Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (58)

Search Parameters:
Keywords = SR protein kinases

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 4121 KB  
Article
TRIC-A Loss Sensitizes the Heart to β-Adrenergic Stress and Drives Cardiomyocyte Death and Fibrosis
by Ki Ho Park, Daiju Yamazaki, Xinyu Zhou, Shinji Komazaki, Chengzhu Zhao, Miyuki Nishi, Jingsong Zhou, Hiroshi Takeshima and Jianjie Ma
Biomolecules 2026, 16(2), 181; https://doi.org/10.3390/biom16020181 - 23 Jan 2026
Viewed by 492
Abstract
Trimeric intracellular cation channel A (TRIC-A) provides counter-ion support for sarcoplasmic reticulum (SR) Ca2+ release, yet its physiological role in the intact heart under stress remains poorly defined. Here, we demonstrate that TRIC-A is essential for maintaining balanced SR Ca2+ release, [...] Read more.
Trimeric intracellular cation channel A (TRIC-A) provides counter-ion support for sarcoplasmic reticulum (SR) Ca2+ release, yet its physiological role in the intact heart under stress remains poorly defined. Here, we demonstrate that TRIC-A is essential for maintaining balanced SR Ca2+ release, mitochondrial integrity, and cardiac resilience during β-adrenergic stimulation. Tric-a−/− cardiomyocytes exhibited Ca2+ transients evoked by electrical stimuli and exaggerated isoproterenol (ISO)-evoked Ca2+ release, consistent with SR Ca2+ overload. These defects were accompanied by selective upregulation of protein kinase A (PKA)-dependent phosphorylation of ryanodine receptor 2 (RyR2) (S2808) and phospholamban (PLB) (S16). Acute ISO challenge induced mitochondrial swelling, cristae disruption, and Evans Blue Dye uptake, and elevated circulating troponin T in Tric-a−/− hearts, hallmarks of necrosis-like cell death. Mitochondrial Ca2+ uptake inhibition with Ru360 markedly reduced membrane injury, establishing mitochondrial Ca2+ overload as the proximal trigger of cardiac cell death. With sustained β-adrenergic stimulation by ISO, Tric-a−/− hearts developed extensive interstitial and perivascular fibrosis without exaggerated hypertrophy. Cardiac fibroblasts lacked TRIC-A expression and displayed normal Ca2+ signaling and activation, indicating that fibrosis arises secondarily from cardiomyocyte injury rather than fibroblast-intrinsic abnormalities. These findings identify TRIC-A as a critical regulator of SR-mitochondrial Ca2+ coupling and a key molecular safeguard that protects the heart from catecholamine-induced injury and maladaptive remodeling. Full article
(This article belongs to the Special Issue Mitochondrial Calcium Signaling in Cardiac Health and Disease)
Show Figures

Figure 1

13 pages, 2011 KB  
Article
Knockdown of Serine–Arginine Protein Kinase 3 Impairs Sperm Development in Spodoptera frugiperda
by Yilin Song, Yi Zhou, Ruoke Wang, Bing Zhang, Zhongwei Li, Xiangyu Liu and Dandan Li
Insects 2025, 16(12), 1256; https://doi.org/10.3390/insects16121256 - 11 Dec 2025
Viewed by 486
Abstract
Lepidopterans produce two distinct types of sperm: nucleated eupyrene sperm for fertilization and anucleate apyrene sperm for auxiliary functions. However, the mechanisms underlying sperm dimorphism in fall armyworm Spodoptera frugiperda remain poorly understood. Serine–Arginine Protein Kinases (SRPKs) are a class of kinases that [...] Read more.
Lepidopterans produce two distinct types of sperm: nucleated eupyrene sperm for fertilization and anucleate apyrene sperm for auxiliary functions. However, the mechanisms underlying sperm dimorphism in fall armyworm Spodoptera frugiperda remain poorly understood. Serine–Arginine Protein Kinases (SRPKs) are a class of kinases that catalyze the phosphorylation of SR proteins, but recent studies have shown that SRPK is critical for chromatin remodeling of sperm in mammals. Whether SRPK is involved in lepidopteran spermatogenesis is completely unknown. Here, we describe the entire process of elongation and maturation of both eupyrene and apyrene sperm bundles in S. frugiperda. The eupyrene sperm bundles elongated from the 3-day-old 6th-instar larvae, transiently forming a bowling-pin shape prior to cytoplasmic extrusion and finally maturing into structures with a fan-shaped head and slender tail after eclosion. In contrast, apyrene sperm bundles originated at 2-day-old pupae, where they underwent immediate nuclear extrusion and elongated into bundles that later coiled into a mature, spindle-shaped spool conformation in male adults. Larval knockdown of Serine–Arginine Protein Kinase 3 (SRPK3) significantly reduced apyrene sperm ratio and induced precocious maturation of eupyrene sperm, accompanied by acrosomal malformations. Furthermore, we observed a marked downregulation of cytoskeletal genes—including α-tubulin and cofilin—in non-testicular tissues and β-actin in testicular tissues. In contrast, the expression of dynamin and Lasp was upregulated in the testis and non-testicular tissues, respectively. Our results indicate that SRPK3 regulates both apyrene sperm differentiation and eupyrene sperm maturation by modulating the expression of cytoskeletal components, which provides new clues for lepidopteran spermatogenesis. Full article
(This article belongs to the Section Insect Molecular Biology and Genomics)
Show Figures

