Microstructure Evolution and Mechanical Performance of AA6061-7075 Heterogeneous Composite Fabricated via Additive Friction Stir Deposition
Abstract
1. Introduction
2. Experimental Methods
3. Results and Discussion
3.1. In Situ Monitoring Data
3.2. Characterization of the AFSDed-Composite
3.3. Texture Evolution
3.4. Heterogeneous Structure Induced in the AFSDed-Composite
3.5. Mechanical Properties
3.6. Analysis of Increased Performance
4. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Heinz, A.; Haszler, A.; Keidel, C.; Moldenhauer, S.; Benedictus, R.; Miller, W.S. Recent development in aluminium alloys for aerospace applications. Mater. Sci. Eng. A 2000, 280, 102–107. [Google Scholar] [CrossRef]
- Zhou, Y.; Lin, X.; Kang, N.; Huang, W.; Wang, J.; Wang, Z. Influence of travel speed on microstructure and mechanical properties of wire+arc additively manufactured 2219 aluminum alloy. J. Manuf. Sci. Technol. 2020, 37, 143–153. [Google Scholar] [CrossRef]
- Li, S.S.; Yue, X.; Li, Q.Y.; Peng, H.L.; Dong, B.X.; Liu, T.S.; Jiang, Q.C. Development and applications of aluminum alloys for aerospace industry. J. Mater. Res. Technol. 2023, 27, 944–983. [Google Scholar] [CrossRef]
- Shao, J.; Samaei, A.; Xue, T.; Xie, X.; Guo, S.; Cao, J.; Gan, Z. Additive friction stir deposition of metallic materials: Process, structure and properties. Mater. Des. 2023, 234, 112356. [Google Scholar] [CrossRef]
- Mukhopadhyay, A.; Saha, P.; Singh, P.K.; Verma, M. Development and analysis of a powder bed friction stir (PBFS) additive manufacturing process for aluminum alloys: A study on friction-stirring pitch (ω/v) and print location. Addit. Manuf. 2023, 72, 103618. [Google Scholar] [CrossRef]
- Jha, K.K.; Imam, M. Microstructure evolution and local mechanical properties of friction stir additively manufactured (FSAM) AA5083/AA6061/AA7075 gradient composite. Mater. Sci. Eng. A 2024, 903, 146668. [Google Scholar] [CrossRef]
- Elshaghoul, Y.G.; El-Sayed Seleman, M.M.; Bakkar, A.; Elnekhaily, S.A.; Albaijan, I.; Ahmed, M.M.; Abdel-Samad, A.; Reda, R. Additive friction stir deposition of AA7075-T6 alloy: Impact of process parameters on the microstructures and properties of the continuously deposited multilayered parts. Appl. Sci. 2023, 13, 10255. [Google Scholar] [CrossRef]
- Hartley, W.D.; Garcia, D.; Yoder, J.K.; Poczatek, E.; Forsmark, J.H.; Luckey, S.G.; Hang, Z.Y. Solid-state cladding on thin automotive sheet metals enabled by additive friction stir deposition. J. Manuf. Sci. Technol. 2021, 291, 117045. [Google Scholar] [CrossRef]
- Tang, W.; Yang, X.; Luo, T.; Wang, R.; Gu, C. Precipitation behavior and strengthening-toughening mechanism of additive friction stir-deposited Al-Mg-Si-Cu alloy. Addit. Manuf. 2023, 76, 103785. [Google Scholar] [CrossRef]
- Cai, Y.; Tan, M.J.; Shen, G.J.; Su, H.Q. Microstructure and heterogeneous nucleation phenomena in cast SiC particles reinforced magnesium composite. Mater. Sci. Eng. A 2000, 282, 232–239. [Google Scholar] [CrossRef]
- Thakur, A.; Bandhu, D.; Peshwe, D.R.; Mahajan, Y.Y.; Saxena, K.K.; Eldin, S.M. Appearance of reinforcement, interfacial product, heterogeneous nucleant and grain refiner of MgAl2O4 in aluminium metal matrix composites. J. Manuf. Sci. Technol. 2023, 26, 267–302. [Google Scholar] [CrossRef]
