Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (3,716)

Search Parameters:
Keywords = STIR

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 888 KB  
Article
Effects of Different Centrifugation Parameters on Equilibrium Solubility Measurements
by Rita Szolláth, Vivien Bárdos, Marcell Stifter-Mursits, Réka Angi and Károly Mazák
Methods Protoc. 2025, 8(5), 116; https://doi.org/10.3390/mps8050116 - 2 Oct 2025
Abstract
The bioavailability of a drug is closely linked to its solubility, making its early determination essential in drug development. The saturation shake-flask (SSF) method is the gold standard protocol for this, which includes a phase separation step—either by sedimentation, filtration, or centrifugation. This [...] Read more.
The bioavailability of a drug is closely linked to its solubility, making its early determination essential in drug development. The saturation shake-flask (SSF) method is the gold standard protocol for this, which includes a phase separation step—either by sedimentation, filtration, or centrifugation. This step is critical, as it can directly influence the accuracy of the results. This study investigated the impact of centrifugation parameters—time and rotation speed—on solubility measurements. Additionally, we compared two sample preparation protocols: continuous stirring for 24 h versus 6 h of stirring followed by 18 h of sedimentation before centrifugation. Four model compounds were tested at three pH values using Britton–Robinson buffers. Centrifugation was conducted for 5, 10, or 20 min at either 5000 or 10,000 rpm. Results showed that pre-sedimented samples yielded solubility values closer to sedimentation-only references, while continuous stirring often led to overestimated values, particularly at higher speeds and longer durations. One such example was papaverine hydrochloride, that showed solubility values 60–70% higher than the reference after centrifugation at 10,000 rpm for 20 min without prior sedimentation. Lower standard deviations were observed with shorter, slower centrifugation, with 5 min and 5000 rpm yielding results closest to the reference values. Full article
(This article belongs to the Section Biochemical and Chemical Analysis & Synthesis)
Show Figures

Graphical abstract

22 pages, 11764 KB  
Article
Microstructure Evolution and Mechanical Performance of AA6061-7075 Heterogeneous Composite Fabricated via Additive Friction Stir Deposition
by Qian Qiao, Hongchang Qian, Zhong Li, Dawei Guo, Chi Tat Kwok, Shufei Jiang, Dawei Zhang and Lam Mou Tam
Alloys 2025, 4(4), 21; https://doi.org/10.3390/alloys4040021 - 30 Sep 2025
Abstract
An AA6061-7075 composite with a heterogeneous structure was fabricated via the additive friction stir deposition (AFSD) method, and in situ processing data were monitored during the manufacturing process. The results show that the cross-section of the composite subjected to AFSD exhibits a lower [...] Read more.
An AA6061-7075 composite with a heterogeneous structure was fabricated via the additive friction stir deposition (AFSD) method, and in situ processing data were monitored during the manufacturing process. The results show that the cross-section of the composite subjected to AFSD exhibits a lower degree of plastic deformation behavior compared to the surface and side of the composite, owing to serious heat accumulation during the layer-by-layer stacking process. The denser, heterogeneous structure, consisting of finer (softer) and coarser (harder) grains, which correspond to AA6061 and AA7075, was formed according to transmission electron microscopy (TEM) analysis. Furthermore, the obtained composite subjected to AFSD in this work presents outstanding mechanical properties compared to other as-fabricated AA6061/AA7075 depositions acquired by other additive manufacturing methods along the horizontal building direction, with the ultimate tensile strength (266 MPa) being 89% of that of AA6061-T6 and the elongation 1.1 times that of AA7075-T6. The findings provide useful guidelines for the in situ preparation of Al-based composites and offer ideas for manufacturing high-strength heterostructures for large-scale practical engineering applications. Full article
Show Figures