Graphical abstract

36 pages, 7997 KB  
Article
The Cannabinoid CB1 Receptor Inverse Agonist/Antagonist SR141716A Activates the Adenylate Cyclase/PKA Signaling Pathway Among Other Intracellular Emetic Signals to Evoke Vomiting in Least Shrews (Cryptotis parva)
by Yina Sun, Louiza Belkacemi, Weixia Zhong, Zollie Daily and Nissar A. Darmani
Int. J. Mol. Sci. 2025, 26(20), 9884; https://doi.org/10.3390/ijms26209884 - 11 Oct 2025
Viewed by 864
Abstract
Intracellular emetic signals involved in the cannabinoid CB1 receptor inverse agonist/antagonist SR141716A were investigated. SR141716A (20 mg/kg, i.p.)-evoked vomiting occurred via both the central and peripheral mechanisms. This was accompanied by robust emesis-associated increases in the following: (i) c-fos- and [...] Read more.
Intracellular emetic signals involved in the cannabinoid CB1 receptor inverse agonist/antagonist SR141716A were investigated. SR141716A (20 mg/kg, i.p.)-evoked vomiting occurred via both the central and peripheral mechanisms. This was accompanied by robust emesis-associated increases in the following: (i) c-fos- and phospho-glycogen synthase kinase-3α/β (p-GSK-3αβ)-expression in the shrew’s dorsal vagal complex (DVC), (ii) phospho-extracellular signal-regulated kinase1/2 (p-ERK1/2) expression in both the DVC and jejunal enteric nervous system, and (iii) time-dependent upregulation of cAMP levels and phosphorylation of protein kinase A (PKA), protein kinase B (Akt), GSK-3α/β, ERK1/2, and protein kinase C αβII (PKCαβII) in the brainstem. SR141716A-evoked emetic parameters were attenuated by diverse inhibitors of the following: PKA, ERK1/2, GSK-3, phosphatidylinositol 3-kinase (PI3K)-Akt pathway, phospholipase C (PLC), PKC, Ca2+/calmodulin-dependent protein kinase II (CaMKII), L-type Ca2+ channel (LTCC), store-operated Ca2+ entry (SOCE), inositol trisphosphate receptor (IP3R), ryanodine receptor (RyRs), both 5-HT3-, and D2/3-receptor antagonists, and the transient receptor potential vanilloid 1 receptor (TRPV1R) agonist. SR141716A appears to evoke vomiting via inverse agonist activity involving emesis-associated kinases, including cAMP/PKA, ERK1/2, PI3K/Akt/GSK-3, PLC/PKCαβII, and CaMKII, which depend upon Ca2+ mobilization linking extracellular Ca2+ entry via plasma membrane Ca2+ channels (LTCC, SOCE, TRIPV1R) and intracellular Ca2+ release via IP3Rs and RyRs. The 5-HT3, NK1, and D2/3 receptors also contribute to SR141716A-mediated vomiting. Full article
(This article belongs to the Special Issue G Protein-Coupled Receptors)
Show Figures

Figure 1

12 pages, 1031 KB  
Article
Preoperative Activation of c-Src Kinase in Atrial Tissue in Patients Developing Postoperative Atrial Fibrillation
by Tomasz Andrzej Bonda, Magdalena Dziemidowicz, Tomasz Hirnle, Iwona Dmitruk, Izabela Bialuk and Maria Małgorzata Winnicka
Medicina 2025, 61(9), 1669; https://doi.org/10.3390/medicina61091669 - 15 Sep 2025
Viewed by 724
Abstract
Background and Objectives: Atrial fibrillation (AF) is a common complication of cardiac surgery. c-Src has been implicated in atrial remodeling in chronic AF, but its role in the early postoperative setting remains unclear. We, therefore, investigated whether baseline c-Src expression in atrial [...] Read more.
Background and Objectives: Atrial fibrillation (AF) is a common complication of cardiac surgery. c-Src has been implicated in atrial remodeling in chronic AF, but its role in the early postoperative setting remains unclear. We, therefore, investigated whether baseline c-Src expression in atrial tissue is associated with the subsequent development of postoperative AF (PoAF). The aim of the present work was the evaluation of atrial c-Src expression and activity in patients subjected to open heart surgery who were previously free from AF and to check if changes to the initial level of this protein predispose to the development of postoperative AF (PoAF). Materials and Methods: Forty-two patients without previous AF history we enrolled. Patients with an AF episode during postoperative in-hospital follow-up were assigned to the PoAF group, while the rest (in sinus rhythm—SR) constituted the control group. Samples of the right atrial appendage were harvested before the introduction of the extracorporeal circulation. The expression of c-Src and phospho-c-Src(Tyr416), as well as upstream regulators of c-Src kinase, STAT3, ERK1/2, PDGFRα, and PDGFRβ, was assessed using Western blot. Results: AF occurred in 14 subjects. Expression of c-Src and phospho-c-Src was significantly higher in the PoAF group than in the SR group (c-Src: 1.65×, p = 0.037, and phospho-c-Src: 2.75×, p = 0.003). In addition, in the right atrium of PoAF patients, there was significantly elevated expression of STAT3, ERK1/2, and PDGF receptors, which may facilitate activation of c-Src kinase in patients with PoAF. Conclusions: Our preliminary findings suggest that c-Src expression and activity may contribute to atrial vulnerability and could represent a molecular target for future therapeutic interventions to prevent PoAF. Full article
(This article belongs to the Section Cardiology)
Show Figures

