X.Z.; Yan, G.X. Application of characteristic fragment filtering with ultra high performance liquid chromatography coupled with high-resolution mass spectrometry for comprehensive identification of components in Schisandrae chinensis Fructus. J. Sep. Sci. 2019, 42, 1323–1331. [Google Scholar]
- Huang, Y.L.; Huang, Z.P.; Watanabe, C.C.; Wang, L.L. Authentication of Schisandra chinensis and Schisandra sphenantherae in Chinese patent medicines by pyrolysis-gas chromatography/mass spectrometry and fingerprint analysis. J. Anal. Appl. Pyrolysis 2019, 137, 70–76. [Google Scholar] [CrossRef]
- Onay, S.; Hofer, S.; Ganzera, M. Rapid analysis of nine lignans in Schisandra chinensis by supercritical fluid chromatography using diode array and mass spectrometric detection. J. Pharm. Biomed. 2020, 185, 113254. [Google Scholar] [CrossRef] [PubMed]
- Nowak, A.; Zakłos-Szyda, M.; Błasiak, J.; Nowak, A.; Zhang, Z.; Zhang, B. Potential of Schisandra chinensis (Turcz.) Baill. in Human Health and Nutrition: A Review of Current Knowledge and Therapeutic Perspectives. Nutrients 2019, 11, 333. [Google Scholar] [CrossRef] [PubMed]
- Zhi, Y.W.; Bei, Z.Y.; Ying, W.W.; Qi, H.L.; An, G.D.; Xiao, L.C. Approaches to establish Q-markers for the quality standards of traditional Chinese medicines. Acta Pharm. Sin. B 2017, 7, 439–446. [Google Scholar]
- Migues, V.H.; David, J.M.; David, J.P. Determination of polyphenols in Schinus terebinthifolius Raddi bark extracts and chemometric analysis. Anal. Methods 2020, 12, 1478–1485. [Google Scholar] [CrossRef]
- Patel, N.D.; Kanaki, N.S. Fingerprint analysis of Shankhpushpi for species discrimination by HPLC coupled with chemometric methods. J. Liq. Chromatogr. 2020, 43, 455–463. [Google Scholar] [CrossRef]
- Wang, B.; Ding, Y.; Zhao, P.H.; Li, W.; Li, M.; Zhu, J.B.; Ye, S.H. Systems pharmacology-based drug discovery and active mechanism of natural products for coronavirus pneumonia (COVID-19): An example using flavonoids. Comput. Biol. Med. 2022, 143, 105241. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.Y.; Ding, Y.; Xu, F.F.; Liu, B.Y.; Kou, Z.N.; Xiao, W.; Zhu, J.B. Systems pharmacology-based drug discovery for marine resources: An example using sea cucumber (Holothurians). J. Ethnopharmacol. 2015, 165, 61–72. [Google Scholar] [CrossRef] [PubMed]
- Newby, D.; Freitas, A.A.; Ghafourian, T. Decision trees to characterise the roles of permeability and solubility on the prediction of oral absorption. Eur. J. Med. Chem. 2015, 90, 751–765. [Google Scholar] [CrossRef] [PubMed]
- Daina, A.; Michielin, O.; Zoete, V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep. 2017, 7, 42717. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Wang, J.; Zhou, W.; Wang, Y.H.; Yang, L. Systems approaches and polypharmacology for drug discovery from herbal medicines: An example using licorice. J. Ethnopharmacol. 2013, 146, 773–793. [Google Scholar] [CrossRef] [PubMed]
