Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (197)

Search Parameters:
Keywords = Savitzky-Golay filter

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 4246 KB  
Article
Hyperspectral Imaging for Non-Destructive Detection of Chemical Residues on Textiles
by Lukas Kampik, Sophie Helen Gruber, Klemens Weisleitner, Gerald Bauer, Hannes Steiner, Leo Tous, Seraphin Hubert Unterberger and Johannes Dominikus Pallua
Textiles 2025, 5(4), 42; https://doi.org/10.3390/textiles5040042 - 28 Sep 2025
Abstract
Detecting chemical residues on surfaces is critical in environmental monitoring, industrial hygiene, public health, and incident management after chemical releases. Compounds such as acrylonitrile (ACN) and tetraethylguanidine (TEG), widely used in chemical processes, can pose risks upon residual exposure. Hyperspectral imaging (HSI), a [...] Read more.
Detecting chemical residues on surfaces is critical in environmental monitoring, industrial hygiene, public health, and incident management after chemical releases. Compounds such as acrylonitrile (ACN) and tetraethylguanidine (TEG), widely used in chemical processes, can pose risks upon residual exposure. Hyperspectral imaging (HSI), a high-resolution, non-destructive method, offers a secure and effective solution to identify and spatially map chemical contaminants based on spectral signatures. In this study, we present an HSI-based framework to detect and differentiate ACN and TEG residues on textile surfaces. High-resolution spectral data were collected from three representative textiles using a hyperspectral camera operating in the short-wave infrared range. The spectral datasets were processed using standard normal variate transformation, Savitzky–Golay filtering, and principal component analysis to enhance contrast and identify material-specific features. The results demonstrate the effectiveness of this approach in resolving spectral differences corresponding to distinct chemical residues and concentrations but also provide a practical and scalable method for detecting chemical contaminants in consumer and industrial textile materials, supporting reliable residue assessment and holding promise for broader applications in safety-critical fields. Full article
Show Figures

Figure 1

23 pages, 17838 KB  
Article
Integrating Multi-Temporal Sentinel-1/2 Vegetation Signatures with Machine Learning for Enhanced Soil Salinity Mapping Accuracy in Coastal Irrigation Zones: A Case Study of the Yellow River Delta
by Junyong Zhang, Tao Liu, Wenjie Feng, Lijing Han, Rui Gao, Fei Wang, Shuang Ma, Dongrui Han, Zhuoran Zhang, Shuai Yan, Jie Yang, Jianfei Wang and Meng Wang
Agronomy 2025, 15(10), 2292; https://doi.org/10.3390/agronomy15102292 - 27 Sep 2025
Abstract
Soil salinization poses a severe threat to agricultural sustainability in the Yellow River Delta, where conventional spectral indices are limited by vegetation interference and seasonal dynamics in coastal saline-alkali landscapes. To address this, we developed an inversion framework integrating spectral indices and vegetation [...] Read more.
Soil salinization poses a severe threat to agricultural sustainability in the Yellow River Delta, where conventional spectral indices are limited by vegetation interference and seasonal dynamics in coastal saline-alkali landscapes. To address this, we developed an inversion framework integrating spectral indices and vegetation temporal features, combining multi-temporal Sentinel-2 optical data (January 2024–March 2025), Sentinel-1 SAR data, and terrain covariates. The framework employs Savitzky–Golay (SG) filtering to extract vegetation temporal indices—including NDVI temporal extremum and principal component features, capturing salt stress response mechanisms beyond single-temporal spectral indices. Based on 119 field samples and Variable Importance in Projection (VIP) feature selection, three ensemble models (XGBoost, CatBoost, LightGBM) were constructed under two strategies: single spectral features versus fused spectral and vegetation temporal features. The key results demonstrate the following: (1) The LightGBM model with fused features achieved optimal validation accuracy (R2 = 0.77, RMSE = 0.26 g/kg), outperforming single-feature models by 13% in R2. (2) SHAP analysis identified vegetation-related factors as key predictors, revealing a negative correlation between peak biomass and salinity accumulation, and the summer crop growth process affects soil salinization in the following spring. (3) The fused strategy reduced overestimation in low-salinity zones, enhanced model robustness, and significantly improved spatial gradient continuity. This study confirms that vegetation phenological features effectively mitigate agricultural interference (e.g., tillage-induced signal noise) and achieve high-resolution salinity mapping in areas where traditional spectral indices fail. The multi-temporal integration framework provides a replicable methodology for monitoring coastal salinization under complex land cover conditions. Full article
Show Figures