Figure 1

21 pages, 3098 KB  
Article
Transcriptomic Identification of Long Noncoding RNAs Modulating MPK3/MPK6-Centered Immune Networks in Arabidopsis
by Tianjiao Wang, Kaifeng Zheng, Qinyue Min, Yihao Li, Xiuhua Xue, Wanjie Li and Shengcheng Han
Int. J. Mol. Sci. 2025, 26(17), 8331; https://doi.org/10.3390/ijms26178331 - 28 Aug 2025
Viewed by 991
Abstract
Mitogen-activated protein kinases 3 and 6 (MPK3/MPK6) are central to pattern-triggered immunity (PTI) and effector-triggered immunity (ETI) in Arabidopsis, yet the involvement of long noncoding RNAs (lncRNAs, >200 nt) in these pathways is poorly understood. Here, transcriptomic analyses were performed to compare lncRNA [...] Read more.
Mitogen-activated protein kinases 3 and 6 (MPK3/MPK6) are central to pattern-triggered immunity (PTI) and effector-triggered immunity (ETI) in Arabidopsis, yet the involvement of long noncoding RNAs (lncRNAs, >200 nt) in these pathways is poorly understood. Here, transcriptomic analyses were performed to compare lncRNA and protein-coding gene (PCG) expression profiles in wild-type (WT) and MPK3/MPK6-deficient (MPK6SR) Arabidopsis plants. These plants were inoculated with either Pseudomonas syringae pv. tomato (Pst) DC3000, which elicits both PTI and ETI, or its type III secretion-deficient mutant, Pst DC3000 hrcC, which induces only PTI. RNA sequencing (RNA-seq) analysis of 18 samples identified 1388 known and 70 novel lncRNAs, among which differentially expressed lncRNAs (DElncRNAs) involved in disease resistance were further identified. Using integrative analyses, including weighted gene co-expression network analysis (WGCNA), prediction of lncRNA cis-regulatory targets for PCGs, and validation via reverse transcription-quantitative PCR (RT-qPCR), three core lncRNA-mediated regulatory modules were identified: (i) MPK3/MPK6-dependent PTI and ETI, where lncRNAs amplify signals; (ii) MPK3/MPK6-dependent PTI, where lncRNAs fine-tune basal immunity; and (iii) MPK3/MPK6-independent PTI and ETI, where lncRNAs serve as a backup regulatory network. These modules form a multi-layered immune regulatory network via cis- and trans-regulation and further enable the identification of lncRNA-PCG pairs involved in both regulatory modes. This work enhances the understanding of the molecular mechanisms underlying plant innate immunity. Full article
(This article belongs to the Special Issue Plant Molecular Regulatory Networks and Stress Responses)
Show Figures

Graphical abstract

17 pages, 463 KB  
Review
PDE9A Promotes Calcium-Handling Dysfunction in Right Heart Failure via cGMP–PKG Pathway Suppression: A Mechanistic and Therapeutic Review
by Spencer Thatcher, Arbab Khalid, Abu-Bakr Ahmed, Randeep Gill and Ali Kia
Int. J. Mol. Sci. 2025, 26(13), 6361; https://doi.org/10.3390/ijms26136361 - 1 Jul 2025
Viewed by 1981
Abstract
Right heart failure (RHF) is a major cause of morbidity and mortality, often resulting from pulmonary arterial hypertension and characterized by impaired calcium (Ca2+) handling and maladaptive remodeling. Phosphodiesterase 9A (PDE9A), a cGMP-specific phosphodiesterase, has been proposed as a potential contributor [...] Read more.
Right heart failure (RHF) is a major cause of morbidity and mortality, often resulting from pulmonary arterial hypertension and characterized by impaired calcium (Ca2+) handling and maladaptive remodeling. Phosphodiesterase 9A (PDE9A), a cGMP-specific phosphodiesterase, has been proposed as a potential contributor to RHF pathogenesis by suppressing the cardioprotective cGMP–PKG signaling pathway—a conclusion largely extrapolated from left-sided heart failure models. This review examines existing evidence regarding PDE9A’s role in RHF, focusing on its effects on intracellular calcium cycling, fibrosis, hypertrophy, and contractile dysfunction. Data from preclinical models demonstrate that pathological stress upregulates PDE9A expression in cardiomyocytes, leading to diminished PKG activation, impaired SERCA2a function, RyR2 instability, and increased arrhythmogenic Ca2+ leak. Pharmacological or genetic inhibition of PDE9A restores cGMP signaling, improves calcium handling, attenuates hypertrophic and fibrotic remodeling, and enhances ventricular compliance. Early-phase clinical studies in heart failure populations suggest that PDE9A inhibitors are well tolerated and effectively augment cGMP levels, although dedicated trials in RHF are still needed. Overall, these findings indicate that targeting PDE9A may represent a promising therapeutic strategy to improve outcomes in RHF by directly addressing the molecular mechanisms underlying calcium mishandling and myocardial remodeling. Full article
(This article belongs to the Special Issue Editorial Board Members’ Collection Series: "Enzyme Inhibition")
Show Figures