Figure 1

22 pages, 6902 KB  
Article
Hydrothermal Carbonization of Sugarcane Tip (Saccharum officinarum L.) for Pb (II) Removal: Synthesis, Characterization, and Adsorption Equilibrium
by Dulce Carolina Acosta-Pintor, Candy Carranza-Álvarez, Habacuc Lorenzo-Márquez, Cynthia Wong-Arguelles and Cuitláhuac Mojica-Mesinas
AppliedChem 2025, 5(4), 24; https://doi.org/10.3390/appliedchem5040024 - 29 Sep 2025
Abstract
Water contamination by heavy metals, particularly lead, derived from industrialization, climate change, and urbanization, represents a critical risk to human health and the environment. Several agricultural biomass residues have demonstrated efficacy as contaminant adsorbents. In this context, the study aimed to evaluate the [...] Read more.
Water contamination by heavy metals, particularly lead, derived from industrialization, climate change, and urbanization, represents a critical risk to human health and the environment. Several agricultural biomass residues have demonstrated efficacy as contaminant adsorbents. In this context, the study aimed to evaluate the potential of sugarcane tip (ST) waste biomass treated by hydrothermal carbonization (HTC) to produce hydrochar as an adsorbent material for Pb2+ in aqueous solutions. Samples were synthesized from the waste biomass at temperatures of 180 °C, 215 °C, and 250 °C, with a constant pressure of 6 MPa. Aqueous solutions of Pb2+ were prepared at concentrations of 10, 25, 50, 75, and 100 mg/L. Each solution was stirred at 1 g of hydrochar at 150 rpm, 25 °C, and pH 5 for 15 to 120 min. The solutions were filtered and stored at 4 °C for flame atomic absorption spectrophotometry analysis. In all cases, equilibrium was reached rapidly—within 15 min or less—as indicated by the stabilization of qt values over time. At an initial concentration of 100 mg L−1, the highest equilibrium uptake was observed for the hydrochar synthesized at ST HTC 180 °C (4.90 mg g−1), followed by 4.58 mg g−1 and 4.52 mg g−1 for ST HTC 215 °C and ST HTC 250 °C, respectively. For the ST HTC 180 °C, the Sips model provided the best correlation with the experimental data, exhibiting a high maximum capacity (qmax = 240.8 mg g−1; Ks = 0.007; n = 1.09; R2 = 0.975), which reinforces the heterogeneous nature of the material’s surface. Hydrothermal synthesis increased the amount of acidic active sites in the ST HTC 180 °C material from 1.3950 to 3.8543 meq g−1, which may influence the electrical charge of the Pb2+ adsorption process. HTC-treated sugarcane tip biomass represents a promising alternative for the synthesis of adsorbent materials, contributing to water remediation and promoting the circular economy by sustainably utilizing agricultural waste. Full article
Show Figures

Figure 1

22 pages, 9045 KB  
Article
Weld Power, Heat Generation and Microstructure in FSW and SFSW of 11Cr-1.6W-1.6Ni Martensitic Stainless Steel: The Impact of Tool Rotation Rate
by Mohamed Ragab, Naser Alsaleh, Mohamed M. El-Sayed Seleman, Mohamed M. Z. Ahmed, Sabbah Ataya and Yousef G. Y. Elshaghoul
Crystals 2025, 15(10), 845; https://doi.org/10.3390/cryst15100845 - 28 Sep 2025
Abstract
Friction stir welding (FSW) is a leading technique for joining high-strength steel. This study investigates the relationship between weld power, heat generation (HG), cooling medium, and parent austenite grain (PAG) size during both FSW and submerged FSW (SFSW) processes on 11Cr-1.6W-1.6Ni Martensitic Stainless [...] Read more.
Friction stir welding (FSW) is a leading technique for joining high-strength steel. This study investigates the relationship between weld power, heat generation (HG), cooling medium, and parent austenite grain (PAG) size during both FSW and submerged FSW (SFSW) processes on 11Cr-1.6W-1.6Ni Martensitic Stainless Steel. Weld power and HG were determined by measuring plunge force and tool torque at various tool rotation rates (350–550 rpm). Additionally, the PAG size and microstructural phases in the base metal (BM), thermo-mechanically affected zone (TMAZ), and stir zone (SZ) were examined using scanning electron microscopy (SEM), electron backscattered diffraction (EBSD), and X-ray diffraction (XRD). The results indicated that the SFSW of martensitic steel required a plunge force twice that of the FSW process, along with greater weld power. The heat generated during SFSW was 130% higher than in FSW at 550 rpm. Despite this, the peak temperatures in the SZ were lower in SFSW as a result of the surrounding water’s high heat absorption. This difference in thermal behavior significantly affected the microstructure. While FSW resulted in a complete phase transformation to fine PAG, SFSW showed only minimal or partial transformation and a higher strain rate. Consequently, the SZ and TMAZ in SFSW exhibited a higher hardness than in FSW. Full article
Show Figures