Figure 1

28 pages, 6366 KB  
Article
Integrated Ultra-Wideband Microwave System to Measure Composition Ratio Between Fat and Muscle in Multi-Species Tissue Types
by Lixiao Zhou, Van Doi Truong and Jonghun Yoon
Sensors 2025, 25(17), 5547; https://doi.org/10.3390/s25175547 - 5 Sep 2025
Viewed by 980
Abstract
Accurate and non-invasive assessment of fat and muscle composition is crucial for biomedical monitoring to track health conditions in humans and pets, as well as for classifying meats in the meat industry. This study introduces a cost-effective, multifunctional ultra-wideband microwave system operating from [...] Read more.
Accurate and non-invasive assessment of fat and muscle composition is crucial for biomedical monitoring to track health conditions in humans and pets, as well as for classifying meats in the meat industry. This study introduces a cost-effective, multifunctional ultra-wideband microwave system operating from 2.4 to 4.4 GHz, designed for rapid and non-destructive quantification of fat thickness, muscle thickness, and fat-to-muscle ratio in diverse ex vivo samples, including pork, beef, and oil–water mixtures. The compact handheld device integrates essential RF components such as a frequency synthesizer, directional coupler, logarithmic power detector, and a dual-polarized Vivaldi antenna. Bluetooth telemetry enables seamless real-time data transmission to mobile- or PC-based platforms, with each measurement completed in a few seconds. To enhance signal quality, a two-stage denoising pipeline combining low-pass filtering and Savitzky–Golay smoothing was applied, effectively suppressing noise while preserving key spectral features. Using a random forest regression model trained on resonance frequency and signal-loss features, the system demonstrates high predictive performance even under limited sample conditions. Correlation coefficients for fat thickness, muscle thickness, and fat-to-muscle ratio consistently exceeded 0.90 across all sample types, while mean absolute errors remained below 3.5 mm. The highest prediction accuracy was achieved in homogeneous oil–water samples, whereas biologically complex tissues like pork and beef introduced greater variability, particularly in muscle-related measurements. The proposed microwave system is highlighted as a highly portable and time-efficient solution, with measurements completed within seconds. Its low cost, ability to analyze multiple tissue types using a single device, and non-invasive nature without the need for sample pre-treatment or anesthesia make it well suited for applications in agri-food quality control, point-of-care diagnostics, and broader biomedical fields. Full article
(This article belongs to the Section Biomedical Sensors)
Show Figures

Figure 1

23 pages, 13439 KB  
Article
Precision Identification of Irrigated Areas in Semi-Arid Regions Using Optical-Radar Time-Series Features and Ensemble Machine Learning
by Weifeng Li, Changlai Xiao, Xiujuan Liang, Weifei Yang, Jiang Zhang, Rongkun Dai, Yuhan La, Le Kang and Deyu Zhao
Hydrology 2025, 12(8), 214; https://doi.org/10.3390/hydrology12080214 - 14 Aug 2025
Viewed by 600
Abstract
Addressing limitations in remote sensing irrigation monitoring (insufficient resolution, single-source constraints, poor terrain adaptability), this study developed a high-precision identification framework for Jianping County, China, a semi-arid region. We integrated Sentinel-1 SAR (VV/VH), Sentinel-2 multispectral, and MOD11A1 land surface temperature data. Savitzky–Golay (S-G) [...] Read more.
Addressing limitations in remote sensing irrigation monitoring (insufficient resolution, single-source constraints, poor terrain adaptability), this study developed a high-precision identification framework for Jianping County, China, a semi-arid region. We integrated Sentinel-1 SAR (VV/VH), Sentinel-2 multispectral, and MOD11A1 land surface temperature data. Savitzky–Golay (S-G) filtering reconstructed time-series datasets for NDVI, SAVI, TVDI, and VV/VH backscatter coefficients. Irrigation mapping employed random forest (RF), Support Vector Machine (SVM), and K-Nearest Neighbors (KNN) algorithms. Key results demonstrate the following. (1) RF achieved superior performance with overall accuracies of 91.00% (2022), 88.33% (2023), and 87.78% (2024), and Kappa coefficients of 86.37%, 80.96%, and 80.40%, showing minimal deviation (0.66–3.44%) from statistical data; (2) SAVI and VH exhibited high irrigation sensitivity, with peak differences between irrigated/non-irrigated areas reaching 0.48 units (SAVI, July–August) and 2.78 dB (VH); (3) cropland extraction accuracy showed <3% discrepancy versus governmental statistics. The “Multi-temporal Feature Fusion + S-G Filtering + RF Optimization” framework provides an effective solution for precision irrigation monitoring in complex semi-arid environments. Full article
Show Figures