- Long, R.J.; Peng, L.; Jinan, W.; Wei, Z.; Bohui, L.; Chao, H.; Dong, L.P.; Hu, G.Z.; Yang, T.W.; Feng, Y.Y.; et al. TCMSP: A database of systems pharmacology for drug discovery from herbal medicines. J. Cheminform. 2014, 6, 13. [Google Scholar]
- Daina, A.; Michielin, O.; Zoete, V. SwissTargetPrediction: Updated data and new features for efficient prediction of protein targets of small molecules. Nucleic Acids Res. 2019, 47, 357–364. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhang, Y.T.; Lian, X.C.; Li, F.C.; Wang, C.X.; Zhu, F.; Qiu, Y.Q.; Chen, Y.Z. Therapeutic target database update 2022: Facilitating drug discovery with enriched comparative data of targeted agents. Nucleic Acids Res. 2022, 50, 1398–1407. [Google Scholar] [CrossRef]
- Stelzer, G.; Rosen, N.; Plaschkes, I.; Zimmerman, S.; Twik, M.; Fishilevich, S.; Stein, T.I.; Nudel, R.; Lieder, I.; Mazor, Y.; et al. The GeneCards Suite: From Gene Data Mining to Disease Genome Sequence Analyses. Curr. Protoc. Bioinform. 2016, 54, 1–33. [Google Scholar] [CrossRef]
- Bardou, P.; Mariette, J.; Escudié, F.; Djemiel, C.; Klopp, C. Jvenn: An interactive Venn diagram viewer. BMC Bioinform. 2014, 15, 293. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhou, B.; Pache, L.; Chang, M.; Khodabakhshi, A.H.; Tanaseichuk, O.; Benner, C.; Chanda, S.K. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nat. Commun. 2019, 10, 1523. [Google Scholar] [CrossRef]
- Shannon, P.; Markiel, A.; Ozier, O.; Baliga, N.S.; Wang, J.T.; Ramage, D.; Amin, N.; Schwikowski, B.; Ideker, T. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res. 2003, 13, 2498–2504. [Google Scholar] [CrossRef]
- El-Laithy, H.M. Self-nanoemulsifying drug delivery system for enhanced bioavailability and improved hepatoprotective activity of biphenyl dimethyl dicarboxylate. Curr. Drug Deliv. 2008, 5, 170–176. [Google Scholar] [CrossRef]
- Deng, L.-L.; Xie, X.-D.; Li, J.; Wang, D.-P.; Hao, X.-J.; Chen, G.; Mu, S.-Z. Hepatoprotective constituents of total dibenzocyclooctadiene lignans from schisandra chinensis based on the spectrum-effect relationship. Molecules. 2021, 26, 6554. [Google Scholar] [CrossRef]
- Berman, H.M.; Westbrook, J.; Feng, Z.; Gilliland, G.; Bhat, T.N.; Weissig, H.; Shindyalov, I.N.; Bourne, P.E. The protein data bank. Nucleic Acids Res. 2000, 28, 235–242. [Google Scholar] [CrossRef]
- Li, Y.M.; Li, X.; Zhao, R.; Wang, C.Y.; Qiu, F.P.; Sun, B.L.; Ji, H.; Qiu, J.; Wang, C. Enhanced adhesion and proliferation of human umbilical vein endothelial cells on conductive PANI-PCL fiber scaffold by electrical stimulation. Mater. Sci. Eng. C 2017, 72, 106–112. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Huang, S.X.; Pu, J.X.; Li, J.R.; Ding, L.S.; Chen, D.F.; Sun, H.D.; Xu, H.X. Ultra performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometric procedure for qualitative and quantitative analyses of nortriterpenoids and lignans in the genus Schisandra. J. Pharm. Biomed. 2011, 56, 916–927. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.K.; Guo, Y.L.; Cai, G.Z.; Gong, J.Y.; Wang, Y.; Liu, S.Y. Chemical composition analysis of Schisandra chinensis fructus and its three processed products using UHPLC-Q-Orbitrap/MS-based metabolomics approach. Nat. Prod. Res. 2022, 36, 3464–3468. [Google Scholar] [CrossRef]