Figure 1

24 pages, 7627 KB  
Article
The Influence and Optimization of Mixing Characteristics of Feed Based on Response Surface Methodology of Stirring Paddle Structure
by Hongxiang Xu, Jiang Guo, Song Xu and Kunlei Wang
Processes 2025, 13(10), 3101; https://doi.org/10.3390/pr13103101 - 28 Sep 2025
Abstract
Suboptimal feed mixer designs cause nutrient heterogeneity and energy waste through inadequate turbulent flow. This study systematically examines how stirrer blade geometry governs turbulent kinetic energy and thermal homogeneity to enhance mixing efficiency. Initial single-factor testing established baseline parameters: 60° blade angle, 65 [...] Read more.
Suboptimal feed mixer designs cause nutrient heterogeneity and energy waste through inadequate turbulent flow. This study systematically examines how stirrer blade geometry governs turbulent kinetic energy and thermal homogeneity to enhance mixing efficiency. Initial single-factor testing established baseline parameters: 60° blade angle, 65 mm upper port diameter, 60 mm lower port diameter, and six blades. Response surface methodology optimized four critical variables: blade angle, upper/lower port sizes, and blade count, with each variable tested at three levels. The optimal configuration (39° blade angle, 54.9 mm upper port, 52.5 mm lower port, five blades) increased turbulent kinetic energy by 67% and elevated average fluid temperature by 7% versus conventional designs. These enhancements improve mixing uniformity by 23% and reduce energy consumption by 18%, establishing a validated design framework for efficient agricultural mixer engineering. Full article
Show Figures

Graphical abstract

14 pages, 3677 KB  
Article
The Effect of ZrO2 Addition and Thermal Treatment on the Microstructure and Mechanical Properties of Aluminum Metal Matrix Composites (AMMCs)
by Isai Rosales-Cadena, Reyna Anahi Falcon-Castrejon, Rene Guardian-Tapia, Jose Luis Roman-Zubillaga, Sergio Ruben Gonzaga-Segura, Lazaro Abdiel Falcon-Franco, Victor Hugo Martinez-Landeros and Rumualdo Servin
Materials 2025, 18(19), 4507; https://doi.org/10.3390/ma18194507 - 28 Sep 2025
Abstract
Aluminum metal matrix composites (AMMCs) were obtained using the stir-casting method, adding 0.15, 0.25, and 0.50 in vol.% of ZrO2. Microstructural observations made using scanning electron microscopy (SEM) indicated that oxide addition modified grain size. X-ray diffraction analyses revealed that mainly [...] Read more.
Aluminum metal matrix composites (AMMCs) were obtained using the stir-casting method, adding 0.15, 0.25, and 0.50 in vol.% of ZrO2. Microstructural observations made using scanning electron microscopy (SEM) indicated that oxide addition modified grain size. X-ray diffraction analyses revealed that mainly ZrAl3 and Al2O3 phases had formed. Hardness evaluation indicated a maximum value of 63 HV for the zirconia-reinforced samples, representing an increase of approximately 70% compared with pure aluminum. This hardness increase was mainly attributed to the zirconia distribution in the aluminum matrix promoting lattice distortion, which promoted the inhibition of dislocation mobility. Wear tests indicated that the samples with 0.50 vol.% of ZrO2 added presented the lowest wear rate because of the hardness they acquired. The results are discussed considering composite strengthening due to ZrO2 addition and the thermal treatment applied (cooling rate). Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Figure 1

