Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (910)

Search Parameters:
Keywords = SQ109

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 1433 KiB  
Article
Residential Green Infrastructure: Unpacking Motivations and Obstacles to Single-Family-Home Tree Planting in Diverse, Low-Income Urban Neighborhoods
by Ivis García
Sustainability 2025, 17(16), 7412; https://doi.org/10.3390/su17167412 - 16 Aug 2025
Viewed by 367
Abstract
Urban tree planting on single-family-home lots represents a critical yet underexplored component of municipal greening strategies. This study examines residents’ perceptions of tree planting in Westpointe, a diverse neighborhood in Salt Lake City, Utah, as part of the city’s Reimagine Nature Public Lands [...] Read more.
Urban tree planting on single-family-home lots represents a critical yet underexplored component of municipal greening strategies. This study examines residents’ perceptions of tree planting in Westpointe, a diverse neighborhood in Salt Lake City, Utah, as part of the city’s Reimagine Nature Public Lands Master Plan development effort. Through a mixed-methods approach combining qualitative interviews (n = 24) and a tree signup initiative extended to 86 residents, with 51 participating, this research explores the complex interplay of demographic, economic, social, and infrastructure factors influencing residents’ willingness to plant trees on single-family-home lots. The findings reveal significant variations based on gender, with women expressing more positive environmental and aesthetic motivations, while men focused on practical concerns including maintenance and property damage. Age emerged as another critical factor, with older adults (65+) expressing concerns about long-term maintenance capabilities, while younger families (25–44) demonstrated future-oriented thinking about shade and property values. Property characteristics, particularly yard size, significantly influenced receptiveness, with owners of larger yards (>5000 sq ft) showing greater willingness compared to those with smaller properties, who cited space constraints. Additional barriers, i.e., maintenance, financial, and knowledge barriers, included irrigation costs, lack of horticultural knowledge, pest concerns, and proximity to underground utilities. Geographic analysis revealed that Spanish-speaking social networks were particularly effective in promoting tree planting. The study contributes to urban forestry literature by providing nuanced insights into single-family homeowners’ tree-planting decisions and offers targeted recommendations for municipal programs. These include gender-specific outreach strategies, age-appropriate support services, sliding-scale subsidy programs based on property size, and comprehensive education initiatives. The findings inform evidence-based approaches to increase urban canopy coverage through private property plantings, ultimately supporting climate resilience and environmental justice goals in diverse urban neighborhoods. Full article
(This article belongs to the Special Issue Sustainable Forest Technology and Resource Management)
Show Figures