- Yang, S.S.; Shan, L.L.; Luo, H.M.; Sheng, X.; Du, J.; Li, Y.B. Rapid classification and identification of chemical components of Schisandra Chinensis by UPLC-Q-TOF/MS combined with data post-processing. Molecules 2017, 22, 1778. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Wu, S.M.; Cong, R.H.; Xiao, J.Y.; Ma, F.L. Characterization of lignans in Schisandra chinensis oil with a single analysis process by UPLC-Q/TOF-MS. Chem. Phys. Lipids 2019, 218, 158–167. [Google Scholar] [CrossRef] [PubMed]
- Mocan, A.; Schafberg, M.; Crișan, G.; Rohn, S. Determination of lignans and phenolic components of Schisandra chinensis (Turcz.) Baill. using HPLC-ESI-TOF-MS and HPLC-online TEAC: Contribution of individual components to overall antioxidant activity and comparison with traditional antioxidant assays. J. Funct. Foods 2016, 24, 579–594. [Google Scholar] [CrossRef]
- Chen, S.Y.; Shi, J.J.; Zou, L.S.; Liu, X.H.; Tang, R.M.; Ma, J.M.; Wang, C.C.; Tan, M.X.; Chen, J.L. Quality evaluation of wild and cultivated schisandrae chinensis fructus based on simultaneous determination of multiple bioactive constituents combined with multivariate statistical analysis. Molecules 2019, 24, 1335. [Google Scholar] [CrossRef]
- Yu, F.; Chen, C.; Chen, S.; Wang, K.; Huang, H.; Wu, Y.; He, P.; Tu, Y.; Li, B. Dynamic changes and mechanisms of organic acids during black tea manufacturing process. Food Control. 2022, 132, 108535. [Google Scholar] [CrossRef]
- Yan, T.; Hu, G.S.; Wang, A.H.; Hong, Y.; Jia, J.M. Characterisation of proanthocyanidins from Schisandra chinensis seed coats by UPLC-QTOF/MS. Nat. Prod. Res. 2014, 28, 1834–1842. [Google Scholar] [CrossRef] [PubMed]
- Maietta, M.; Colombo, R.; Lavecchia, R.; Sorrenti, M.; Zuorro, A.; Papetti, A. Artichoke (Cynara cardunculus L. var. scolymus) waste as a natural source of carbonyl trapping and antiglycative agents. Food Res. Int. 2017, 100, 780–790. [Google Scholar] [PubMed]
- Peng, Y.Y.; Bishop, K.S.; Zhang, J.Y.; Chen, D.L.; Quek, S.Y. Characterization of phenolic compounds and aroma active compounds in feijoa juice from four New Zealand grown cultivars by LC-MS and HS-SPME-GC-O-MS. Food Res. Int. 2020, 129, 108873. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.B.; Kim, C.Y.; Lee, H.J.; Yun, J.H.; Nho, C.W. Induction of the phase II detoxification enzyme NQO1 in hepatocarcinoma cells by lignans from the fruit of Schisandra chinensis through nuclear accumulation of Nrf2. Planta Med. 2009, 75, 1314–1318. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Ji, W.; Lu, M.; Wang, Z.; Jia, X.; Wang, D.; Cao, P.; Hu, C.; Sun, X.; Wang, Z. Systemic pharmacological verification of Guizhi Fuling decoction in treating endometriosis-associated pain. J. Ethnopharmacol. 2022, 297, 115540. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Yu, Y.; Tian, G.; Deng, H.Y.; Yu, B. H3K9ac modification was involved in doxorubicin induced apoptosis by regulating Pik3ca transcription in H9C2 cells. Life Sci. 2021, 284, 119107. [Google Scholar] [CrossRef] [PubMed]