Figure 1

17 pages, 3065 KB  
Article
In Vitro Study of Vitamin D Effects on Immune, Endothelial, and Vascular Smooth Muscle Cells in Chronic Kidney Disease
by Kajal Kamboj, Vivek Kumar and Ashok Kumar Yadav
Int. J. Mol. Sci. 2025, 26(9), 3967; https://doi.org/10.3390/ijms26093967 - 23 Apr 2025
Cited by 3 | Viewed by 1648
Abstract
Vitamin D has been shown to improve immunity as well as vascular function. We investigated the effect of cholecalciferol on T-cell phenotype in cultured peripheral blood mononuclear cells (PBMCs) from twenty vitamin D-deficient, non-diabetic chronic kidney disease (CKD) subjects. We also studied vitamin [...] Read more.
Vitamin D has been shown to improve immunity as well as vascular function. We investigated the effect of cholecalciferol on T-cell phenotype in cultured peripheral blood mononuclear cells (PBMCs) from twenty vitamin D-deficient, non-diabetic chronic kidney disease (CKD) subjects. We also studied vitamin D effects on endothelial and vascular function markers in human aortic endothelial cells (HAECs) and in human aortic smooth muscle cells (HASMCs), respectively. We studied endothelial nitric oxide synthase (eNOS), mitogen-activated protein kinase 38 (p38 Map kinase), protein kinase B (Akt), and nicotinamide adenine dinucleotide phosphate oxidase (NADPH oxidase) in HAECs and α-smooth muscle actin (α-SMA), smooth muscle calponin (SM-Calponin), smooth muscle myosin heavy chain (SM-MHC), and calcium-sensing receptor (CaSR) in HASMCs. Vitamin D receptors (VDRs) and CYP27B1 were studied in both cell types. In cultured PBMCs isolated from CKD subjects, the percentage of T helper 1(TH1) cells significantly decreased while that of T helper 2 (TH2) cells increased after cholecalciferol treatment. No significant change in intracellular and surface markers of T helper 17 (TH17) and T regulatory (Treg) cells was observed. In vitro treatment of HASMCs and HAECs with cholecalciferol led to significant and favorable alterations in mRNA expression of markers of vascular smooth muscle cells, i.e., α-SMA, SM-Calponin, and SM-MHC. Regarding endothelial cell markers, mRNA encoding eNOS, p38 Map kinase, protein kinase B (Akt), NADPH oxidase, VDR, and CYP27B1 were also significantly changed. Finally, the expression levels of the following proteins were notably altered: NADPH oxidase and protein kinase B (Akt) (in HAECs); SM-MHC and SM-Calponin (in HASMCs). In vitro treatment of PBMCs with cholecalciferol led to a favorable change in T-cell population, decreasing TH1 and increasing TH2 cell percentage, along with beneficial alterations in mRNA expression of HASMCs and HAECs’ cell markers. This study provides evidence that cholecalciferol can influence immune and vascular function in CKD. Full article
(This article belongs to the Special Issue The Role of Vitamin D in Human Health and Diseases 4.0)
Show Figures

Figure 1

19 pages, 2583 KB  
Article
Therapeutic Efficacy of Small Extracellular Vesicles Loaded with ROCK Inhibitor in Parkinson’s Disease
by Candy Carbajal, Myosotys Rodriguez, Florida Owens, Nicole Stone, Dileepkumar Veeragoni, Rebecca Z. Fan, Kim Tieu and Nazira El-Hage
Pharmaceutics 2025, 17(3), 365; https://doi.org/10.3390/pharmaceutics17030365 - 13 Mar 2025
Cited by 2 | Viewed by 2188
Abstract
Background/Objectives: Parkinson’s disease (PD) is a rapidly growing neurological disorder in the developed world, affecting millions over the age of 60. The decline in motor functions occurs due to a progressive loss of midbrain dopaminergic neurons, resulting in lowered dopamine levels and impaired [...] Read more.
Background/Objectives: Parkinson’s disease (PD) is a rapidly growing neurological disorder in the developed world, affecting millions over the age of 60. The decline in motor functions occurs due to a progressive loss of midbrain dopaminergic neurons, resulting in lowered dopamine levels and impaired muscle function. Studies show defective mitochondrial autophagy (or “mitophagy”) links to PD. Rho-associated coiled-coil containing protein kinases (ROCK) 1 and ROCK2 are serine/threonine kinases, and their inhibition can enhance neuroprotection in PD by promoting mitophagy. Methods: We examine the effects of ROCK inhibitor SR3677, delivered via macrophage-derived small extracellular vesicles (sEVs) to Parkin Q311X(A) PD mouse models. sEVs with SR3677, administered intranasally, increased mitophagy gene expression, reduced inflammatory factors, and elevated dopamine levels in brain tissues. Results: ROCK2 expression decreased, showing the drug’s inhibitory effect. sEV-SR3677 treatment was more effective than treatment with the drug alone, although sham EVs showed lower effects. This suggests that EV-SR3677 not only activates mitochondrial processes but also promotes the degradation of damaged mitochondria through autophagy. Mitochondrial functional assays and oxygen consumption in ex vivo glial cultures revealed that sEV-SR3677 significantly improved mitochondrial respiration compared to that in untreated or SR3677-only treated cells. Conclusion: We demonstrated the efficacy of ROCK2 inhibition on mitochondrial function via sEV-SR3677 in the PD mouse model, necessitating further studies to explore design challenges and mechanisms of sEV-SR3677 as mitochondria-targeted therapy for PD Full article
Show Figures