Figure 1

46 pages, 9391 KiB  
Article
Multifactorial Controls on Carbonate–Clastic Sedimentation in Rift Basins: Integrated Foraminiferal, Sequence Stratigraphic, and Petrophysical Analysis, Gulf of Suez, Egypt
by Haitham M. Ayyad, Hatem E. Semary, Mohamed Fathy, Ahmed Hassan Ismail Hassan, Anis Ben Ghorbal and Mohamed Reda
Minerals 2025, 15(8), 864; https://doi.org/10.3390/min15080864 - 15 Aug 2025
Viewed by 231
Abstract
The lithological dichotomy in the Hammam Faraun Member (Gulf of Suez, Egypt) reveals a stable western flank with Nullipore carbonate deposits, contrasting with the clastic-prone eastern margin influenced by tectonic activity. This study aims to decipher multifactorial controls on spatial lithological variability and [...] Read more.
The lithological dichotomy in the Hammam Faraun Member (Gulf of Suez, Egypt) reveals a stable western flank with Nullipore carbonate deposits, contrasting with the clastic-prone eastern margin influenced by tectonic activity. This study aims to decipher multifactorial controls on spatial lithological variability and reservoir implications through (1) foraminiferal-based paleoenvironmental reconstruction; (2) integrated sequence stratigraphic–petrophysical analysis for sweet spot identification; and (3) synthesis of lateral facies controls. This study uniquely integrates foraminiferal paleoenvironmental proxies, sequence stratigraphy, and petrophysical analyses to understand the multifactorial controls on spatial variability and its implications for reservoir characterization. Middle Miocene sea surface temperatures, reconstructed between 19.2 and 21.2 °C, align with warm conditions favorable for carbonate production across the basin. Foraminiferal data indicate consistent bathyal depths (611–1238 m) in the eastern region, further inhibited in photic depths by clastic influx from the nearby Nubian Shield, increasing turbidity and limiting carbonate factory growth. Conversely, the western shelf, at depths of less than 100 m, supports thriving carbonate platforms. In the sequence stratigraphy analysis, we identify two primary sequences: LA.SQ1 (15.12–14.99 Ma), characterized by evaporitic Feiran Member deposits, and LA.SQ2 (14.99–14.78 Ma), dominated by clastic deposits. The primary reservoir comprises highstand systems tract (HST) sandstones with effective porosity ranging from 17% to 22% (calculated via shale-corrected neutron density cross-plots) and hydrocarbon saturation of 33%–55% (computed using Archie’s equation). These values, validated in Wells 112-58 (ϕe = 19%, Shc = 55%) and 113M-81 (ϕe = 17%, Shc = 33%), demonstrate the primary reservoir potential. Authigenic dolomite cement and clay content reduce permeability in argillaceous intervals, while quartz dissolution in clean sands enhances porosity. This research emphasizes that bathymetry, sediment availability, and syn-sedimentary tectonics, rather than climate, govern carbonate depletion in the eastern region, providing predictive parameters for identifying reservoir sweet spots in clastic-dominated rift basins. Full article
(This article belongs to the Section Mineral Geochemistry and Geochronology)
Show Figures

Graphical abstract

28 pages, 4927 KiB  
Review
A Review on Perovskite/Silicon Tandem Solar Cells: Current Status and Future Challenges
by Jingyu Huang and Lin Mao
Energies 2025, 18(16), 4327; https://doi.org/10.3390/en18164327 - 14 Aug 2025
Viewed by 733
Abstract
Perovskite/Si tandem solar cells (PSTSCs) have emerged as a leading candidate for surpassing the Shockley–Queisser (SQ) efficiency limit inherent to single-junction silicon solar cells. Following their inaugural demonstration in 2015, perovskite/Si tandem solar cells have experienced remarkable technological progression, reaching a certified power [...] Read more.
Perovskite/Si tandem solar cells (PSTSCs) have emerged as a leading candidate for surpassing the Shockley–Queisser (SQ) efficiency limit inherent to single-junction silicon solar cells. Following their inaugural demonstration in 2015, perovskite/Si tandem solar cells have experienced remarkable technological progression, reaching a certified power conversion efficiency of 34.9% by 2025. To elucidate pathways for realizing the full potential of perovskite/Si tandem solar cells, this review commences with an examination of fundamental operational mechanisms in multi-junction photovoltaic architectures. Subsequent sections systematically analyze technological breakthroughs across three critical PSTSC components organized by an optical path sequence: (1) innovations in perovskite photoactive layers through component engineering, additive optimization, and interfacial modification strategies; (2) developments in charge transport and recombination management via advanced interconnecting layers; and (3) silicon subcell architectures. The review concludes with a critical analysis of persistent challenges in device stability, scalability, structural optimization and fabrication method, proposing strategic research directions to accelerate the transition from laboratory-scale achievements to commercially viable photovoltaic solutions. Full article
(This article belongs to the Section A2: Solar Energy and Photovoltaic Systems)
Show Figures