- Yue, F.B.; Meng, W.; Yang, P.Y.; Xia, A.Z.; Yan, M.X.; He, Y.D.; Rong, W.G. Protective mechanism of Forsythia suspense leaves extract against drug-induced liver injury. J. Northwest A&F Univ. 2022, 50, 23–33. [Google Scholar]
- Liu, J.M.; Chen, J.M.; Lin, M.J.; Wu, F.; Ma, C.R.; Zuo, X.; Yu, W.; Huang, M.J.; Fang, J.; Li, W.R.; et al. Screening and verification of CYP3A4 inhibitors from Bushen-Yizhi formula to enhance the bioavailability of osthole in rat plasma. J. Ethnopharmacol. 2022, 282, 114643. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.W.; Fang, B.Z.; Ting, H.T.; Yan, Z.X.; Qiang, L.; Jing, Z.; He, X.X. Schisandrin C improves acetaminophen-induced liver injury in mice by regulating Nrf2 signaling pathway. China J. Chin. Mater. Med. 2022, 47, 5299–5305. [Google Scholar]
- Fan, S.C.; Liu, C.H.; Jiang, Y.M.; Gao, Y.; Chen, Y.X.; Fu, K.; Yao, X.P.; Huang, M.; Bi, H.C. Lignans from Schisandra sphenanthera protect against lithocholic acid-induced cholestasis by pregnane X receptor activation in mice. J. Ethnopharmacol. 2019, 245, 112103. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.D.; Wang, Q.; Wang, Y.; Wang, X.J.; Pu, J.X.; Gu, Y.; Wang, R. Application of ultrahigh-performance liquid chromatography coupled with mass spectrometry for analysis of lignans and quality control of Fructus Schisandrae chinensis. J. Sep. Sci. 2012, 35, 2203–2209. [Google Scholar] [CrossRef] [PubMed]
- Oshima, R.; Kotani, A.; Kuroda, M.; Yamamoto, K.; Mimaki, Y.; Hakamata, H. Discrimination of schisandrae chinensis fructus and schisandrae sphenantherae fructus based on fingerprint profiles of hydrophilic components by high-performance liquid chromatography with ultraviolet detection. J. Nat. Med. 2017, 72, 399–408. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.J.; Bai, G.; Han, Y.; Xu, J.; Gong, S.; Li, Y.; Zhang, H.; Liu, C. The method of quality marker research and quality evaluation of traditional Chinese medicine based on drug properties and effect characteristics. Phytomedicine 2018, 44, 204–211. [Google Scholar] [CrossRef]
- Liang, Y.Z.; Xie, P.S.; Chau, F. Chromatographic fingerprinting and related chemometric techniques for quality control of traditional Chinese medicines. J. Sep. Sci. 2010, 33, 410–421. [Google Scholar] [CrossRef]
- Han, J.; Shi, X.; Du, Y.; Shi, F.; Zhang, B.; Zheng, Z.; Xu, J.; Jiang, L. Schisandrin C targets Keap1 and attenuates oxidative stress by activating Nrf2 pathway in Ang II-challenged vascular endothelium. Phytother. Res. 2019, 33, 779–790. [Google Scholar] [CrossRef]