Figure 1

19 pages, 3374 KB  
Article
The Influence of Viewing Geometry on Hyperspectral-Based Soil Property Retrieval
by Yucheng Gao, Lixia Ma, Zhongqi Zhang, Xianzhang Pan, Ziran Yuan, Changkun Wang and Dongsheng Yu
Remote Sens. 2025, 17(14), 2510; https://doi.org/10.3390/rs17142510 - 18 Jul 2025
Viewed by 381
Abstract
Hyperspectral technology has been widely applied to the retrieval of soil properties, such as soil organic matter (SOM) and particle size distribution (PSD). However, most previous studies have focused on hyperspectral data acquired from the nadir direction, and the influence of viewing geometry [...] Read more.
Hyperspectral technology has been widely applied to the retrieval of soil properties, such as soil organic matter (SOM) and particle size distribution (PSD). However, most previous studies have focused on hyperspectral data acquired from the nadir direction, and the influence of viewing geometry on hyperspectral-based soil property retrieval remains unclear. In this study, bidirectional reflectance factors (BRFs) were collected at 48 different viewing angles for 154 soil samples with varying SOM contents and PSDs. SOM and PSD were then retrieved using combinations of ten spectral preprocessing methods (raw reflectance, Savitzky–Golay filter (SG), first derivative (D1), second derivative (D2), standard normal variate (SNV), multiplicative scatter correction (MSC), SG + D1, SG + D2, SG + SNV, and SG + MSC), one sensitive wavelength selection method, and three retrieval algorithms (partial least squares regression (PLSR), support vector machine (SVM), and convolutional neural networks (CNNs)). The influence of viewing geometry on the selection of spectral preprocessing methods, retrieval algorithms, sensitive wavelengths, and retrieval accuracy was systematically analyzed. The results showed that soil BRFs are influenced by both soil properties and viewing angles. The viewing geometry had limited effects on the choice of preprocessing method and retrieval algorithm. Among the preprocessing methods, D1, SG + D1, and SG + D2 outperformed the others, while PLSR achieved a higher accuracy than SVM and CNN when retrieving soil properties. The selected sensitive wavelengths for both SOM and PSD varied slightly with viewing angle and were mainly located in the near-infrared region when using BRFs from multiple viewing angles. Compared with single-angle data, multi-angle BRFs significantly improved retrieval performance, with the R2 increasing by 11% and 15%, and RMSE decreasing by 16% and 30% for SOM and PSD, respectively. The optimal viewing zenith angle ranged from 10° to 20° for SOM and around 40° for PSD. Additionally, backward viewing directions were more favorable than forward directions, with the optimal viewing azimuth angles being 0° for SOM and 90° for PSD. These findings provide useful insights for improving the accuracy of soil property retrieval using multi-angle hyperspectral observations. Full article
(This article belongs to the Section Remote Sensing in Agriculture and Vegetation)
Show Figures