15 pages, 1303 KB  
Article
Wastewater Sludge Dewatering Enhancement by Flocculant Selection and Electrochemical Pretreatment
by Binbin Yang, Yingxue Sun, Quanze Liu, Xiaobo Wang and Xiaolei Zhang
Separations 2025, 12(10), 264; https://doi.org/10.3390/separations12100264 - 27 Sep 2025
Abstract
In wastewater treatment, sludge is generated during both the primary and secondary sedimentation processes. With the growing volume of wastewater, sludge production has increased accordingly. Prior to subsequent treatment or disposal, sludge dewatering is a critical step to reduce volume and improve treatment [...] Read more.
In wastewater treatment, sludge is generated during both the primary and secondary sedimentation processes. With the growing volume of wastewater, sludge production has increased accordingly. Prior to subsequent treatment or disposal, sludge dewatering is a critical step to reduce volume and improve treatment efficiency. The primary challenge lies in the removal of bonded water within the extracellular polymeric substances (EPSs) and the microorganism cells. In this study, electrochemical pretreatment was employed to improve sludge dewatering performance. The optimal electrochemical treatment was achieved at an electrode spacing of 2 cm, a stirring speed of 500 rpm, and an electrolyte (1 M calcium chloride, CaCl2) dosage of 3 mL for 50 min. Subsequently, flocculation was conducted. Compared with the widely used polyacrylamide (PAM), polydimethyldiallylammonium chloride (PDMDAAC) achieved superior dewatering performance with less than half the dosage required. Under the combined treatment, the final moisture content of the sludge cake was reduced to 53.2%. These findings indicate that the combination of Fe/Ti-based electrochemical pretreatment and flocculation process is a promising and efficient strategy for deep sludge dewatering. Full article
(This article belongs to the Topic Advances in Separation Engineering)
Show Figures

Figure 1

35 pages, 9383 KB  
Review
Advances in Integrated Extraction of Valuable Components from Ti-Bearing Slag
by Chenhui Li, Peipei Du, Jiansong Zhang, Suxing Zhao, Minglei Gao, Qianhua Wang, Tielei Tian, Lanjie Li and Yue Long
Metals 2025, 15(10), 1080; https://doi.org/10.3390/met15101080 - 27 Sep 2025
Abstract
Ti-bearing blast furnace slag (TBS), a byproduct of vanadium–titanium magnetite smelting, serves as an important secondary resource for titanium recovery. However, the complex mineralogical composition and finely dispersed nature of titanium in TBS present significant challenges for efficient extraction. This review systematically examines [...] Read more.
Ti-bearing blast furnace slag (TBS), a byproduct of vanadium–titanium magnetite smelting, serves as an important secondary resource for titanium recovery. However, the complex mineralogical composition and finely dispersed nature of titanium in TBS present significant challenges for efficient extraction. This review systematically examines four major titanium extraction routes: hydrometallurgical leaching, pyrometallurgical smelting, molten salt electrolysis, and selective precipitation, focusing on their limitations and recent improvements. For instance, conventional acid leaching suffers from acid mist release, a colloidal formation that hinders titanium recovery, and waste acid pollution. The adoption of concentrated sulfuric acid roasting activation effectively suppresses acid mist emission and prevents colloidal generation. Pyrometallurgical approaches are hampered by high energy consumption and substantial carbon emissions, which can be alleviated through the use of gaseous reductants to enhance reaction efficiency and reduce environmental impact. Molten electrolysis faces issues such as polarization and undesirable dendritic deposition; these are mitigated by employing liquid metal cathodes integrated with vacuum distillation to achieve high-purity titanium products. Selective precipitation struggles with strict crystallization conditions and low separation efficiency, though advanced techniques like supergravity separation show improved extraction performance. We propose an integrated technical strategy termed “Online conditioning driven by waste heat-mineral phase reconstruction-directional crystallization-optimized liberation.” This approach utilizes the inherent waste heat of slag combined with electromagnetic stirring to enhance homogeneity and promote efficient titanium recovery, offering a sustainable and scalable solution for industrial TBS treatment. Full article
Show Figures