- Song, J.X.; Lin, X.; Wong, R.N.S.; Sze, S.C.W.; Tong, Y.; Shaw, P.C.; Zhang, Y.B. Protective effects of dibenzocyclooctadiene lignans from Schisandra chinensis against beta-amyloid and homocysteine neurotoxicity in PC12 cells. Phytother. Res. 2010, 25, 435–443. [Google Scholar] [CrossRef] [PubMed]
No. | tR (min) | Ion Mode | Formula | Detected (m/z) | Fragment Ions | Identification |
---|---|---|---|---|---|---|
1 | 1.66 | [M + H]+ | C9H11NO2 | 166.0862 | 120.0810 | Phenprobamate [15] |
2 | 4.38 | [M + NH4]+ | C29H37O11 | 578.2590 | 437.1958, 419.1843 | Micrandilactone D [38] |
3 | 4.44 | [M + NH4]+ | C29H36O10 | 562.2643 | 527.2226 | Henridilactone D [15] |
4 | 5.38 | [M + NH4]+ | C23H30O7 | 436.2325 | 401.1953, 386.1714, 370.1767, 369.1691 | Gomisin H [15] |
5 | 6.06 | [M + NH4]+ | C29H34O9 | 544.2539 | 467.2049, 449.1954 | Lancifodilactone D [38] |
6 | 6.50 | [M + H]+ | C24H32O7 | 433.2106 | 415.2111, 384.1926, 369.1691, 353.1743, | Schisandrol A [39] |
7 | 6.74 | [M + H]+ | C28H34O10 | 531.2219 | 485.2157, 401.1588, 383.1483 | Gomisin D [39] |
8 | 6.85 | [M + H]+ | C22H28O6 | 389.1951 | 357.1690, 287.0912, 227.0699, 199.0752 | Gomisin J [39] |
9 | 7.09 | [M + NH4]+ | C23H28O7 | 434.2169 | 399.1795, 368.1614, 353.1376, 330.1093 | Schisandrol B [39] |
10 | 7.60 | [M + H]+ | C28H36O8 | 501.2476 | 483.2371, 401.1953 | Angeloylgomisin H [38] |
11 | 8.09 | [M + H]+ | C28H36O8 | 501.2476 | 483.2373, 401.1953, 370.1764 | Tigloylgomisin H [38] |
12 | 8.39 | [M + NH4]+ | C31H36O9 | 570.2692 | 431.2058, 387.1794, 356.1611 | Benzoylgomisin Q [15] |
13 | 8.68 | [M + NH4]+ | C30H32O9 | 554.2379 | 415.1745, 371.1483, 340.1301, 325.1064 | Gomisin G [39,40] |
14 | 8.91 | [M + NH4]+ | C28H34O9 | 532.2537 | 415.1745, 371.1483, 340.1300, 325.1065 | Angeloylgomisin P [41] |
15 | 9.18 | [M + H]+ | C23H30O6 | 403.2111 | 371.1842, 340.1655 | Gomisin K1 [40] |
16 | 9.31 | [M + NH4]+ | C28H34O9 | 532.2535 | 415.1746, 371.1484, 340.1300, 325.1065 | Gomisin F [42] |
17 | 9.42 | [M + NH4]+ | C30H32O9 | 554.2378 | 415.1747,371.1485, 340.1303, 325.1067 | Schisantherin A 1 [39,40] |
18 | 9.60 | [M + NH4]+ | C28H34O9 | 532.2535 | 415.1746, 371.1484, 340.1299, 325.1068 | Schisantherin B [41] |
19 | 10.07 | [M + H]+ | C23H30O6 | 403.2110 | 371.1848, 340.1666 | Schisanhenol [40] |
20 | 10.26 | [M + H]+ | C22H26O6 | 387.1796 | 355.1529, 325.1426, 285.0753 | Gomisin M2 [39] |
21 | 10.68 | [M + H]+ | C28H34O9 | 515.2267 | 469.2222, 385.1638, 355.1531 | Gomisin E [15] |
22 | 11.14 | [M + H]+ | C20H24O4 | 387.1798 | 355.1540, 227.0699 | Gomisin L1/L2 [15] |
23 | 12.31 | [M + H]+ | C24H32O6 | 417.2262 | 402.2232, 386.2072, 316.1302 | Schisandrin A [15] |
24 | 13.23 | [M + H]+ | C23H28O6 | 401.1952 | 386.1717, 331.1169, 300.0989, 285.0754 | Gomisin N [42] |
25 | 13.58 | [M + H]+ | C23H28O6 | 401.1951 | 386.1716, 331.1170, 300.0988, 285.0754 | Schisandrin B 1 [15,42] |
26 | 14.25 | [M + H]+ | C22H24O6 | 385.1642 | 355.1533, 315.0857, 285.0755 | Schisandrin C [15] |
27 | 14.77 | [M + NH4]+ | C30H32O8 | 538.2434 | 399.1796, 368.1613, 353.1372, 337.1426, 330.1092, 299.0907 | Benzoylgomisin O [40] |