Figure 1

19 pages, 2795 KB  
Article
PCA- and PLSR-Based Machine Learning Model for Prediction of Urea-N Content in Heterogeneous Soils Using Near-Infrared Spectroscopy
by Damiano Crescini, Gabriele Mascialino, Nicola Moggia, Giordano Piubeni, Mauro Serpelloni and Emilio Sardini
Sensors 2025, 25(13), 4176; https://doi.org/10.3390/s25134176 - 4 Jul 2025
Viewed by 498
Abstract
Determining the soil’s nitrogen supply accurately and quickly is essential for effective agricultural management. This study explores the use of near-infrared (NIR) spectroscopy combined with spectral pre-processing techniques (such as Savitzky–Golay filtering) and partial least squares regression (PLSR) to assess soil nitrogen levels. [...] Read more.
Determining the soil’s nitrogen supply accurately and quickly is essential for effective agricultural management. This study explores the use of near-infrared (NIR) spectroscopy combined with spectral pre-processing techniques (such as Savitzky–Golay filtering) and partial least squares regression (PLSR) to assess soil nitrogen levels. Six soil types of varying compositions, treated with different levels of Urea-N fertilizer, were examined. Nitrogen-specific NIR peaks were identified, and regression models were consequently developed. Through a comparison of the performance of the models, the most effective model for nitrogen detection was selected. In calibration, the models performed well, with high R2 (over 0.9) and low root mean square error (RMSE) values. The second derivative-based (SD) model slightly outperformed the first derivative-based (FD) model in terms of accuracy. Both models showed minimal bias, indicating reliable performance. During validation, the FD model outperformed the SD model in terms of R2, root mean square error of prediction (RMSEP), and residual prediction deviation (RPD). Thus, the FD model demonstrated good predictive ability (R2 = 0.77, RPD = 2.06), while the SD model was less effective (R2 = 0.65, RPD = 1.77). Compared to previous studies, this study uniquely combines real-time online detection capability with low computational cost, unlike most prior offline approaches, and includes model validation across various soil types. Overall, NIR spectroscopy coupled with multivariate models proves to be a promising tool for the detection of nitrogen levels in various soils. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Figure 1

17 pages, 2920 KB  
Article
Research on the Classification Method of Tea Tree Seeds Quality Based on Mid-Infrared Spectroscopy and Improved DenseNet
by Di Deng, Hao Li, Jiawei Luo, Jiachen Jiang and Hongbo Mu
Appl. Sci. 2025, 15(13), 7336; https://doi.org/10.3390/app15137336 - 30 Jun 2025
Viewed by 341
Abstract
Precise quality screening of tea tree seeds is crucial for the development of the tea industry. This study proposes a high-precision quality classification method for tea tree seeds by integrating mid-infrared (MIR) spectroscopy with an improved deep learning model. Four types of tea [...] Read more.
Precise quality screening of tea tree seeds is crucial for the development of the tea industry. This study proposes a high-precision quality classification method for tea tree seeds by integrating mid-infrared (MIR) spectroscopy with an improved deep learning model. Four types of tea tree seeds in different states were prepared, and their spectral data were collected and preprocessed using Savitzky–Golay (SG) filtering and wavelet transform. Aiming at the deficiencies of DenseNet121 in one-dimensional spectral processing, such as insufficient generalization ability and weak feature extraction, the ECA-DenseNet model was proposed. Based on DenseNet121, the Batch Channel Normalization (BCN) module was introduced to reduce the dimensionality via 1 × 1 convolution while preserving the feature extraction capabilities, the Attention–Convolution Mix (ACMix) module was integrated to combine convolution and self-attention, and the Efficient Channel Attention (ECA) mechanism was utilized to enhance the feature discriminability. Experiments show that ECA-DenseNet achieves 99% accuracy, recall, and F1-score for classifying the four seed quality types, outperforming the original DenseNet121, machine learning models, and deep learning models. This study provides an efficient solution for tea tree seeds detection and screening, and its modular design can serve as a reference for the spectral classification of other crops. Full article
Show Figures