Graphical abstract

21 pages, 9262 KB  
Article
Experimental Investigation on Melting Heat Transfer Characteristics of Microencapsulated Phase Change Material Slurry Under Stirring
by Zhaohao Xu, Minjie Wu and Yu Xu
Aerospace 2025, 12(10), 868; https://doi.org/10.3390/aerospace12100868 - 26 Sep 2025
Abstract
As avionics advance, heat dissipation becomes more challenging. Microencapsulated phase change material slurry (MPCMS), with its latent heat transfer properties, offers a potential solution. However, the low thermal conductivity of microencapsulated phase change material (MPCM) limits heat transfer rates, and most studies focus [...] Read more.
As avionics advance, heat dissipation becomes more challenging. Microencapsulated phase change material slurry (MPCMS), with its latent heat transfer properties, offers a potential solution. However, the low thermal conductivity of microencapsulated phase change material (MPCM) limits heat transfer rates, and most studies focus on improving conductivity, with little attention given to convective enhancement. This study prepared MPCMS with an MPCM mass fraction (Wm) of 10% and 20%, investigating melting heat transfer under mechanical stirring at 0–800 RPM and heat fluxes of 8.5–17.0 kW/m2. Stirring significantly alters MPCMS heat transfer behavior. As rotational speed increases, both wall-to-slurry and internal temperature differences decrease. Stirring extends the time at which the heating wall temperature (Tw) stays below a threshold. For example, at Wm = 10% MPCM and 8.50 kW/m2, increasing speed from 0 to 800 RPM raises the holding time below 70 °C by 169.6%. The effect of MPCM mass fraction on heat transfer under stirring is complex: at 0 RPM, 0% > 10% > 20%; at 400 RPM, 10% > 0% > 20%; and at 800 RPM, 10% > 20% > 0%. This is because as Wm increases, the latent heat and volume expansion coefficients of MPCMS rise, promoting heat transfer, while viscosity and thermal conductivity decrease, hindering it. At 0 RPM, the net effect is negative even at Wm = 10%. Stirring enhances internal convection and significantly improves heat transfer. At 400 RPM, heat transfer is positive at Wm = 10% but still negative at Wm = 20%. At 800 RPM, both Wm levels show positive effects, with slightly better performance at Wm = 10%. In addition, at the same heat flux, higher speeds maintain Tw below a threshold longer. Overall, stirring improves MPCMS cooling performance, offering an effective means of convective enhancement for avionics thermal management. Full article
Show Figures

Figure 1

20 pages, 5255 KB  
Article
Development and Characterization of Chitosan Microparticles via Ionic Gelation for Drug Delivery
by Zahra Rajabimashhadi, Annalia Masi, Sonia Bagheri, Claudio Mele, Gianpiero Colangelo, Federica Paladini and Mauro Pollini
Polymers 2025, 17(19), 2603; https://doi.org/10.3390/polym17192603 - 26 Sep 2025
Abstract
This study explores the formulation of chitosan microparticles through ionic gelation and presents detailed physicochemical characterization, release studies, and the utility and potential uses for drug delivery. Three formulations were prepared under rate-controlled conditions (stirring at 800 rpm and pH maintained at 4.6) [...] Read more.
This study explores the formulation of chitosan microparticles through ionic gelation and presents detailed physicochemical characterization, release studies, and the utility and potential uses for drug delivery. Three formulations were prepared under rate-controlled conditions (stirring at 800 rpm and pH maintained at 4.6) with and without stabilizers to examine the effects of formulation parameters on particle morphology and structural stability. To determine different structural and chemical characteristics, Attenuated Total Reflectance Fourier-Transform Infrared spectroscopy (ATR–FTIR), Scanning Electron Microscopy (SEM), and dynamic light scattering (DLS) were utilized, which confirmed that the particles formed and assessed size distribution and structural integrity. Atomic force microscopy (AFM) was used to quantify surface roughness and potential nanomechanical differences that may derive from the use of different modifiers. Coformulation of bovine serum albumin (BSA) permitted assessment of encapsulation efficiency and drug release capacity. Based on in vitro release evidence, the protein released at a different rate, and the dispersion of formulations under physiological conditions (PBS, pH 7.4, 37 °C) confirmed the differences in stability between formulations. The tunable physical characteristics, mild fabrication conditions, and controlled drug release demonstrated that the chitosan particles could have useful relevance as a substrate for localized drug delivery and as a bioactive scaffold for tissue regenerative purposes. Full article
(This article belongs to the Special Issue Advanced Polymeric Biomaterials for Drug Delivery Applications)
Show Figures