Figure 1

26 pages, 10577 KiB  
Article
Optimizing Inorganic Cs4CuSb2Cl12/Cs2TiI6 Dual-Absorber Solar Cells: SCAPS-1D Simulations and Machine Learning
by Xiangde Li, Yuming Fang and Jiang Zhao
Nanomaterials 2025, 15(16), 1245; https://doi.org/10.3390/nano15161245 - 14 Aug 2025
Viewed by 342
Abstract
Perovskite solar cells (PSCs) have emerged as a promising contender in photovoltaics, owing to their rapidly advancing power conversion efficiencies (PCEs) and compatibility with low-temperature solution processing techniques. Single-junction architectures reveal inherent limitations imposed by the Shockley–Queisser (SQ) limit, motivating adoption of a [...] Read more.
Perovskite solar cells (PSCs) have emerged as a promising contender in photovoltaics, owing to their rapidly advancing power conversion efficiencies (PCEs) and compatibility with low-temperature solution processing techniques. Single-junction architectures reveal inherent limitations imposed by the Shockley–Queisser (SQ) limit, motivating adoption of a dual-absorber structure comprising Cs4CuSb2Cl12 (CCSC) and Cs2TiI6 (CTI)—lead-free perovskite derivatives valued for environmental benignity and intrinsic stability. Comprehensive theoretical screening of 26 electron/hole transport layer (ETL/HTL) candidates identified SrTiO3 (STO) and CuSCN as optimal charge transport materials, producing an initial simulated PCE of 16.27%. Subsequent theoretical optimization of key parameters—including bulk and interface defect densities, band gap, layer thickness, and electrode materials—culminated in a simulated PCE of 30.86%. Incorporating quantifiable practical constraints, including radiative recombination, resistance, and FTO reflection, revised simulated efficiency to 26.60%, while qualitative analysis of additional factors follows later. Furthermore, comparing multiple algorithms within this theoretical framework demonstrated eXtreme Gradient Boosting (XGBoost) possesses superior predictive capability, identifying CTI defect density as the dominant impact on PCE—thereby underscoring its critical role in analogous architectures and offering optimization guidance for experimental studies. Collectively, this theoretical research delineates a viable pathway toward developing stable, environmentally sustainable PSCs with high properties. Full article
(This article belongs to the Section Solar Energy and Solar Cells)
Show Figures

Graphical abstract

32 pages, 445 KiB  
Article
Impact of Soil Drought on Yield and Leaf Sugar Content in Wheat: Genotypic and Phenotypic Relationships Compared Using a Doubled Haploid Population
by Magdalena Grela, Steve Quarrie, Katarzyna Cyganek, Jan Bocianowski, Małgorzata Karbarz, Mirosław Tyrka, Dimah Habash, Michał Dziurka, Edyta Kowalczyk, Wojciech Szarski and Ilona Mieczysława Czyczyło-Mysza
Int. J. Mol. Sci. 2025, 26(16), 7833; https://doi.org/10.3390/ijms26167833 - 13 Aug 2025
Viewed by 200
Abstract
Improving yield stability under water-limited conditions is a key objective of wheat breeding programmes. One trait of particular interest is carbohydrate accumulation and remobilisation. This study assessed the genetic basis of aspects of yield and flag leaf sugar contents under drought and well-watered [...] Read more.
Improving yield stability under water-limited conditions is a key objective of wheat breeding programmes. One trait of particular interest is carbohydrate accumulation and remobilisation. This study assessed the genetic basis of aspects of yield and flag leaf sugar contents under drought and well-watered conditions using QTL mapping in a population of 90 doubled haploid lines derived from the cross Chinese Spring × SQ1. As well as soluble sugar content, glucose, fructose, sucrose, and maltose, the traits grain yield (Yld), biomass (Bio), and thousand grain weight (TGW) were also analysed. Analysis of variance showed that genotype, environment and their interactions significantly influenced all the traits studied, with environmental effects explaining up to 74.4% of the total variation. QTL analysis identified 40 QTLs for Yld, TGW, and Bio as well as 53 QTLs for soluble carbohydrates, accounting for up to 40% of phenotypic variation. QTLs coincident for more than one trait were identified on 21 chromosome regions, associated with carbohydrate metabolism and yield performance under drought, particularly on chromosomes 2D, 4A, 4B, 5B, 5D, 6B, and 7A. Candidate genes for several yield-related QTLs were identified. These results provide useful genetic markers for the development of more drought-resistant wheat cultivars. Full article
(This article belongs to the Special Issue Molecular Mechanisms of Plant Abiotic Stress Tolerance: 2nd Edition)
14 pages, 2558 KiB  
Article
Base-Catalyzed Pathway Towards Isocyanate Derivatives of Silsesquioxanes
by Kamil Hanek, Monika Wałęsa-Chorab and Patrycja Żak
Int. J. Mol. Sci. 2025, 26(16), 7769; https://doi.org/10.3390/ijms26167769 - 12 Aug 2025
Viewed by 295
Abstract
Easily accessible and inexpensive potassium carbonate (K2CO3) has been applied as the base-catalyst for the synthesis of novel classes of functionalized nanomaterials. This eco-friendly approach has been proven to be effective for a wide range of substrates, leading to [...] Read more.
Easily accessible and inexpensive potassium carbonate (K2CO3) has been applied as the base-catalyst for the synthesis of novel classes of functionalized nanomaterials. This eco-friendly approach has been proven to be effective for a wide range of substrates, leading to nine isocyanate derivatives of silsesquioxanes (SQs) with yields exceeding 90% in mild and transition metal-free conditions. The application potential of chosen products was assessed on the basis of thermogravimetric analyses and photochemical measurements. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Graphical abstract