Figure 1

24 pages, 11676 KB  
Article
Rotating Machinery Structural Faults Feature Enhancement and Diagnosis Based on Multi-Sensor Information Fusion
by Baozhu Jia, Guanlong Liang, Zhende Huang, Xuewei Song and Zhiqiang Liao
Machines 2025, 13(7), 553; https://doi.org/10.3390/machines13070553 - 25 Jun 2025
Cited by 1 | Viewed by 408
Abstract
To address the challenges posed by the difficulty of extracting fault features from rotating machinery with weak fault features, this paper proposes a rotating machinery structural faults feature enhancement and diagnosis method based on multi-sensor information fusion. Firstly, Savitzky–Golay filtering suppresses noise and [...] Read more.
To address the challenges posed by the difficulty of extracting fault features from rotating machinery with weak fault features, this paper proposes a rotating machinery structural faults feature enhancement and diagnosis method based on multi-sensor information fusion. Firstly, Savitzky–Golay filtering suppresses noise and enhances fault features. Secondly, the designed multi-sensor symmetric dot pattern (SDP) transformation method fuses multi-source information of the rotating machinery structural faults, providing more comprehensive and richer fault feature information for diagnosis. Finally, the ResNet18 model performs fault diagnosis. To validate the feasibility and effectiveness of the proposed method, two datasets verify its performance. The accuracy of the experimental results was 99.16% and 100%, respectively, demonstrating the feasibility and effectiveness of the proposed method. To further validate the superiority of the proposed method, it was compared with different 2D signal transformation methods. The comparison results indicate that the proposed method achieves the best fault diagnosis accuracy compared to other methods. Full article
(This article belongs to the Section Machines Testing and Maintenance)
Show Figures

Figure 1

15 pages, 4137 KB  
Article
Non-Destructive Thickness Measurement of Energy Storage Electrodes via Terahertz Technology
by Zhengxian Gao, Xiaoqing Jia, Jin Wang, Zhijun Zhou, Jianyong Wang, Dongshan Wei, Xuecou Tu, Lin Kang, Jian Chen, Dengzhi Chen and Peiheng Wu
Sensors 2025, 25(13), 3917; https://doi.org/10.3390/s25133917 - 23 Jun 2025
Viewed by 762
Abstract
Precision thickness control in new energy electrode coatings is a critical determinant of battery performance characteristics. This study presents a non-destructive inspection methodology employing terahertz time-domain spectroscopy (THz-TDS) to achieve high-precision coating thickness measurement in lithium iron phosphate (LFP) battery manufacturing. Industrial THz-TDS [...] Read more.
Precision thickness control in new energy electrode coatings is a critical determinant of battery performance characteristics. This study presents a non-destructive inspection methodology employing terahertz time-domain spectroscopy (THz-TDS) to achieve high-precision coating thickness measurement in lithium iron phosphate (LFP) battery manufacturing. Industrial THz-TDS systems mostly adopt fixed threshold filtering or Fourier filtering, making it disssssfficult to balance noise suppression and signal fidelity. The developed approach integrates three key technological advancements. Firstly, the refractive index of the material is determined through multi-peak amplitude analysis, achieving an error rate control within 1%. Secondly, a hybrid signal processing algorithm is applied, combining an optimized Savitzky–Golay filter for high-frequency noise suppression with an enhanced sinc function wavelet threshold technique for signal fidelity improvement. Thirdly, the time-of-flight method enables real-time online measurement of coating thickness under atmospheric conditions. Experimental validation demonstrates effective thickness measurement across a 35–425 μm range, achieving a 17.62% range extension and a 2.13% improvement in accuracy compared to conventional non-filtered methods. The integrated system offers a robust quality control solution for next-generation battery production lines. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Figure 1