Graphical abstract

24 pages, 11264 KB  
Article
The 16SrXII-P Phytoplasma GOE Is Separated from Other Stolbur Phytoplasmas by Key Genomic Features
by Rafael Toth, Bruno Huettel, Mark Varrelmann and Michael Kube
Pathogens 2025, 14(2), 180; https://doi.org/10.3390/pathogens14020180 - 11 Feb 2025
Cited by 4 | Viewed by 2293
Abstract
The syndrome “bassess richesses” is a vector-borne disease of sugar beet in Germany. The gammaproteobacterium ‘Candidatus Arsenophonus phytopathogenicus’ causes reduced sugar content and biomass, growth abnormalities, and yellowing. Co-infection with the 16SrXII-P stolbur phytoplasmas often leads to more severe symptoms and a [...] Read more.
The syndrome “bassess richesses” is a vector-borne disease of sugar beet in Germany. The gammaproteobacterium ‘Candidatus Arsenophonus phytopathogenicus’ causes reduced sugar content and biomass, growth abnormalities, and yellowing. Co-infection with the 16SrXII-P stolbur phytoplasmas often leads to more severe symptoms and a risk of complete economic loss. This yellowing agent of the Mollicutes class had not been described before, so its differences from other stolbur phytoplasmas remained unanswered. The genome of strain GOE was sequenced, providing a resource to analyze its characteristics. Phylogenetic position was revised, genome organization was compared, and functional reconstructions of metabolic and virulence factors were performed. Average nucleotide identity analysis indicates that GOE represents a new ‘Ca. Phytoplasma’ species. Our results show that GOE is also distinct from other stolbur phytoplasmas in terms of smaller genome size and G+C content. Its reductive evolution is reflected in conserved membrane protein repertoire and minimal metabolism. The encoding of a riboflavin kinase indicates a lost pathway of phytoplasmas outside the groups 16SrXII and 16SrXIII. GOE shows a complete tra5 transposon harboring orthologs of SAP11, SAP54, and SAP05 effectors indicating an original phytoplasma pathogenicity island. Our results deepen the understanding of phytoplasma evolution and reaffirm the heterogeneity of stolbur phytoplasmas. Full article
Show Figures

Figure 1

25 pages, 6527 KB  
Article
Exploiting the Achilles’ Heel of Viral RNA Processing to Develop Novel Antivirals
by Ali Zahedi Amiri, Choudhary Ahmed, Subha Dahal, Filomena Grosso, Haomin Leng, Peter Stoilov, Maria Mangos, Johanne Toutant, Lulzim Shkreta, Liliana Attisano, Benoit Chabot, Martha Brown, Mario Huesca and Alan Cochrane
Viruses 2025, 17(1), 54; https://doi.org/10.3390/v17010054 - 31 Dec 2024
Viewed by 2062
Abstract
Treatment options for viral infections are limited and viruses have proven adept at evolving resistance to many existing therapies, highlighting a significant vulnerability in our defenses. In response to this challenge, we explored the modulation of cellular RNA metabolic processes as an alternative [...] Read more.
Treatment options for viral infections are limited and viruses have proven adept at evolving resistance to many existing therapies, highlighting a significant vulnerability in our defenses. In response to this challenge, we explored the modulation of cellular RNA metabolic processes as an alternative paradigm to antiviral development. Previously, the small molecule 5342191 was identified as a potent inhibitor of HIV-1 replication by altering viral RNA accumulation at doses that minimally affect host gene expression. In this report, we document 5342191 as a potent inhibitor of adenovirus, coronavirus, and influenza replication. In each case, 5342191-mediated reduction in virus replication was associated with altered viral RNA accumulation and loss of viral structural protein expression. Interestingly, while resistant viruses were rapidly isolated for compounds targeting either virus-encoded proteases or polymerases, we have not yet isolated 5342191-resistant variants of coronavirus or influenza. As with HIV-1, 5342191’s inhibition of coronaviruses and influenza is mediated through the activation of specific cell signaling networks, including GPCR and/or MAPK signaling pathways that ultimately affect SR kinase expression. Together, these studies highlight the therapeutic potential of compounds that target cellular processes essential for the replication of multiple viruses. Not only do these compounds hold promise as broad-spectrum antivirals, but they also offer the potential of greater resilience in combating viral infections. Full article
(This article belongs to the Special Issue Viral Replication Inhibitors)
Show Figures