21 pages, 583 KiB  
Article
Gender Differences in the Relationship Between Fatigue, Different Types of Physical Activity, Postural Changes, and Sleep Quality in University Students—Part II Analyses from a Cross-Sectional Study
by Verner Marijančić, Silvije Šegulja, Mirela Vučković, Ivana Sović, Stanislav Peharec, Tanja Grubić Kezele and Gordana Starčević-Klasan
J. Funct. Morphol. Kinesiol. 2025, 10(3), 307; https://doi.org/10.3390/jfmk10030307 - 8 Aug 2025
Viewed by 439
Abstract
Background: Fatigue can be a useful tool to understand the effects of physical activity (PA) and sedentary behavior on musculoskeletal health in university students. Methods: The aim of this cross-sectional study was to examine gender differences in the relationships between fatigue and specific [...] Read more.
Background: Fatigue can be a useful tool to understand the effects of physical activity (PA) and sedentary behavior on musculoskeletal health in university students. Methods: The aim of this cross-sectional study was to examine gender differences in the relationships between fatigue and specific types and levels of PA, posture, sleep quality (SQ), and non-specific low back pain (NS-LBP) in young adult university students aged 18–25 years. A total of 180 students completed all required tests. Results: Female students had higher total fatigue as they generally engaged in more PA in contrast to male students, who had higher total fatigue when they engaged in less moderate and less vigorous PA. With increasing sedentary behavior, overall fatigue was pronounced in both sexes, although female students spent significantly more time sitting. Poorer SQ correlated with NS-LBP and higher levels of sleep-related fatigue in female students. Males with pronounced hypekyphosis and females with pronounced lordosis were more fatigued. In addition, fatigue was more pronounced in female students with a higher extensor/flexor ratio, suggesting that trunk extensors are more fatigued due to the need to maintain lumbar spine stability. Conclusions: Our findings suggest that the choice of PA should be gender-specific to prevent chronic musculoskeletal disorders and fatigue in young adult university students. Full article
(This article belongs to the Special Issue Physical Activity for Optimal Health: 2nd Edition)
Show Figures