Figure 1

19 pages, 52316 KB  
Article
Microstructural Evolution and Mechanical Properties of Hybrid Al6060/TiB2–MWCNT Composites Fabricated by Ultrasonically Assisted Stir Casting and Radial-Shear Rolling
by Maxat Abishkenov, Ilgar Tavshanov, Nikita Lutchenko, Kairosh Nogayev, Zhassulan Ashkeyev and Siman Kulidan
Appl. Sci. 2025, 15(19), 10427; https://doi.org/10.3390/app151910427 - 25 Sep 2025
Abstract
This work presents a comprehensive study on the fabrication, microstructural evolution, and mechanical performance of hybrid aluminum matrix composites based on Al6060 alloy reinforced with ~2 wt.% TiB2 and ~1 wt.% multi-walled carbon nanotubes (MWCNTs). The composites were produced via ultrasonically assisted [...] Read more.
This work presents a comprehensive study on the fabrication, microstructural evolution, and mechanical performance of hybrid aluminum matrix composites based on Al6060 alloy reinforced with ~2 wt.% TiB2 and ~1 wt.% multi-walled carbon nanotubes (MWCNTs). The composites were produced via ultrasonically assisted stir casting followed by radial-shear rolling (RSR). The combined processing route enabled a uniform distribution of reinforcing phases and significant grain refinement in the aluminum matrix. SEM, EDS, XRD, and EBSD analyses revealed that TiB2 particles acted as nucleation centers and grain boundary pinning agents, while MWCNTs provided a network structure that suppressed agglomeration of ceramic particles and enhanced interfacial load transfer. As a result, hybrid composites demonstrated a submicron-grained structure with reduced anisotropy. Mechanical testing confirmed that yield strength (YS) and ultimate tensile strength (UTS) increased by 67% and 38%, respectively, in the cast state compared to unreinforced Al6060, while after RSR processing, YS exceeded 115 MPa and UTS reached 164 MPa, with elongation preserved at 14%. Microhardness increased from 50.2 HV0.2 (base alloy) to 82.2 HV0.2 (hybrid composite after RSR). The combination of ultrasonic melt treatment and RSR thus provided a synergistic effect, enabling simultaneous strengthening and ductility retention. These findings highlight the potential of hybrid Al6060/TiB2–MWCNT composites for structural applications requiring a balance of strength, ductility, and wear resistance. Full article
Show Figures