24 pages, 1766 KB  
Article
An Analysis of Arterial Pulse Wave Time Features and Pulse Wave Velocity Calculations Based on Radial Electrical Bioimpedance Waveforms in Patients Scheduled for Coronary Catheterization
by Kristina Lotamõis, Tiina Uuetoa, Andrei Krivošei, Paul Annus, Margus Metshein, Marek Rist, Sulev Margus, Mart Min and Gert Tamberg
J. Cardiovasc. Dev. Dis. 2025, 12(7), 237; https://doi.org/10.3390/jcdd12070237 - 20 Jun 2025
Viewed by 672
Abstract
The monitoring of peripheral electrical bioimpedance (EBI) variations is a promising method that has the potential to replace invasive or burdensome techniques for cardiovascular measurements. Segmental or continuous recording of peripheral pulse waves can serve as a basis for calculating prognostic markers like [...] Read more.
The monitoring of peripheral electrical bioimpedance (EBI) variations is a promising method that has the potential to replace invasive or burdensome techniques for cardiovascular measurements. Segmental or continuous recording of peripheral pulse waves can serve as a basis for calculating prognostic markers like pulse wave velocity (PWV) or include parameters such as pulse transit time (PTT) or pulse arrival time (PAT) for noninvasive blood pressure (BP) estimation, as well as potentially novel cardiovascular risk indicators. However, several technical, analytical, and interpretative aspects need to be resolved before the EBI method can be adopted in clinical practice. Our goal was to investigate and improve the application of EBI, executing its comparison with other cardiovascular assessment methods in patients hospitalized for coronary catheterization procedures. Methods: We analyzed data from 44 non-acute patients aged 45–74 years who were hospitalized for coronary catheterization at East Tallinn Central Hospital between 2020 and 2021. The radial EBI and electrocardiogram (ECG) were measured simultaneously with central and contralateral pressure curves. The Savitzky–Golay filter was used for signal smoothing. The Hankel matrix decomposer was applied for the extraction of cardiac waveforms from multi-component signals. After extracting the cardiac component, a period detection algorithm was applied to EBI and blood pressure curves. Results: Seven points of interest were detected on the pressure and EBI curves, and four with good representativeness were selected for further analysis. The Spearman correlation coefficient was low for all but the central and distal pressure curve systolic upstroke time points. A high positive correlation was found between PWV measured both invasively and with EBI. The median value of complimentary pulse wave velocity (CPWV), a parameter proposed in the paper, was significantly lower in patients with normal coronaries compared to patients with any stage of coronary disease. Conclusions: With regard to wearable devices, the EBI-derived PAT can serve as a substrate for PWV calculations and cardiovascular risk assessment, although these data require further confirmation. Full article
Show Figures

Graphical abstract

27 pages, 6188 KB  
Article
Unraveling the Scale Dependency of SIF-Based Phenology: Amplified Trends and Climate Responses
by Xiufeng Chen, Yanbin Yuan, Tao Xiong, Sicong He and Heng Dong
Remote Sens. 2025, 17(12), 2059; https://doi.org/10.3390/rs17122059 - 15 Jun 2025
Viewed by 732
Abstract
Plant phenology is closely related to plant function, ecosystem services, and climate balance. Solar-induced chlorophyll fluorescence (SIF) offers new perspectives on plant phenology at regional and global scales. However, the effect of SIF products at different scales on phenology extraction is still unclear. [...] Read more.
Plant phenology is closely related to plant function, ecosystem services, and climate balance. Solar-induced chlorophyll fluorescence (SIF) offers new perspectives on plant phenology at regional and global scales. However, the effect of SIF products at different scales on phenology extraction is still unclear. Understanding of the mechanisms underlying phenological responses to environmental factors remains incomplete. Therefore, in this study, two phenological metrics for the Start of Growing Season (SOS) and the End of Growing Season (EOS) were extracted from the phenology of deciduous forests in the middle and high latitudes of the Northern Hemisphere, utilizing SIF products at scales of 1 km, 5 km, and 50 km, and applying the Savitzky-Golay filtering method along with the dynamic threshold method. Our results showed that the 1-km resolution SIF had a significant advantage over the 5-km and 50-km resolution SIFs in terms of consistency with the extracted phenology results from the Gross Primary Productivity (GPP) sites, with mean absolute errors (MAEs) of 4.48 and 15.49 days for SOS and EOS, respectively. For the 5-km resolution SIF, the MAEs for the same phenological metrics were 9.2 and 21.07 days. For the 50-km resolution SIF, the MAEs were 58.94 and 42.73 days. Meanwhile, this study analyzed the trends of phenology utilizing the three scales of SIF products and found a general trend of advancement. The coarser spatial resolution of the SIF data made the trend of advancement more obvious. Using SHapley Additive exPlanations (SHAP) analysis, we investigated the phenological responses to environmental factors at different scales. We found that SOS/EOS were mainly regulated by soil and air temperature, whereas the scale effect on this analysis’ results was not significant. This study has implications for optimizing the use of data, understanding ecosystem changes, predicting vegetation dynamics under global change, and developing adaptive management strategies. Full article
(This article belongs to the Section Environmental Remote Sensing)
Show Figures