Figure 1

17 pages, 3360 KiB  
Article
Efficient and Selective Multiple Ion Chemosensor by Novel Near-Infrared Sensitive Symmetrical Squaraine Dye Probe
by Sushma Thapa, Kshitij RB Singh and Shyam S. Pandey
Chemosensors 2025, 13(8), 288; https://doi.org/10.3390/chemosensors13080288 - 4 Aug 2025
Viewed by 331
Abstract
A novel near-infrared (NIR) squaraine-based chemosensor, SQ-68, has been designed and synthesized for the sensitive and selective detection of Cu2+ and Ag+ ions, offering a compact solution for multi-analyte sensing. SQ-68 demonstrates high selectivity, with its performance influenced by the [...] Read more.
A novel near-infrared (NIR) squaraine-based chemosensor, SQ-68, has been designed and synthesized for the sensitive and selective detection of Cu2+ and Ag+ ions, offering a compact solution for multi-analyte sensing. SQ-68 demonstrates high selectivity, with its performance influenced by the solvent environment: It selectively detects Cu2+ in acetonitrile and Ag+ in an ethanol–water mixture. Upon binding with either ion, SQ-68 undergoes significant absorption changes in the NIR region, accompanied by visible color changes, enabling naked-eye detection. Spectroscopic studies confirm a 1:1 binding stoichiometry with both Cu2+ and Ag+, accompanied by hypochromism. The detection limits are 0.09 μM for Cu2+ and 0.38 μM for Ag+, supporting highly sensitive quantification. The sensor’s practical applicability was validated in real water samples (sea, lake, and tap water), with recovery rates ranging from 73–95% for Cu2+ to 59–99% for Ag+. These results establish SQ-68 as a reliable and efficient chemosensor for environmental monitoring and water quality assessment. Its dual-analyte capability, solvent-tunable selectivity, and visual detection features make it a promising tool for rapid and accurate detection of heavy metal ions in diverse aqueous environments. Full article
Show Figures

Figure 1

12 pages, 1806 KiB  
Article
Massive Fluctuations in the Derivatives of Pair Distribution Function Minima and Maxima During the Glass Transition
by Michael I. Ojovan, Anh Khoa Augustin Lu and Dmitri V. Louzguine-Luzgin
Metals 2025, 15(8), 869; https://doi.org/10.3390/met15080869 - 2 Aug 2025
Viewed by 331
Abstract
Parametric changes in the first coordination shell (FCS) of a vitreous metallic Pd42.5Cu30Ni7.5P20 alloy are analysed, aiming to confirm the identification of the glass transition temperature (Tg) via processing of XRD patterns utilising [...] Read more.
Parametric changes in the first coordination shell (FCS) of a vitreous metallic Pd42.5Cu30Ni7.5P20 alloy are analysed, aiming to confirm the identification of the glass transition temperature (Tg) via processing of XRD patterns utilising radial and pair distribution functions (RDFs and PDFs) and their evolution with temperature. The Wendt–Abraham empirical criterion of glass transition and its modifications are confirmed in line with previous works, which utilised the kink of the temperature dependences of the minima and maxima of both the PDF and the maxima of the structure factor S(q). Massive fluctuations are, however, identified near the Tg of the derivatives of the minima and maxima of the PDF and maxima of S(q), which adds value to understanding the glass transition in the system as a true second-order-like phase transformation in the non-equilibrium system of atoms. Full article
Show Figures

Figure 1

12 pages, 3313 KiB  
Article
Graphene-Based Grid Patterns Fabricated via Direct Ink Writing for Flexible Transparent Electrodes
by Yongcheng Zheng, Hai Zi, Shuqi Wang, Shengming Yin and Xu Shen
Appl. Sci. 2025, 15(15), 8553; https://doi.org/10.3390/app15158553 - 1 Aug 2025
Viewed by 296
Abstract
Graphene is considered one of the most promising flexible transparent electrode materials as it has high charge carrier mobility, high electrical conductivity, low optical absorption, excellent mechanical strength, and good bendability. However, graphene-based flexible transparent electrodes face a critical challenge in balancing electrical [...] Read more.
Graphene is considered one of the most promising flexible transparent electrode materials as it has high charge carrier mobility, high electrical conductivity, low optical absorption, excellent mechanical strength, and good bendability. However, graphene-based flexible transparent electrodes face a critical challenge in balancing electrical conductivity and optical transmittance. Here, we present a green and scalable direct ink writing (DIW) strategy to fabricate graphene grid patterns by optimizing ink formulation with sodium dodecyl sulfate (SDS) and ethanol. SDS eliminates the coffee ring effect via Marangoni flow, while ethanol enhances graphene flake alignment during hot-pressing, achieving a high conductivity of 5.22 × 105 S m−1. The grid-patterned graphene-based flexible transparent electrodes exhibit a low sheet resistance of 21.3 Ω/sq with 68.5% transmittance as well as a high stability in high-temperature and corrosive environments, surpassing most metal/graphene composites. This method avoids toxic solvents and high-temperature treatments, demonstrating excellent stability in harsh environments. Full article
Show Figures