Figure 1

19 pages, 8117 KB  
Article
Effects of Glutamine or Glucose Deprivation on Inflammation and Tight Junction Disruption in Yak Rumen Epithelial Cells
by Ziqi Yue, Junmei Wang, Rui Hu, Quanhui Peng, Hongrui Guo, Huawei Zou, Jianxin Xiao, Yahui Jiang and Zhisheng Wang
Animals 2024, 14(22), 3232; https://doi.org/10.3390/ani14223232 - 12 Nov 2024
Cited by 2 | Viewed by 1894
Abstract
Yak is a special free-ranging cattle breed in the plateau areas of Qinghai and Tibet. Pasture withering in cold-season pastures results in energy deficiency in yaks, which undermines the rumen epithelial barrier. However, the leading factor causing rumen epithelial injury remains unknown. Glutamine [...] Read more.
Yak is a special free-ranging cattle breed in the plateau areas of Qinghai and Tibet. Pasture withering in cold-season pastures results in energy deficiency in yaks, which undermines the rumen epithelial barrier. However, the leading factor causing rumen epithelial injury remains unknown. Glutamine (Gln), a conditionally essential amino acid, is insufficient under pathological conditions. Glucose (GLU) is an important energy source. Thus, we explored the effects of Gln or GLU deprivation on the barrier function of yak rumen epithelial cells and investigated the underlying mechanisms, as well as the differences in rumen epithelial barrier function between Gln deprivation (Gln-D) and GLU deprivation (GLU-D). In previous work, we constructed the yak rumen epithelial cells (YRECs) line by transferring the human telomerase reverse transcriptase gene (hTERT) and simian virus 40 large T antigen (SV40T) into primary YRECs. The YRECs were exposed to normal, Gln-D, GLU-D, and serum replacement (SR) media for 6, 12, and 24 h. Our data displayed that cell viability and tight junction protein expression in the SR group were not significantly changed compared to the normal group. Whereas, compared with the SR group, Gln-D treated for more than 12 h reduced cell viability and proliferation, and GLU-D treated for more than 12 h damaged the cell morphology and reduced cell viability and proliferation. The cell proliferation and cell viability were decreased more in GLU-D than in Gln-D. In addition, Gln-D treated for more than 12 h disrupted YREC cellular partially tight junctions by inducing oxidative stress and inflammation, and GLU-D treated for more than 12 h disrupted YREC cellular tight junctions by inducing apoptosis, oxidative stress, and inflammation. Compared with Gln-D, GLU-D more significantly induced cell injury and reduced tight junction protein levels. Our results provided evidence that GLU-D induced damage through the p38 mitogen-activated protein kinase (p38 MAPK)/c-junN-terminal kinase (JNK) signaling pathway, which was more serious than Gln-D treated for more than 12 h. Full article
(This article belongs to the Section Animal Nutrition)
Show Figures

Figure 1

14 pages, 4090 KB  
Article
Serine/Arginine-Rich Splicing Factor 7 Knockdown Inhibits Aerobic Glycolysis and Growth in HepG2 Cells by Regulating PKM2 Expression
by Weiye Shi, Xu Yao, Xueyu Cao, Yu Fu and Yingze Wang
Curr. Issues Mol. Biol. 2024, 46(5), 5023-5036; https://doi.org/10.3390/cimb46050301 - 20 May 2024
Cited by 5 | Viewed by 2397
Abstract
Serine/arginine-rich splicing factors (SRSFs), part of the serine/arginine-rich (SR) protein family, play a crucial role in precursor RNA splicing. Abnormal expression of SRSFs in tumors can disrupt normal RNA splicing, contributing to tumor progression. Notably, SRSF7 has been found to be upregulated in [...] Read more.
Serine/arginine-rich splicing factors (SRSFs), part of the serine/arginine-rich (SR) protein family, play a crucial role in precursor RNA splicing. Abnormal expression of SRSFs in tumors can disrupt normal RNA splicing, contributing to tumor progression. Notably, SRSF7 has been found to be upregulated in hepatocellular carcinoma (HCC), yet its specific role and molecular mechanisms in HCC pathogenesis are not fully understood. We investigated the expression and prognostic significance of SRSF7 in HCC using bioinformatics database analysis. In HepG2 cells, the expressions of SRSF7 and glycolytic enzymes were analyzed using qRT-PCR, and Western blot. Glucose uptake and lactate production were quantified using relevant reagent kits. Additionally, cell proliferation, clonogenicity, invasion, and apoptosis were evaluated using MTS assay, clonal formation assay, Transwell assay, and mitochondrial membrane potential assay, respectively. This study demonstrated significant overexpression of SRSF7 in HCC tissue, correlating with poor prognosis. Knockdown of SRSF7 in HepG2 cells resulted in inhibited proliferation, clonogenicity, and invasion, while apoptosis was enhanced. This knockdown also decreased glucose uptake and lactate production, along with a reduction in the expression of glucose transporter 1 (GLUT1) and lactate dehydrogenase A (LDHA). Furthermore, SRSF7 downregulation increased the pyruvate kinase muscle 1 (PKM1)/PKM2 ratio. The glycolytic boost due to PKM2 overexpression partially counteracted the effects of SRSF7 silencing on HepG2 cell growth. The knockdown of SRSF7 impairs aerobic glycolysis and growth in HepG2 cells by downregulating PKM2 expression. Full article
(This article belongs to the Section Biochemistry, Molecular and Cellular Biology)
Show Figures