Figure 1

21 pages, 12445 KB  
Article
Parkinson’s Disease Detection via Bilateral Gait Camera Sensor Fusion Using CMSA-Net and Implementation on Portable Device
by Jinxuan Wang, Hua Huo, Wei Liu, Changwei Zhao, Shilu Kang and Lan Ma
Sensors 2025, 25(12), 3715; https://doi.org/10.3390/s25123715 - 13 Jun 2025
Viewed by 610
Abstract
The annual increase in the incidence of Parkinson’s disease (PD) underscores the critical need for effective detection methods and devices. Gait video features based on camera sensors, as a crucial biomarker for PD, are well-suited for detection and show promise for the development [...] Read more.
The annual increase in the incidence of Parkinson’s disease (PD) underscores the critical need for effective detection methods and devices. Gait video features based on camera sensors, as a crucial biomarker for PD, are well-suited for detection and show promise for the development of portable devices. Consequently, we developed a single-step segmentation method based on Savitzky–Golay (SG) filtering and a sliding window peak selection function, along with a Cross-Attention Fusion with Mamba-2 and Self-Attention Network (CMSA-Net). Additionally, we introduced a loss function based on Maximum Mean Discrepancy (MMD) to further enhance the fusion process. We evaluated our method on a dual-view gait video dataset that we collected in collaboration with a hospital, comprising 304 healthy control (HC) samples and 84 PD samples, achieving an accuracy of 89.10% and an F1-score of 81.11%, thereby attaining the best detection performance compared with other methods. Based on these methodologies, we designed a simple and user-friendly portable PD detection device. The device is equipped with various operating modes—including single-view, dual-view, and prior information correction—which enable it to adapt to diverse environments, such as residential and elder care settings, thereby demonstrating strong practical applicability. Full article
(This article belongs to the Section Sensing and Imaging)
Show Figures

Figure 1

23 pages, 19370 KB  
Article
Unraveling Phenological Dynamics: Exploring Early Springs, Late Autumns, and Climate Drivers Across Different Vegetation Types in Northeast China
by Jiayu Liu, Haifeng Zou, Yinghui Zhao, Xiaochun Wang and Zhen Zhen
Remote Sens. 2025, 17(11), 1853; https://doi.org/10.3390/rs17111853 - 26 May 2025
Cited by 1 | Viewed by 617
Abstract
Understanding plant phenology dynamics is essential for ecosystem health monitoring and climate change impact assessment. This study generated 4-day, 500 m land surface phenology (LSP) in Northeast China (NEC) from 2001 to 2021 using interpolated and Savitzky–Golay filtered kernel normalized difference vegetation index [...] Read more.
Understanding plant phenology dynamics is essential for ecosystem health monitoring and climate change impact assessment. This study generated 4-day, 500 m land surface phenology (LSP) in Northeast China (NEC) from 2001 to 2021 using interpolated and Savitzky–Golay filtered kernel normalized difference vegetation index (kNDVI) derived from MODIS. Spatial patterns, trends, and climate responses of phenology were analyzed across ecoregions and vegetation. Marked spatial heterogeneity was noted: forests showed the earliest start of season (SOS, ~125th day) and longest growing season (LOS, ~130 days), while shrublands had the latest SOS (~150th day) and shortest LOS (~96 days). Grasslands exhibited strong east–west gradients in SOS and EOS. From 2001 to 2021, SOS of natural vegetations in NEC advanced by 0.23 d/a, EOS delayed by 0.12 d/a, and LOS extended by 0.38 d/a. Coniferous forests, especially evergreen needle-leaved forests, exhibited opposite trends due to cold-resistant traits and an earlier EOS to avoid leaf cell freezing. Temperature was the main driver of SOS, with spring and winter temperatures influencing 48.8% and 24.2% of the NEC region, respectively. Precipitation mainly affected EOS, especially in grasslands. Drought strongly influences SOS, while precipitation affects EOS. This study integrates high-resolution phenology utilizing the kNDVI with various seasonal climate drivers, offering novel insights into vegetation-specific and ecoregion-based phenological dynamics in the context of climate change. Full article
(This article belongs to the Section Ecological Remote Sensing)
Show Figures