- Wu, X.; Zhu, Y. Heterogeneous materials: A new class of materials with unprecedented mechanical properties. Mater. Res. Lett. 2017, 5, 527–532. [Google Scholar] [CrossRef]
- Zan, Y.N.; Zhou, Y.T.; Liu, Z.Y.; Ma, G.N.; Wang, D.; Wang, Q.Z.; Ma, Z.Y. Enhancing strength and ductility synergy through heterogeneous structure design in nanoscale Al2O3 particulate reinforced Al composites. Mater. Des. 2019, 166, 107629. [Google Scholar] [CrossRef]
- Bagheri, B.; Abbasi, M. Development of AZ91/SiC surface composite by FSP: Effect of vibration and process parameters on microstructure and mechanical characteristics. Adv. Manuf. 2024, 8, 82–96. [Google Scholar] [CrossRef]
- Abbasi, M.; Givi, M.; Ramazani, A. Friction stir vibration processing: A new method to improve the microstructure and mechanical properties of Al5052/SiC surface nanocomposite layer. Int. J. Adv. Manuf. Tech. 2019, 100, 1463–1473. [Google Scholar] [CrossRef]
- Ma, S.; Sun, Y.; Wang, H.; Lü, X.; Qian, M.; Ma, Y.; Liu, B. Effect of a minor Sr modifier on the microstructures and mechanical properties of 7075 T6 Al alloys. Metals 2017, 7, 13. [Google Scholar] [CrossRef]
- Qiao, Q.; Liu, Q.; Pu, J.; Shi, H.; Li, W.; Zhu, Z.; Tam, L.M. A comparative study of machine learning in predicting the mechanical properties of the deposited AA6061 alloys via additive friction stir deposition. MGE Adv. 2024, 2, e31. [Google Scholar] [CrossRef]
- Qiao, Q.; Zhou, M.; Gong, X.; Jiang, S.; Lin, Y.; Wang, H.; Tam, L.M. In-Situ monitoring of additive friction stir deposition of AA6061: Effect of layer thickness on the microstructure and mechanical properties. Addit. Manuf. 2024, 84, 104141. [Google Scholar] [CrossRef]
- ISO 10993-12:2002; Biological Evaluation of Medical Devices—Part 12: Specimen Preparation and Reference Materials. ISO: Geneva, Switzerland, 2004.
- ASTM E8/E8M-22; Standard Test Methods for Tension Testing of Metallic Materials. ASTM: West Conshohocken, PA, USA, 2022.
- Bahemmat, P.; Haghpanahi, M.; Givi, M.K.B.; Seighalani, K.R. Study on dissimilar friction stir butt welding of AA7075-O and AA2024-T4 considering the manufacturing limitation. Int. J. Adv. Manuf. Tech. 2012, 59, 939–953. [Google Scholar] [CrossRef]
- Shetty, P.; Manavendra, G. Experimental evaluation of specific heat carrying capacity of fly-ash reinforced aluminium 6061 composite. IRJET 2015, 2, 774–780. [Google Scholar]
- Patil, S.M.; Krishna, K.M.; Sharma, S.; Joshi, S.S.; Radhakrishnan, M.; Banerjee, R.; Dahotre, N.B. Thermo-mechanical process variables driven microstructure evolution during additive friction stir deposition of IN625. Addit. Manuf. 2024, 80, 103958. [Google Scholar] [CrossRef]
- Ghadimi, H.; Ding, H.; Emanet, S.; Talachian, M.; Cox, C.; Eller, M.; Guo, S. Hardness distribution of Al2050 parts fabricated using additive friction stir deposition. Materials 2023, 16, 1278. [Google Scholar] [CrossRef]
- Xie, R.; Liang, T.; Shi, Y.; Liu, H. Revealing the bonding mechanisms between deposit and substrate of the friction rolling additive manufactured hybrid aluminum alloys. Addit. Manuf. 2022, 56, 102942. [Google Scholar] [CrossRef]