Figure 1

15 pages, 3096 KiB  
Article
An Experimental Study on the Impact of Roughness Orientation on the Friction Coefficient in EHL Contact
by Matthieu Cordier, Yasser Diab, Jérôme Cavoret, Fida Majdoub, Christophe Changenet and Fabrice Ville
Lubricants 2025, 13(8), 340; https://doi.org/10.3390/lubricants13080340 - 31 Jul 2025
Viewed by 515
Abstract
Optimising the friction coefficient helps reduce friction losses and improve the efficiency of mechanical systems. The purpose of this study is to experimentally investigate the impact of roughness orientation on the friction coefficient in elastohydrodynamic (EHD) contact. Tests were carried out on a [...] Read more.
Optimising the friction coefficient helps reduce friction losses and improve the efficiency of mechanical systems. The purpose of this study is to experimentally investigate the impact of roughness orientation on the friction coefficient in elastohydrodynamic (EHD) contact. Tests were carried out on a twin-disc machine. Three pairs of discs of identical material (nitrided steel) and geometry were tested: a smooth pair (the root mean square surface roughness Sq = 0.07 µm), a pair with transverse roughness and another with longitudinal roughness. The two rough pairs have similar roughness amplitudes (Sq = 0.5 µm). A comparison of the friction generated by these different pairs was carried out to highlight the effect of the roughness orientation under different operating conditions (oil injection temperature from 60 to 80 °C, Hertzian pressure from 1.2 to 1.5 GPa and mean rolling speed from 5 to 30 m/s). Throughout all the tests conducted in this study, longitudinal roughness resulted in higher friction than transverse, with an increase of up to 30%. Moreover, longitudinal roughness is more sensitive to variations in operating conditions. Finally, in all tests, the asperities of longitudinal roughness were found to influence the friction behaviour, unlike transverse roughness. Full article
(This article belongs to the Special Issue Experimental Modelling of Tribosystems)
Show Figures