Figure 1

16 pages, 1260 KB  
Article
Trichoderma harzianum Enzyme Production in Stirred Solid-State Bioreactors as a Strategy for Valorizing Water Hyacinth
by Nohemi López-Ramírez, Ernesto Favela-Torres, Tania Volke-Sepúlveda and Fernando Méndez-González
Waste 2025, 3(4), 30; https://doi.org/10.3390/waste3040030 - 25 Sep 2025
Abstract
Water hyacinth is an invasive weed that can valorize through the production of hydrolytic enzymes via solid-state culture. This study explores the application of Trichoderma harzianum in producing xylanases and endoglucanases on water hyacinth beds. Laboratory-scale packed-bed column bioreactors (PBCBs) with a capacity [...] Read more.
Water hyacinth is an invasive weed that can valorize through the production of hydrolytic enzymes via solid-state culture. This study explores the application of Trichoderma harzianum in producing xylanases and endoglucanases on water hyacinth beds. Laboratory-scale packed-bed column bioreactors (PBCBs) with a capacity of 8 grams of dry mass (gdm) were used to evaluate the effects of temperature (28–36 °C) and initial moisture content (65–80%) on microbial growth and enzyme production. High yields of biomass and enzymes were produced at 30 °C. Moreover, xylanase activity was enhanced in cultures with a moisture content of 65% (~71.24 U/gdm), and endoglucanase activity at 75–80% moisture (~20.13 U/gdm). The operational conditions identified for xylanase production were applied to 6 L bench-scale cross-flow internally stirred bioreactors, packed to 40% capacity with 450 gdm. Two stirring regimes were tested: intermittent and continuous. The results showed that continuous stirring promotes both microbial growth and xylanase activity. In fact, xylanase activity in continuous stirring conditions was comparable to that achieved in PBCBs. Consequently, continuous stirring enables a 56-fold increase in bioreactor capacity without compromising xylanase production. The approaches developed in this study can support the design of large-scale bioprocesses for the valorization of water hyacinth. Full article
Show Figures

Graphical abstract

15 pages, 4158 KB  
Article
Synthesis of Nanoscale Antimony Powder Using Aluminum as a Reducing Agent: Characterization and Sintering Microstructure
by Ehab AlShamaileh, Bashar Lahlouh, Ahmed N. AL-Masri and Iessa Sabbe Moosa
Coatings 2025, 15(10), 1118; https://doi.org/10.3390/coatings15101118 - 25 Sep 2025
Abstract
Antimony (Sb) is a key material in high-capacity potassium and sodium batteries, particularly in the fabrication of Sb–carbon composites. In this work, nanoscale Sb powder was synthesized directly from SbCl3, using Al powder as a reducing agent. The reduction process was [...] Read more.
Antimony (Sb) is a key material in high-capacity potassium and sodium batteries, particularly in the fabrication of Sb–carbon composites. In this work, nanoscale Sb powder was synthesized directly from SbCl3, using Al powder as a reducing agent. The reduction process was carried out by gradually adding Al powder to an SbCl3—acetone solution under continuous cooling and stirring, owing to the highly exothermic nature of the reaction. Acetone was found to be an effective solvent, enabling the formation of Sb nanoparticles with an average particle size of 50 nm and a crystallite size of 25 nm. The purity of the produced powder was nearly 100%, as confirmed via SEM/EDS and XRD analyses. XRD patterns of both commercial and synthesized Sb powders displayed identical and ideal Sb reflections, while FTIR spectra further confirmed their structural similarity. Sintering studies revealed relative densities of 99% for pellets prepared from both commercial and synthesized powders. SEM/EDS examinations of the raw powders and sintered pellets provided complementary microstructural and compositional insights. Overall, this study demonstrates the feasibility of producing high-purity nanoscale Sb powder through a simple, single-step redox process that is both cost-effective and efficient. Full article
(This article belongs to the Section Surface Characterization, Deposition and Modification)
Show Figures