- Perry, M.E.; Rauch, H.A.; Griffiths, R.J.; Garcia, D.; Sietins, J.M.; Zhu, Y.; Hang, Z.Y. Tracing plastic deformation path and concurrent grain refinement during additive friction stir deposition. Materialia 2021, 18, 101159. [Google Scholar] [CrossRef]
- Jain, V.K.S.; Yazar, K.U.; Muthukumaran, S. Development and characterization of Al5083-CNTs/SiC composites via friction stir processing. J. Alloys Compd. 2019, 798, 82–92. [Google Scholar] [CrossRef]
- Jin, Y.; Wang, T.; Liu, T.; Yang, T.; Dowden, S.; Neogi, A.; Dahotre, N.B. Gradient process parameter optimization in additive friction stir deposition of aluminum alloys. Int. J. Mach. Tool. Manuf. 2023, 195, 104113. [Google Scholar] [CrossRef]
- McNelley, T.R.; Swaminathan, S.; Su, J.Q. Recrystallization mechanisms during friction stir welding/processing of aluminum alloys. Scr. Mater. 2008, 58, 349–354. [Google Scholar] [CrossRef]
- Lu, J.; Song, Y.; Zhou, P.; Xu, H.; Liu, Y.; Hua, L. Effect of thermal strain on the microstructure evolution and post-aging mechanical properties of Al-Zn-Mg-Cu alloy in simulating hot stamping process. Mater. Sci. Eng. A 2023, 880, 145316. [Google Scholar] [CrossRef]
- Fonda, R.W.; Bingert, J.F. Texture variations in an aluminum friction stir weld. Scr. Mater. 2007, 57, 1052–1055. [Google Scholar] [CrossRef]
- Khorrami, M.S.; Kazeminezhad, M.; Miyashita, Y.; Kokabi, A.H. The correlation of stir zone texture development with base metal texture and tool-induced deformation in friction stir processing of severely deformed aluminum. Metall. Mater. Trans. A 2017, 48, 188–197. [Google Scholar] [CrossRef]
- Nadammal, N.; Kailas, S.V.; Szpunar, J.; Suwas, S. Microstructure and crystallographic texture evolution during the friction-stir processing of a precipitation-hardenable aluminum alloy. JOM 2015, 67, 1014–1021. [Google Scholar] [CrossRef]
- Bai, X.; Wang, Y.; Lv, H.; Zhang, H.; Zhou, X. Improving Comprehensive Properties of Wire Arc Additively Manufactured Al-4043 Alloy by Bilateral Friction Stir Post-processing. J. Mater. Eng. Perform. 2023, 34, 208–220. [Google Scholar] [CrossRef]
- Kalsar, R.; Overman, N.; Darsell, J.; Escobar, J.; Li, L.; Wang, T.; Joshi, V.V. Material flow behavior and microstructural refinement of AA6061 alloy during friction extrusion. Mater. Charact. 2024, 208, 113636. [Google Scholar] [CrossRef]
- Barrett, C.D.; Imandoust, A.; Oppedal, A.L.; Inal, K.; Tschopp, M.A.; El Kadiri, H. Effect of grain boundaries on texture formation during dynamic recrystallization of magnesium alloys. Acta Mater. 2017, 128, 270–283. [Google Scholar] [CrossRef]
- Basu, I.; Al-Samman, T. Twin recrystallization mechanisms in magnesium-rare earth alloys. Acta Mater. 2015, 96, 111–132. [Google Scholar] [CrossRef]
- Garg, A.; Bhattacharya, A. Effect of tool size on AA6061-T6 double-sided friction stir welds. MDPC 2021, 3, 259. [Google Scholar] [CrossRef]
- Mahto, R.P.; Rout, M.; Pal, S.K. Mechanism of microstructure evolution and grain growth in friction stir welding of AA6061-T6 and AISI304 in air and water media. Mater. Chem. Phys. 2021, 273, 125081. [Google Scholar] [CrossRef]
