Nanomaterials Application as Drug Delivery Systems to the Treatment of Neurodegenerative Diseases

A special issue of Pharmaceutics (ISSN 1999-4923). This special issue belongs to the section "Nanomedicine and Nanotechnology".

Deadline for manuscript submissions: closed (20 January 2025) | Viewed by 7068

Special Issue Editors


E-Mail Website
Guest Editor
Laboratorio de Neurofarmacología Molecular y Nanotecnología, Instituto Nacional de Neurología y Neurocirugía, Manuel Velasco Suárez, Mexico City 14269, Mexico
Interests: nanomaterials; brain tumors; drug delivery; nano-photosensitizsers; reactive oxygen species; photodynamic therapy
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
Laboratorio Experimental de Enfermedades Neurodegenerativas, Instituto Nacional de Neurología y Neurocirugía, Manuel Velasco Suárez, México City 14269, México
Interests: neurodegeneration; Alzheimer disease; epilepsy; Parkinson; tau protein; amyloid b
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
Laboratorio de neurofarmacología Molecular y Nanotecnología, Instituto Nacional de Neurología y Neurocirugía, Manuel Velasco Suárez, México City 14269, México
Interests: neurodegenerative diseases; cancer; nanomedicine; green synthesis of nanoparticles
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Nowadays, the survival time of people has increased considerably, but unfortunately, their quality of life is not desirable. The long survival time allows us to observe the development of degenerative diseases such as neurodegenerative diseases. These later are characterized by the progressive loss of the structure or function of neurons, which often leads to neuronal death, affecting functions related to movement, memory, and dementia, among others. Its treatment is complicated because the drugs cause severe side effects since many cross the blood-brain barrier in small quantities, leading to increased doses to reach the adequate therapeutic amount. Therefore, using inorganic and organic nanomaterials and their combination as controlled drug delivery systems is an alternative because most are biocompatible with the human body. In addition, they can be functionalized to be directed to specific targets and cross the blood-brain barrier. Therefore, it is interesting to know the current nanomaterials' state of the art in applying neurological drug delivery systems to treat various neurodegenerative diseases.

Dr. Emma Ortiz-Islas
Dr. Victoria Campos-Peña
Dr. Citlali Ekaterina Rodríguez Pérez
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Pharmaceutics is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2900 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • nanomaterials
  • drug delivery
  • neurodegenerative diseases
  • blood-brain barrier
  • functionalization
  • neuronal death
  • biocompatible

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (4 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

19 pages, 2583 KiB  
Article
Therapeutic Efficacy of Small Extracellular Vesicles Loaded with ROCK Inhibitor in Parkinson’s Disease
by Candy Carbajal, Myosotys Rodriguez, Florida Owens, Nicole Stone, Dileepkumar Veeragoni, Rebecca Z. Fan, Kim Tieu and Nazira El-Hage
Pharmaceutics 2025, 17(3), 365; https://doi.org/10.3390/pharmaceutics17030365 - 13 Mar 2025
Viewed by 938
Abstract
Background/Objectives: Parkinson’s disease (PD) is a rapidly growing neurological disorder in the developed world, affecting millions over the age of 60. The decline in motor functions occurs due to a progressive loss of midbrain dopaminergic neurons, resulting in lowered dopamine levels and impaired [...] Read more.
Background/Objectives: Parkinson’s disease (PD) is a rapidly growing neurological disorder in the developed world, affecting millions over the age of 60. The decline in motor functions occurs due to a progressive loss of midbrain dopaminergic neurons, resulting in lowered dopamine levels and impaired muscle function. Studies show defective mitochondrial autophagy (or “mitophagy”) links to PD. Rho-associated coiled-coil containing protein kinases (ROCK) 1 and ROCK2 are serine/threonine kinases, and their inhibition can enhance neuroprotection in PD by promoting mitophagy. Methods: We examine the effects of ROCK inhibitor SR3677, delivered via macrophage-derived small extracellular vesicles (sEVs) to Parkin Q311X(A) PD mouse models. sEVs with SR3677, administered intranasally, increased mitophagy gene expression, reduced inflammatory factors, and elevated dopamine levels in brain tissues. Results: ROCK2 expression decreased, showing the drug’s inhibitory effect. sEV-SR3677 treatment was more effective than treatment with the drug alone, although sham EVs showed lower effects. This suggests that EV-SR3677 not only activates mitochondrial processes but also promotes the degradation of damaged mitochondria through autophagy. Mitochondrial functional assays and oxygen consumption in ex vivo glial cultures revealed that sEV-SR3677 significantly improved mitochondrial respiration compared to that in untreated or SR3677-only treated cells. Conclusion: We demonstrated the efficacy of ROCK2 inhibition on mitochondrial function via sEV-SR3677 in the PD mouse model, necessitating further studies to explore design challenges and mechanisms of sEV-SR3677 as mitochondria-targeted therapy for PD Full article
Show Figures