Figure 1

29 pages, 11834 KiB  
Article
Sedimentary Characteristics and Reservoir Quality of Shallow-Water Delta in Arid Lacustrine Basins: The Upper Jurassic Qigu Formation in the Yongjin Area, Junggar Basin, China
by Lin Wang, Qiqi Lyu, Yibo Chen, Xinshou Xu and Xinying Zhou
Appl. Sci. 2025, 15(15), 8458; https://doi.org/10.3390/app15158458 - 30 Jul 2025
Viewed by 200
Abstract
The lacustrine to deltaic depositional systems of the Upper Jurassic Qigu Formation in the Yongjin area constitute a significant petroleum reservoir in the central Junggar Basin, China. Based on core observations, petrology analyses, paleoenvironment indicators and modern sedimentary analyses, sequence stratigraphy, lithofacies associations, [...] Read more.
The lacustrine to deltaic depositional systems of the Upper Jurassic Qigu Formation in the Yongjin area constitute a significant petroleum reservoir in the central Junggar Basin, China. Based on core observations, petrology analyses, paleoenvironment indicators and modern sedimentary analyses, sequence stratigraphy, lithofacies associations, sedimentary environment, evolution, and models were investigated. The Qigu Formation can be divided into a third-order sequence consisting of a lowstand systems tract (LST) and a transgressive systems tract (TST), which is further subdivided into six fourth-order sequences. Thirteen lithofacies and five lithofacies associations were identified, corresponding to shallow-water delta-front deposits. The paleoenvironment of the Qigu Formation is generally characterized by an arid freshwater environment, with a dysoxic to oxic environment. During the LST depositional period (SQ1–SQ3), the water depth was relatively shallow with abundant sediment supply, resulting in a widespread distribution of channel and mouth bar deposits. During the TST depositional period (SQ4–SQ6), the rapid rise in base level, combined with reduced sediment supply, resulted in swift delta retrogradation and widespread lacustrine sedimentation. Combined with modern sedimentary analysis, the shallow-water delta in the study area primarily comprises a composite system of single main channels and distributary channel-mouth bar complexes. The channel-bar complex eventually forms radially distributed bar assemblages with lateral incision and stacking. The distributary channel could incise a mouth bar deeply or shallowly, typically forming architectural patterns of going over or in the mouth bar. Reservoir test data suggest that the mouth bar sandstones are favorable targets for lithological reservoir exploration in shallow-water deltas. Full article
(This article belongs to the Section Earth Sciences)
Show Figures

Figure 1

25 pages, 6316 KiB  
Article
Integration of Remote Sensing and Machine Learning Approaches for Operational Flood Monitoring Along the Coastlines of Bangladesh Under Extreme Weather Events
by Shampa, Nusaiba Nueri Nasir, Mushrufa Mushreen Winey, Sujoy Dey, S. M. Tasin Zahid, Zarin Tasnim, A. K. M. Saiful Islam, Mohammad Asad Hussain, Md. Parvez Hossain and Hussain Muhammad Muktadir
Water 2025, 17(15), 2189; https://doi.org/10.3390/w17152189 - 23 Jul 2025
Viewed by 1059
Abstract
The Ganges–Brahmaputra–Meghna (GBM) delta, characterized by complex topography and hydrological conditions, is highly susceptible to recurrent flooding, particularly in its coastal regions where tidal dynamics hinder floodwater discharge. This study integrates Synthetic Aperture Radar (SAR) imagery with machine learning (ML) techniques to assess [...] Read more.
The Ganges–Brahmaputra–Meghna (GBM) delta, characterized by complex topography and hydrological conditions, is highly susceptible to recurrent flooding, particularly in its coastal regions where tidal dynamics hinder floodwater discharge. This study integrates Synthetic Aperture Radar (SAR) imagery with machine learning (ML) techniques to assess near real-time flood inundation patterns associated with extreme weather events, including recent cyclones between 2017 to 2024 (namely, Mora, Titli, Fani, Amphan, Yaas, Sitrang, Midhili, and Remal) as well as intense monsoonal rainfall during the same period, across a large spatial scale, to support disaster risk management efforts. Three machine learning algorithms, namely, random forest (RF), support vector machine (SVM), and K-nearest neighbors (KNN), were applied to flood extent data derived from SAR imagery to enhance flood detection accuracy. Among these, the SVM algorithm demonstrated the highest classification accuracy (75%) and exhibited superior robustness in delineating flood-affected areas. The analysis reveals that both cyclone intensity and rainfall magnitude significantly influence flood extent, with the western coastal zone (e.g., Morrelganj and Kaliganj) being most consistently affected. The peak inundation extent was observed during the 2023 monsoon (10,333 sq. km), while interannual variability in rainfall intensity directly influenced the spatial extent of flood-affected zones. In parallel, eight major cyclones, including Amphan (2020) and Remal (2024), triggered substantial flooding, with the most severe inundation recorded during Cyclone Remal with an area of 9243 sq. km. Morrelganj and Chakaria were consistently identified as flood hotspots during both monsoonal and cyclonic events. Comparative analysis indicates that cyclones result in larger areas with low-level inundation (19,085 sq. km) compared to monsoons (13,829 sq. km). However, monsoon events result in a larger area impacted by frequent inundation, underscoring the critical role of rainfall intensity. These findings underscore the utility of SAR-ML integration in operational flood monitoring and highlight the urgent need for localized, event-specific flood risk management strategies to enhance flood resilience in the GBM delta. Full article
Show Figures