- Ma, E.; Zhu, T. Towards strength-ductility synergy through the design of heterogeneous nanostructures in metals. Mater. Today 2017, 20, 323–331. [Google Scholar] [CrossRef]
- Abdollahzadeh, A.; Vanani, B.B.; Koohdar, H.; Jafarian, H.R. Influence of variation smbient system on dissimilar friction stir welding of Al alloy to Mg alloy by the addition of nanoparticles and interlayer. Met. Mater. Int. 2024, 30, 2830–2852. [Google Scholar] [CrossRef]
- Abdollahzadeh, A.; Vanani, B.B.; Morghmaleki, A.M.; Moghaddam, A.O.; Eivani, A.R. Advancements in joining Al-Zn-TiC-Mg composites using friction stir welding process: Influence of traverse speed. J. Compos. Mater. 2024, 58, 2757–2779. [Google Scholar] [CrossRef]
- Shin, S.; Zhu, C.; Zhang, C.; Vecchio, K.S. Extraordinary strength-ductility synergy in a heterogeneous-structured β-Ti alloy through microstructural optimization. Mater. Res. Lett. 2019, 7, 467–473. [Google Scholar] [CrossRef]
- Sharifi, A.; Khodabakhshi, F.; Kashani-bozorg, S.F.; Gerlich, A.P. Microstructure and mechanical properties in additive manufacturing by friction surfacing of AA6061 alloy. Mater. Sci. Eng. A 2023, 884, 145520. [Google Scholar] [CrossRef]
- Ghiasvand, A.; Yavari, M.M.; Tomków, J.; Guerrero, J.W.G.; Kheradmandan, H.; Dorofeev, A.; Derazkola, H.A. Investigation of mechanical and microstructural properties of welded specimens of AA6061-T6 alloy with friction stir welding and parallel-friction stir welding methods. Materials 2021, 14, 6003. [Google Scholar] [CrossRef]
- Zheng, R.; Hao, X.; Yuan, Y.; Wang, Z.; Ameyama, K.; Ma, C. Effect of highvolume fraction of B4C particles on the microstructure and mechanical properties of aluminum alloy-based composites. J. Alloys Compd. 2013, 576, 291–298. [Google Scholar] [CrossRef]
- Zhu, Z.; Han, J.; Gao, C.; Liu, M.; Song, J.; Wang, Z.; Li, H. Microstructures and mechanical properties of Al-Li 2198-T8 alloys processed by two different severe plastic deformation methods: A comparative study. Mater. Sci. Eng. A 2017, 681, 65–73. [Google Scholar] [CrossRef]
- Starink, M.J.; Cao, L.F.; Rometsch, P.A. A model for the thermodynamics of and strengthening due to co-clusters in Al-Mg-Si-based alloys. Acta Mater. 2012, 60, 4194–4207. [Google Scholar] [CrossRef]
- Abdollahzadeh, A.; Vanani, B.B.; Koohdar, H.; Babereh, A.A.; Yeganeh, M. Multi-pass friction stir welding of Al-TiC-Zn-Mg composite: Microstructure and mechanical characteristics. Metallogr. Microstruc. 2024, 13, 601–623. [Google Scholar] [CrossRef]
- Chen, G.; Wu, K.; Wang, Y.; Sun, Y.; Wang, X.; Zhu, Z.; Hu, F. Quantitative study on the correlation between microstructure and mechanical properties of additive friction stir deposited 6061-T6 Al-Mg-Si alloy. J. Mater. Res. Tech. 2023, 25, 6725–6736. [Google Scholar] [CrossRef]
- Williams, J.C.; Starke, E.A., Jr. Progress in structural materials for aerospace systems. Acta Mater. 2003, 51, 5775–5799. [Google Scholar] [CrossRef]
- Elatharasan, G.; Kumar, V.S.S. Corrosion analysis of friction stir-welded aa 7075 aluminium alloy. Stroj. Vestn.-J. Mech. Eng. 2014, 60, 29–34. [Google Scholar] [CrossRef]
- Vanani, B.B.; Abdollahzadeh, A. Fabrication of reinforced Al-Mg composite by TiC particles via FSW: Microstructure and tribology study. J. Mater. Res. Technol. 2024, 30, 6787–6801. [Google Scholar] [CrossRef]