Figure 1

20 pages, 4055 KB  
Article
High-Density Lipoprotein Signaling via Sphingosine-1-Phosphate Receptors Safeguards Spontaneously Hypertensive Rats against Myocardial Ischemia/Reperfusion Injury
by Aishah Al-Jarallah and Fawzi A. Babiker
Pharmaceutics 2024, 16(4), 497; https://doi.org/10.3390/pharmaceutics16040497 - 3 Apr 2024
Cited by 4 | Viewed by 1874
Abstract
Background: High-density lipoprotein (HDL) protects against ischemia/reperfusion (I/R) injury via signaling through scavenger-receptor class B type-I (SR-BI) and sphingosine-1-phosphate receptors (S1PRs). We recently reported that HDL protects the hearts of spontaneously hypertensive rats (SHRs) against I/R injury in an SR-BI-dependent manner. Objective: In [...] Read more.
Background: High-density lipoprotein (HDL) protects against ischemia/reperfusion (I/R) injury via signaling through scavenger-receptor class B type-I (SR-BI) and sphingosine-1-phosphate receptors (S1PRs). We recently reported that HDL protects the hearts of spontaneously hypertensive rats (SHRs) against I/R injury in an SR-BI-dependent manner. Objective: In this study, we examined the role of S1PRs in HDL-induced protection against myocardial I/R injury in hypertensive rats. Methods: Hearts from Wistar Kyoto rats (WKYs) and SHRs were subjected to I/R injury using a modified Langendorff system. The hearts were treated with or without HDL in the presence or absence of a receptor- or kinase-specific antagonist. Cardiac hemodynamics and infarct size were measured. Target proteins were analyzed by immunoblotting and ELISA, and nitrite levels were measured using Greis reagent. Results: HDL protected the hearts of WKYs and SHRs against I/R injury. HDL, however, was more protective in WKYs. HDL protection in SHRs required lipid uptake via SR-BI and S1PR1 and S1PR3 but not S1PR2. The hearts from SHRs expressed significantly lower levels of S1PR3 than the hearts from WKYs. HDL differentially activated mediators of the SAFE and RISK pathways in WKYs and SHRs and resulted in nitric oxide generation. Blockage of these pathways abrogated HDL effects. Conclusions: HDL protects against myocardial I/R injury in normotensive and hypertensive rats, albeit to varying degrees. HDL protection in hearts from hypertensive rodents involved SR-BI-mediated lipid uptake coupled with signaling through S1PR1 and S1PR3. The extent of HDL-induced cardiac protection is directly proportional to S1PR3 expression levels. Mechanistically, the safeguarding effects of HDL involved activation of the SAFE and RISK pathways and the generation of nitric oxide. Full article
Show Figures