Graphical abstract

24 pages, 5616 KB  
Article
A Method for Predicting Coal-Mine Methane Outburst Volumes and Detecting Anomalies Based on a Fusion Model of Second-Order Decomposition and ETO-TSMixer
by Qiangyu Zheng, Cunmiao Li, Bo Yang, Zhenguo Yan and Zhixin Qin
Sensors 2025, 25(11), 3314; https://doi.org/10.3390/s25113314 - 24 May 2025
Viewed by 787
Abstract
The ability to predict the volume of methane outbursts in coal mines is critical for the prevention of methane outburst accidents and the assurance of coal-mine safety. This paper’s central argument is that existing prediction models are limited in several ways. These limitations [...] Read more.
The ability to predict the volume of methane outbursts in coal mines is critical for the prevention of methane outburst accidents and the assurance of coal-mine safety. This paper’s central argument is that existing prediction models are limited in several ways. These limitations include the complexity of the models and their poor ability to generalize. The paper proposes a methane outburst volume-prediction and early-warning method. This method is based on a secondary decomposition and improved TSMixer model. First, data smoothing is achieved through an STL decomposition–adaptive Savitzky–Golay filtering–reconstruction framework to reduce temporal complexity. Second, a CEEMDAN-Kmeans-VMD secondary decomposition strategy is adopted to integrate intrinsic mode functions (IMFs) using K-means clustering. Variational mode decomposition (VMD) parameters are optimized via a novel exponential triangular optimization (ETO) algorithm to extract multi-scale features. Additionally, a refined TSMixer model is proposed, integrating reversible instance normalization (RevIn) to bolster the model’s generalizability and employing ETO to fine-tune model hyperparameters. This approach enables multi-component joint modeling, thereby averting error accumulation. The experimental results demonstrate that the enhanced model attains RMSE, MAE, and R2 values of 0.0151, 0.0117, and 0.9878 on the test set, respectively, thereby exhibiting a substantial improvement in performance when compared to the reference models. Furthermore, we propose an anomaly detection framework based on STL decomposition and dual lonely forests. This framework improves sensitivity to sudden feature changes and detection robustness through a weighted fusion strategy of global trends and residual anomalies. This method provides efficient and reliable dynamic early-warning technology support for coal-mine gas disaster prevention and control, demonstrating significant engineering application value. Full article
(This article belongs to the Section Industrial Sensors)
Show Figures

Figure 1

19 pages, 7639 KB  
Article
Triple Filtering of Terrain Conductivity Data for Precise Tracing of Underground Utilities
by Mohamed Rashed, Abdulaziz Alqarawy, Nassir Al-Amri, Riyadh Halawani, Milad Masoud and Maged El Osta
Geosciences 2025, 15(5), 179; https://doi.org/10.3390/geosciences15050179 - 15 May 2025
Cited by 1 | Viewed by 390
Abstract
Terrain conductivity meters (TCMs) are efficient devices for different sorts of subsurface investigations, including detecting and tracing buried utilities, such as metallic pipes and cables. However, data collected using TCMs are usually ambiguous and hard to interpret. This ambiguity originates from the complex [...] Read more.
Terrain conductivity meters (TCMs) are efficient devices for different sorts of subsurface investigations, including detecting and tracing buried utilities, such as metallic pipes and cables. However, data collected using TCMs are usually ambiguous and hard to interpret. This ambiguity originates from the complex shape of apparent conductivity anomalies, the influence of irrelevant conductive bodies, and the interference of random noise with the collected data. To overcome this ambiguity and produce more interpretable apparent conductivity maps, a three-step filtering routine is proposed and tested using different real datasets. The filtering routine begins with applying a Savitzky–Golay (SG) filter to reduce the effect of random noise. This is followed by a modified rolling ball (MRB) filter to convert the complex M-shape of the anomaly into a single trough pointing to the underground utility. Finally, a virtual resolution enhancement (VRE) filter is applied to enhance the pinpointing apex of the trough. The application of the proposed filtering routine to apparent conductivity data collected using different terrain conductivity meters over different utilities in different urban environments shows a significant improvement of the data and an effective ability to reveal masked underground utilities. The proposed triple filtering routine can be a starting point for a new generation of TCMs with a built-in operation mode for instantaneous delineation and characterization of underground utilities in real time. Full article
(This article belongs to the Section Geophysics)
Show Figures

Figure 1

Back to TopTop