- Zhu, Y.; Ameyama, K.; Anderson, P.M.; Beyerlein, I.J.; Gao, H.; Kim, H.S.; Wu, X. Heterostructured materials: Superior properties from hetero-zone interaction. Mater. Res. Lett. 2012, 9, 1–31. [Google Scholar] [CrossRef]
- Dao, M.; Lu, L.; Asaro, R.J.; De Hosson, J.T.M.; Ma, E. Toward a quantitative understanding of mechanical behavior of nanocrystalline metals. Acta Mater. 2007, 55, 4041–4065. [Google Scholar] [CrossRef]
- Zhu, D.; Mobasher, B.; Rajan, S.D.; Peralta, P. Characterization of dynamic tensile testing using aluminum alloy 6061-T6 at intermediate strain rates. J. Eng. Mech. 2011, 137, 669–679. [Google Scholar] [CrossRef]
- Tang, W.; Yang, X.; Tian, C. Influence of rotation speed on interfacial bonding mechanism and mechanical performance of aluminum 6061 fabricated by multilayer friction-based additive manufacturing. Int. J. Adv. Manuf. Technol. 2023, 126, 4119–4133. [Google Scholar] [CrossRef]
- Chaudhary, B.; Jain, N.K.; Murugesan, J.; Sathiaraj, D. Study of microstructure evolution and mechanical properties in friction stir based additive multi-layer manufacturing of Al 6061 alloy: Effect of feedstock material form and heat treatment. Mater. Today Commun. 2023, 34, 105156. [Google Scholar] [CrossRef]
- Uddin, S.Z.; Murr, L.E.; Terrazas, C.A.; Morton, P.; Roberson, D.A.; Wicker, R.B. Processing and characterization of crack-free aluminum 6061 using high-temperature heating in laser powder bed fusion additive manufacturing. Addit. Manuf. 2018, 22, 405–415. [Google Scholar] [CrossRef]
- Sridharan, N.; Gussev, M.; Seibert, R.; Parish, C.; Norfolk, M.; Terrani, K.; Babu, S.S. Rationalization of anisotropic mechanical properties of Al-6061 fabricated using ultrasonic additive manufacturing. Acta Mater. 2016, 117, 228–237. [Google Scholar] [CrossRef]
- Wang, F.; Wei, J.; Wu, G.; Qie, M.; He, C. Microstructural modification and enhanced mechanical properties of wire-arc additive manufactured 6061 aluminum alloy via interlayer friction stir processing. Mater. Lett. 2023, 342, 134312. [Google Scholar] [CrossRef]
- Rutherford, B.A.; Avery, D.Z.; Phillips, B.J.; Rao, H.M.; Doherty, K.J.; Allison, P.G.; Jordon, J.B. Effect of thermomechanical processing on fatigue behavior in solid-state additive manufacturing of Al-Mg-Si alloy. Metals 2020, 10, 947. [Google Scholar] [CrossRef]
- Cahalan, L.P.; Williams, M.B.; Brewer, L.N.; McDonnell, M.M.; Kelly, M.R.; Lalonde, A.D.; Jordon, J.B. Parametric investigation of parallel deposition passes on the microstructure and mechanical properties of 7075 aluminum alloy processed with additive friction stir deposition. Appl. Sci. 2024, 14, 457. [Google Scholar] [CrossRef]
- Williams, M.B.; Cahalan, L.P.; Lopez, J.J.; Perez-Andrade, L.I.; Leonard, R.T., III; McDonnell, M.M.; Kelly, M.R.; Lalonde, A.D.; Brewer, L.N.; Jordon, J.B.; et al. Dynamic behavior characterization of aluminum alloy 7020 manufactured using the additive friction stir deposition process. JOM 2024, 75, 4868–4880. [Google Scholar] [CrossRef]