Graphical abstract

22 pages, 4882 KiB  
Article
The Impact of Serum Protein Adsorption on PEGylated NT3–BDNF Nanoparticles—Distribution, Protein Release, and Cytotoxicity in a Human Retinal Pigmented Epithelial Cell Model
by Maria Dąbkowska, Alicja Kosiorowska and Bogusław Machaliński
Pharmaceutics 2023, 15(9), 2236; https://doi.org/10.3390/pharmaceutics15092236 - 30 Aug 2023
Cited by 3 | Viewed by 1588
Abstract
The adsorption of biomolecules on nanoparticles’ surface ultimately depends on the intermolecular forces, which dictate the mutual interaction transforming their physical, chemical, and biological characteristics. Therefore, a better understanding of the adsorption of serum proteins and their impact on nanoparticle physicochemical properties is [...] Read more.
The adsorption of biomolecules on nanoparticles’ surface ultimately depends on the intermolecular forces, which dictate the mutual interaction transforming their physical, chemical, and biological characteristics. Therefore, a better understanding of the adsorption of serum proteins and their impact on nanoparticle physicochemical properties is of utmost importance for developing nanoparticle-based therapies. We investigated the interactions between potentially therapeutic proteins, neurotrophin 3 (NT3), brain-derived neurotrophic factor (BDNF), and polyethylene glycol (PEG), in a cell-free system and a retinal pigmented epithelium cell line (ARPE-19). The variance in the physicochemical properties of PEGylated NT3–BDNF nanoparticles (NPs) in serum-abundant and serum-free systems was studied using transmission electron microscopy, atomic force microscopy, multi-angle dynamic, and electrophoretic light scattering. Next, we compared the cellular response of ARPE-19 cells after exposure to PEGylated NT3–BDNF NPs in either a serum-free or complex serum environment by investigating protein release and cell cytotoxicity using ultracentrifuge, fluorescence spectroscopy, and confocal microscopy. After serum exposure, the decrease in the aggregation of PEGylated NT3–BDNF NPs was accompanied by increased cell viability and BDNF/NT3 in vitro release. In contrast, in a serum-free environment, the appearance of positively charged NPs with hydrodynamic diameters up to 900 nm correlated with higher cytotoxicity and limited BDNF/NT3 release into the cell culture media. This work provides new insights into the role of protein corona when considering the PEGylated nano–bio interface with implications for cytotoxicity, NPs’ distribution, and BDNF and NT3 release profiles in the in vitro setting. Full article
Show Figures

Graphical abstract

Review

Jump to: Research

36 pages, 3396 KiB  
Review
Nanotechnology to Overcome Blood–Brain Barrier Permeability and Damage in Neurodegenerative Diseases
by Adriana Jiménez, Enrique Estudillo, Mara A. Guzmán-Ruiz, Nieves Herrera-Mundo, Georgina Victoria-Acosta, Enoc Mariano Cortés-Malagón and Adolfo López-Ornelas
Pharmaceutics 2025, 17(3), 281; https://doi.org/10.3390/pharmaceutics17030281 - 20 Feb 2025
Cited by 1 | Viewed by 1324
Abstract
The blood–brain barrier (BBB) is a critical structure that maintains brain homeostasis by selectively regulating nutrient influx and waste efflux. Not surprisingly, it is often compromised in neurodegenerative diseases. In addition to its involvement in these pathologies, the BBB also represents a significant [...] Read more.
The blood–brain barrier (BBB) is a critical structure that maintains brain homeostasis by selectively regulating nutrient influx and waste efflux. Not surprisingly, it is often compromised in neurodegenerative diseases. In addition to its involvement in these pathologies, the BBB also represents a significant challenge for drug delivery into the central nervous system. Nanoparticles (NPs) have been widely explored as drug carriers capable of overcoming this barrier and effectively transporting therapies to the brain. However, their potential to directly address and ameliorate BBB dysfunction has received limited attention. In this review, we examine how NPs enhance drug delivery across the BBB to treat neurodegenerative diseases and explore emerging strategies to restore the integrity of this vital structure. Full article
Show Figures

Graphical abstract

48 pages, 3257 KiB  
Review
Evolution of Alzheimer’s Disease Therapeutics: From Conventional Drugs to Medicinal Plants, Immunotherapy, Microbiotherapy and Nanotherapy
by Emma Ortiz-Islas, Pedro Montes, Citlali Ekaterina Rodríguez-Pérez, Elizabeth Ruiz-Sánchez, Talía Sánchez-Barbosa, Diego Pichardo-Rojas, Cecilia Zavala-Tecuapetla, Karla Carvajal-Aguilera and Victoria Campos-Peña
Pharmaceutics 2025, 17(1), 128; https://doi.org/10.3390/pharmaceutics17010128 - 17 Jan 2025
Cited by 1 | Viewed by 2498
Abstract
Alzheimer’s disease (AD) represents an escalating global health crisis, constituting the leading cause of dementia among the elderly and profoundly impairing their quality of life. Current FDA-approved drugs, such as rivastigmine, donepezil, galantamine, and memantine, offer only modest symptomatic relief and are frequently [...] Read more.
Alzheimer’s disease (AD) represents an escalating global health crisis, constituting the leading cause of dementia among the elderly and profoundly impairing their quality of life. Current FDA-approved drugs, such as rivastigmine, donepezil, galantamine, and memantine, offer only modest symptomatic relief and are frequently associated with significant adverse effects. Faced with this challenge and in line with advances in the understanding of the pathophysiology of this neurodegenerative condition, various innovative therapeutic strategies have been explored. Here, we review novel approaches inspired by advanced knowledge of the underlying pathophysiological mechanisms of the disease. Among the therapeutic alternatives, immunotherapy stands out, employing monoclonal antibodies to specifically target and eliminate toxic proteins implicated in AD. Additionally, the use of medicinal plants is examined, as their synergistic effects among components may confer neuroprotective properties. The modulation of the gut microbiota is also addressed as a peripheral strategy that could influence neuroinflammatory and degenerative processes in the brain. Furthermore, the therapeutic potential of emerging approaches, such as the use of microRNAs to regulate key cellular processes and nanotherapy, which enables precise drug delivery to the central nervous system, is analyzed. Despite promising advances in these strategies, the incidence of Alzheimer’s disease continues to rise. Therefore, it is proposed that achieving effective treatment in the future may require the integration of combined approaches, maximizing the synergistic effects of different therapeutic interventions. Full article
Show Figures

Figure 1

Back to TopTop