Figure 1

29 pages, 6058 KiB  
Article
Machine Learning-Based Carbon Compliance Forecasting and Energy Performance Assessment in Commercial Buildings
by Aditya Ramnarayan, Felipe de Castro, Andres Sarmiento and Michael Ohadi
Energies 2025, 18(15), 3906; https://doi.org/10.3390/en18153906 - 22 Jul 2025
Viewed by 360
Abstract
Owing to the need for continuous improvement in building energy performance standards (BEPSs), facilities must adhere to benchmark performances in their quest to achieve net-zero performance. This research explores machine learning models that leverage historical energy data from a cluster of buildings, along [...] Read more.
Owing to the need for continuous improvement in building energy performance standards (BEPSs), facilities must adhere to benchmark performances in their quest to achieve net-zero performance. This research explores machine learning models that leverage historical energy data from a cluster of buildings, along with relevant ambient weather data and building characteristics, with the objective of predicting the buildings’ energy performance through the year 2040. Using the forecasted emission results, the portfolio of buildings is analyzed for the incurred carbon non-compliance fees based on their on-site fossil fuel CO2e emissions to assess and pinpoint facilities with poor energy performance that need to be prioritized for decarbonization. The forecasts from the machine learning algorithms predicted that the portfolio of buildings would incur an annual average penalty of $31.7 million ($1.09/sq. ft.) and ~$348.7 million ($12.03/sq. ft.) over 11 years. To comply with these regulations, the building portfolio would need to reduce on-site fossil fuel CO2e emissions by an average of 58,246 metric tons (22.10 kg/sq. ft.) annually, totaling 640,708 metric tons (22.10 kg/sq. ft.) over a period of 11 years. This study demonstrates the potential for robust machine learning models to generate accurate forecasts to evaluate carbon compliance and guide prompt action in decarbonizing the built environment. Full article
Show Figures

Figure 1

29 pages, 1609 KiB  
Review
Recent Advances in Silver Nanowire-Based Transparent Conductive Films: From Synthesis to Applications
by Ji Li, Jun Luo and Yang Liu
Coatings 2025, 15(7), 858; https://doi.org/10.3390/coatings15070858 - 21 Jul 2025
Viewed by 1166
Abstract
Silver nanowire (AgNW)-based transparent conductive films are essential for flexible electronics due to their superior optoelectronic properties and mechanical flexibility. This review examines the characteristics and fabrication methods of AgNW thin films in detail. Among various fabrication techniques, the AgNW thin film produced [...] Read more.
Silver nanowire (AgNW)-based transparent conductive films are essential for flexible electronics due to their superior optoelectronic properties and mechanical flexibility. This review examines the characteristics and fabrication methods of AgNW thin films in detail. Among various fabrication techniques, the AgNW thin film produced by silk-screen printing exhibits the highest quality factor of 568.47, achieving 95.3% visible light transmittance of 95.3% and 13.6 Ω/sq sheet resistance. Ensuring the stability of AgNW films requires the deposition of protective layers through physical or chemical approaches. This review also systematically evaluates the different methods for preparing these protective layers, including their respective advantages and limitations. Furthermore, the review proposes strategies to enhance the conductivity, transparency, and flexibility of AgNW films. Finally, it discusses potential future applications and challenges, offering valuable insights for the development of next-generation flexible transparent electrodes. Full article
(This article belongs to the Special Issue Advanced Thin Films Technologies for Optics, Electronics, and Sensing)
Show Figures

Figure 1

Back to TopTop