Graphical abstract

14 pages, 2859 KB  
Article
The Xanthine Derivative KMUP-1 Inhibits Hypoxia-Induced TRPC1 Expression and Store-Operated Ca2+ Entry in Pulmonary Arterial Smooth Muscle Cells
by Zen-Kong Dai, Yi-Chen Chen, Su-Ling Hsieh, Jwu-Lai Yeh, Jong-Hau Hsu and Bin-Nan Wu
Pharmaceuticals 2024, 17(4), 440; https://doi.org/10.3390/ph17040440 - 29 Mar 2024
Cited by 1 | Viewed by 1943
Abstract
Exposure to hypoxia results in the development of pulmonary arterial hypertension (PAH). An increase in the intracellular Ca2+ concentration ([Ca2+]i) in pulmonary artery smooth muscle cells (PASMCs) is a major trigger for pulmonary vasoconstriction and proliferation. This study [...] Read more.
Exposure to hypoxia results in the development of pulmonary arterial hypertension (PAH). An increase in the intracellular Ca2+ concentration ([Ca2+]i) in pulmonary artery smooth muscle cells (PASMCs) is a major trigger for pulmonary vasoconstriction and proliferation. This study investigated the mechanism by which KMUP-1, a xanthine derivative with phosphodiesterase inhibitory activity, inhibits hypoxia-induced canonical transient receptor potential channel 1 (TRPC1) protein overexpression and regulates [Ca2+]i through store-operated calcium channels (SOCs). Ex vivo PASMCs were cultured from Sprague-Dawley rats in a modular incubator chamber under 1% O2/5% CO2 for 24 h to elucidate TRPC1 overexpression and observe the Ca2+ release and entry. KMUP-1 (1 μM) inhibited hypoxia-induced TRPC family protein encoded for SOC overexpression, particularly TRPC1. KMUP-1 inhibition of TRPC1 protein was restored by the protein kinase G (PKG) inhibitor KT5823 (1 μM) and the protein kinase A (PKA) inhibitor KT5720 (1 μM). KMUP-1 attenuated protein kinase C (PKC) activator phorbol 12-myristate 13-acetate (PMA, 1 μM)-upregulated TRPC1. We suggest that the effects of KMUP-1 on TRPC1 might involve activating the cyclic guanosine monophosphate (cGMP)/PKG and cyclic adenosine monophosphate (cAMP)/PKA pathways and inhibiting the PKC pathway. We also used Fura 2-acetoxymethyl ester (Fura 2-AM, 5 μM) to measure the stored calcium release from the sarcoplasmic reticulum (SR) and calcium entry through SOCs in hypoxic PASMCs under treatment with thapsigargin (1 μM) and nifedipine (5 μM). In hypoxic conditions, store-operated calcium entry (SOCE) activity was enhanced in PASMCs, and KMUP-1 diminished this activity. In conclusion, KMUP-1 inhibited the expression of TRPC1 protein and the activity of SOC-mediated Ca2+ entry upon SR Ca2+ depletion in hypoxic PASMCs. Full article
(This article belongs to the Section Pharmacology)
Show Figures

Figure 1

18 pages, 4074 KB  
Article
Phosphodiesterases 4B and 4D Differentially Regulate cAMP Signaling in Calcium Handling Microdomains of Mouse Hearts
by Axel E. Kraft, Nadja I. Bork, Hariharan Subramanian, Nikoleta Pavlaki, Antonio V. Failla, Bernd Zobiak, Marco Conti and Viacheslav O. Nikolaev
Cells 2024, 13(6), 476; https://doi.org/10.3390/cells13060476 - 8 Mar 2024
Cited by 7 | Viewed by 3305
Abstract
The ubiquitous second messenger 3′,5′-cyclic adenosine monophosphate (cAMP) regulates cardiac excitation-contraction coupling (ECC) by signaling in discrete subcellular microdomains. Phosphodiesterase subfamilies 4B and 4D are critically involved in the regulation of cAMP signaling in mammalian cardiomyocytes. Alterations of PDE4 activity in human hearts [...] Read more.
The ubiquitous second messenger 3′,5′-cyclic adenosine monophosphate (cAMP) regulates cardiac excitation-contraction coupling (ECC) by signaling in discrete subcellular microdomains. Phosphodiesterase subfamilies 4B and 4D are critically involved in the regulation of cAMP signaling in mammalian cardiomyocytes. Alterations of PDE4 activity in human hearts has been shown to result in arrhythmias and heart failure. Here, we sought to systematically investigate specific roles of PDE4B and PDE4D in the regulation of cAMP dynamics in three distinct subcellular microdomains, one of them located at the caveolin-rich plasma membrane which harbors the L-type calcium channels (LTCCs), as well as at two sarco/endoplasmic reticulum (SR) microdomains centered around SR Ca2+-ATPase (SERCA2a) and cardiac ryanodine receptor type 2 (RyR2). Transgenic mice expressing Förster Resonance Energy Transfer (FRET)-based cAMP-specific biosensors targeted to caveolin-rich plasma membrane, SERCA2a and RyR2 microdomains were crossed to PDE4B-KO and PDE4D-KO mice. Direct analysis of the specific effects of both PDE4 subfamilies on local cAMP dynamics was performed using FRET imaging. Our data demonstrate that all three microdomains are differentially regulated by these PDE4 subfamilies. Whereas both are involved in cAMP regulation at the caveolin-rich plasma membrane, there are clearly two distinct cAMP microdomains at the SR formed around RyR2 and SERCA2a, which are preferentially controlled by PDE4B and PDE4D, respectively. This correlates with local cAMP-dependent protein kinase (PKA) substrate phosphorylation and arrhythmia susceptibility. Immunoprecipitation assays confirmed that PDE4B is associated with RyR2 along with PDE4D. Stimulated Emission Depletion (STED) microscopy of immunostained cardiomyocytes suggested possible co-localization of PDE4B with both sarcolemmal and RyR2 microdomains. In conclusion, our functional approach could show that both PDE4B and PDE4D can differentially regulate cardiac cAMP microdomains associated with calcium homeostasis. PDE4B controls cAMP dynamics in both caveolin-rich plasma membrane and RyR2 vicinity. Interestingly, PDE4B is the major regulator of the RyR2 microdomain, as opposed to SERCA2a vicinity, which is predominantly under PDE4D control, suggesting a more complex regulatory pattern than previously thought, with multiple PDEs acting at the same location. Full article
(This article belongs to the Collection Compartmentilisation of Cellular Signaling)
Show Figures

Figure 1

Back to TopTop