Figure 1

17 pages, 5018 KB  
Systematic Review
Clinical, Radiological, and Pathological Features of Intraosseous Hibernoma: A Systematic Review of Case Reports and Case Series
by Jawad Albashri, Ahmed Albashri, Muhannad Alhamrani, Abdulrahman Hassan, Hisham Shamah, Rayan Alhefzi, Najim Z. Alshahrani, Mohammed R. Algethami, Louis-Romée Le Nail and Ramy Samargandi
Curr. Oncol. 2025, 32(10), 535; https://doi.org/10.3390/curroncol32100535 - 24 Sep 2025
Viewed by 15
Abstract
Intraosseous hibernoma (IOH) is a rare benign tumor composed of brown adipose tissue within the bone, frequently mimicking metastatic lesions and leading to diagnostic challenges. This systematic review aimed to consolidate and analyze all published IOH cases to improve recognition and inform management. [...] Read more.
Intraosseous hibernoma (IOH) is a rare benign tumor composed of brown adipose tissue within the bone, frequently mimicking metastatic lesions and leading to diagnostic challenges. This systematic review aimed to consolidate and analyze all published IOH cases to improve recognition and inform management. A comprehensive literature search was conducted in PubMed, Web of Science, Scopus, Google Scholar, and the Cochrane Library from database inception to March 2025. Studies were eligible for inclusion if they reported histopathologically confirmed cases of intraosseous hibernoma (IOH) in human patients. A total of 62 cases from 30 studies were included. The mean age was 59.2 years, with a female predominance. Lesions were most frequently located in the pelvis and spine and were typically identified incidentally during cancer staging or imaging performed for unrelated indications. Imaging often revealed sclerotic patterns on computed tomography (CT), hyperintense signals on magnetic resonance imaging (MRI) T2-weighted and short tau inversion recovery (STIR) sequences, and mild to moderate uptake on 18F-fluorodeoxyglucose positron emission tomography/computed tomography (18F-FDG PET/CT). Immunohistochemistry consistently showed S100 protein positivity. Most patients underwent biopsy and were managed conservatively, with no cases of malignant transformation reported. IOH is a benign entity with distinctive radiologic and immunohistochemical features that may mimic malignancy. Awareness of its presentation can reduce misdiagnosis and unnecessary interventions, supporting biopsy-based confirmation and conservative management in most cases. Full article
Show Figures

Figure 1

24 pages, 8076 KB  
Article
Ammonia Nitrogen Removal and MAP Crystal Morphology Affected by Reaction Conditions in High-Concentration Wastewater
by Suying Zhou, Ying Xie, Hui Gao, Xiangxin Xue, Haofei Zhou, Mengge Dong, Xiaohui Sun and Xiangsheng Chen
Sustainability 2025, 17(19), 8550; https://doi.org/10.3390/su17198550 - 23 Sep 2025
Viewed by 113
Abstract
The MAP (magnesium ammonium phosphate) method is a convenient and efficient approach for the recovery of ammonia nitrogen from high-concentration wastewater, with the resulting product being suitable for use as a slow-release fertilizer. The crystal morphology of MAP is a key indicator of [...] Read more.
The MAP (magnesium ammonium phosphate) method is a convenient and efficient approach for the recovery of ammonia nitrogen from high-concentration wastewater, with the resulting product being suitable for use as a slow-release fertilizer. The crystal morphology of MAP is a key indicator of its appropriateness for this application, yet there is a lack of systematic research on this topic. This paper explores the relationship between the efficiency of ammonia nitrogen removal, morphological characteristics of the product, and reaction conditions (i.e., pH, reaction temperature and time, phosphorus–nitrogen (n(P):n(N)) and magnesium–nitrogen mole ratios (n(Mg):n(N)), and stirring speed). The results show that the influence of the reaction parameters on the nitrogen removal efficiency decreases in this order: the pH > n(Mg):n(N) > the stirring speed > n(P):n(N). The highest ammonia nitrogen removal efficiency (97.97%) was achieved under the following optimal conditions: pH 9.5, n(Mg):n(N) = 1.3, n(P):n(N) = 1.0, a stirring speed of 150 rpm, a reaction time of 30 min, and a temperature of 30 °C. The obtained products were MAP crystals with different morphologies, which gradually transitioned from X- to needle-shaped with a decreasing crystal size as the values of the pH, n(Mg):n(N), stirring speed, and reaction time increased. These findings are relevant for both the effective removal of ammonia nitrogen from high-concentration wastewater and the control of MAP crystal morphology. Full article
(This article belongs to the Section Sustainable Water Management)
Show Figures

Graphical abstract

Back to TopTop