28 | 0.84 | [M − H]− | C6H8O7 | 191.0186 | 129.0180, 111.0074 | Quinic acid [43,44] |
29 | 1.25 | [M − H]− | C7H12O6 | 191.0187 | 129.0180, 111.0074 | Citric acid 1 [44,45] |
30 | 2.51 | [M − H]− | C16H18O9 | 353.0876 | 191.0553, 179.0341, 135.0439, 85.0280 | 1-O-caffeoylquinic acid [46] |
31 | 2.81 | [M − H]− | C30H26O12 | 577.1350 | 451.1034, 425.0880, 407,0769, 289.0719 | Procyanidin B1 [47] |
32 | 2.90 | [M − H]− | C16H18O8 | 337.0928 | 191.0553, 163.0390 | 3-O-p-coumaroylquinic acid [42] |
33 | 3.21 | [M − H]− | C16H18O8 | 337.0926 | 191.0553, 173.0445 | 5-O-p-coumaroylquinic acid [42] |
34 | 3.33 | [M − H]− | C27H30O16 | 609.1456 | 301.0352, 300.0274 | Rutin [42] |
35 | 3.48 | [M − H]− | C21H20O12 | 463.0881 | 300.0275 | Quercetin-3-O-glucoside [42] |
36 | 3.66 | [M − H]− | C21H20O11 | 447.0931 | 284.0328 | Kaempferol-3-O-gloucoside [42] |
Group | Q-Markers (mg/g) | Total Content of Q-Markers (mg/g) | |||||
---|---|---|---|---|---|---|---|
Schisandrol A | Angeloyl-gomisin H | Schisantherin A | Schisantherin B | Schisandrin A | Schisandrin C | ||
G | 6.32 ± 0.03 | 1.64 ± 0.01 | 1.01 ± 0.01 | 0.88 ± 0.01 | 1.07 ± 0.01 | 0.71 ± 0.01 | 11.62 ± 0.05 |
GP1 | 6.28 ± 0.17 | 1.57 ± 0.02 | 1.01 ± 0.04 | 0.87 ± 0.02 | 1.06 ± 0.02 | 0.71 ± 0.01 | 11.50 ± 0.28 |
GP2 | 5.50 ± 0.05 | 1.31 ± 0.01 | 0.75 ± 0.01 | 0.67 ± 0.01 | 0.80 ± 0.01 | 0.71 ± 0.01 | 9.74 ± 0.10 |
LR | 4.78 ± 0.11 | 1.28 ± 0.02 | 0.60 ± 0.01 | 0.65 ± 0.03 | 0.86 ± 0.02 | 0.55 ± 0.02 | 8.71 ± 0.22 |
R1 | 4.75 ± 0.05 | 1.42 ± 0.01 | 1.03 ± 0.01 | 0.91 ± 0.01 | 1.20 ± 0.01 | 0.52 ± 0.01 | 9.83 ± 0.12 |
R2 | 5.72 ± 0.03 | 1.48 ± 0.02 | 0.82 ± 0.01 | 0.63 ± 0.01 | 1.20 ± 0.01 | 0.50 ± 0.01 | 10.36 ± 0.02 |
DR | 6.29 ± 0.03 | 1.72 ± 0.02 | 1.06 ± 0.04 | 1.25 ± 0.11 | 0.94 ± 0.01 | 0.73 ± 0.02 | 11.99 ± 0.20 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Li, Y.; Ding, Y.; Du, X.; Zhu, J. Identification of Quality Markers in Schisandra chinensis (Turcz.) Baill. Using UPLC-Q-Extractive Orbitrap/MS, Chemometric Analysis, and Network Pharmacology. Separations 2024, 11, 88. https://doi.org/10.3390/separations11030088
Wang Y, Li Y, Ding Y, Du X, Zhu J. Identification of Quality Markers in Schisandra chinensis (Turcz.) Baill. Using UPLC-Q-Extractive Orbitrap/MS, Chemometric Analysis, and Network Pharmacology. Separations. 2024; 11(3):88. https://doi.org/10.3390/separations11030088
Chicago/Turabian StyleWang, Yinpeng, Yumei Li, Yan Ding, Xinxin Du, and Jingbo Zhu. 2024. "Identification of Quality Markers in Schisandra chinensis (Turcz.) Baill. Using UPLC-Q-Extractive Orbitrap/MS, Chemometric Analysis, and Network Pharmacology" Separations 11, no. 3: 88. https://doi.org/10.3390/separations11030088
APA StyleWang, Y., Li, Y., Ding, Y., Du, X., & Zhu, J. (2024). Identification of Quality Markers in Schisandra chinensis (Turcz.) Baill. Using UPLC-Q-Extractive Orbitrap/MS, Chemometric Analysis, and Network Pharmacology. Separations, 11(3), 88. https://doi.org/10.3390/separations11030088