- He, C.; Li, Y.; Wei, J.; Zhang, Z.; Tian, N.; Qin, G.; Zhao, X. Enhancing the mechanical performance of Al-Zn-Mg alloy builds fabricated via underwater friction stir additive manufacturing and post-processing aging. J. Mater. Sci. Technol. 2022, 108, 26–36. [Google Scholar] [CrossRef]
- He, X.; Li, G.; Huang, Y.; Huang, Z.; Wang, T.; Li, X.; Zhu, Q. In situ design of ultrafine-grained 7075 Al alloy with laser powder bed fusion. Mater. Lett. 2023, 344, 134401. [Google Scholar] [CrossRef]
- Guo, X.; Xue, P.; Li, H.; Xu, R.; Ni, D.; Pan, Z.; Ma, Z. Microstructures and properties of wire-arc additively manufactured ultra-high strength aluminum alloy under different heat treatments. J. Mater. Sci. Technol. 2023, 24, 1663–1678. [Google Scholar] [CrossRef]
- Fu, R.; Liang, Y.; Han, Q.; Guo, Y.; Lei, H.; Liu, C. Strengthening and fracturing mechanisms of laser-directed energy deposited Al-7075 alloy. Mater. Sci. Eng. A 2023, 881, 145433. [Google Scholar] [CrossRef]
- Xu, J.Y.; Zhang, P.C.; Guo, R.; Liu, L.X.; Kang, Y.P.; Liu, Z.; Liu, L. Toughening the additively manufactured Al alloys via manipulating microstructural heterogeneity. J. Alloys Compd. 2023, 945, 169322. [Google Scholar] [CrossRef]
- Wu, T.; Tan, Z.; Wang, L.; Liang, Z.; Wang, D. Microstructure and mechanical properties of Al-Mg-Cu alloy fabricated by heterogeneous twin-wire indirect arc additive manufacturing. Trans. China Weld. Inst. 2023, 44, 64–70. [Google Scholar]
- Gain, A.K.; Zhang, L. Tribological behavior of eutectic Al-12Si alloy manufactured by selective laser melting. Wear 2023, 522, 204679. [Google Scholar] [CrossRef]
Al | Mg | Cu | Si | Fe | Mn | Zn | Cr | Ti | |
---|---|---|---|---|---|---|---|---|---|
AA6061-T6 * | 97.17 | 0.96 | 0.23 | 0.59 | 0.30 | 0.52 | 0.19 | 0.03 | 0.01 |
AA7075-T6 | 89.58 | 2.53 | 1.62 | 0.10 | 0.28 | 0.13 | 5.48 | 0.22 | 0.06 |
Composite feedstock | 89.64 | 2.52 | 1.61 | 0.13 | 0.32 | 0.16 | 5.33 | 0.23 | 0.06 |
wt% | Al | Mg | Cu | Si | Zn |
---|---|---|---|---|---|
7075 zone | 93.75 | 2.08 | 3.13 | 0.52 | 0.52 |
6061 zone | 93.86 | 3.54 | 1.37 | 1.07 | 0.17 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qiao, Q.; Qian, H.; Li, Z.; Guo, D.; Kwok, C.T.; Jiang, S.; Zhang, D.; Tam, L.M. Microstructure Evolution and Mechanical Performance of AA6061-7075 Heterogeneous Composite Fabricated via Additive Friction Stir Deposition. Alloys 2025, 4, 21. https://doi.org/10.3390/alloys4040021
Qiao Q, Qian H, Li Z, Guo D, Kwok CT, Jiang S, Zhang D, Tam LM. Microstructure Evolution and Mechanical Performance of AA6061-7075 Heterogeneous Composite Fabricated via Additive Friction Stir Deposition. Alloys. 2025; 4(4):21. https://doi.org/10.3390/alloys4040021
Chicago/Turabian StyleQiao, Qian, Hongchang Qian, Zhong Li, Dawei Guo, Chi Tat Kwok, Shufei Jiang, Dawei Zhang, and Lam Mou Tam. 2025. "Microstructure Evolution and Mechanical Performance of AA6061-7075 Heterogeneous Composite Fabricated via Additive Friction Stir Deposition" Alloys 4, no. 4: 21. https://doi.org/10.3390/alloys4040021
APA StyleQiao, Q., Qian, H., Li, Z., Guo, D., Kwok, C. T., Jiang, S., Zhang, D., & Tam, L. M. (2025). Microstructure Evolution and Mechanical Performance of AA6061-7075 Heterogeneous Composite Fabricated via Additive Friction Stir Deposition. Alloys, 4(4), 21. https://doi.org/10.3390/alloys4040021