Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (60)

Search Parameters:
Keywords = SMA spring

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 1520 KiB  
Article
Thermomechanical Parameters Modelling of Spring Force Elements Made of Shape Memory Alloys
by Olga Łastowska, Vitaliy Polishchuk and Andrii Poznanskyi
Materials 2025, 18(13), 3055; https://doi.org/10.3390/ma18133055 - 27 Jun 2025
Viewed by 337
Abstract
This study presents a phenomenological model for predicting the thermomechanical behaviour of spring-type actuators made of shape memory alloys (SMAs). The model incorporates the kinetics of martensite–austenite phase transitions as a function of temperature and applied stress. The primary innovation is the inclusion [...] Read more.
This study presents a phenomenological model for predicting the thermomechanical behaviour of spring-type actuators made of shape memory alloys (SMAs). The model incorporates the kinetics of martensite–austenite phase transitions as a function of temperature and applied stress. The primary innovation is the inclusion of a scalar internal variable that represents the evolution of the phase transformation within a phenomenological macroscopic model. This approach enables the deformation–force–temperature behaviour of SMA-based spring elements under cyclic loading to be accurately described. A set of constitutive equations was derived to describe reversible and residual strains, along with transformation start and finish conditions. Model parameters were calibrated using experimental data from VSP-1 and TN-1K SMA springs that were subjected to thermal cycling. The validation results show a high correlation between the theoretical predictions and the experimental data, with deviation margins of less than 6.5%. The model was then applied to designing and analysing thermosensitive actuator mechanisms for temperature control systems. This yielded accurate deformation–force characteristics, demonstrating low inertia and high repeatability. This approach enables the efficient prediction and improvement of the performance of SMA-based spring elements in actuators, making it relevant for adaptive systems in marine and aerospace applications. Full article
Show Figures

Figure 1

20 pages, 14992 KiB  
Article
A Lightweight Bioinspired SMA-Based Grasping Mechanism for Flapping Wing MAVs
by Ahmad Hammad, Mehmet Süer and Sophie F. Armanini
Biomimetics 2025, 10(6), 364; https://doi.org/10.3390/biomimetics10060364 - 4 Jun 2025
Viewed by 608
Abstract
This study presents a novel, bioinspired perching mechanism designed to enhance the landing and takeoff capabilities of flapping wing micro aerial vehicles (FWMAVs). Drawing inspiration from the human hand, the lightweight gripper integrates a compliant claw structure actuated by shape memory alloys (SMAs) [...] Read more.
This study presents a novel, bioinspired perching mechanism designed to enhance the landing and takeoff capabilities of flapping wing micro aerial vehicles (FWMAVs). Drawing inspiration from the human hand, the lightweight gripper integrates a compliant claw structure actuated by shape memory alloys (SMAs) that mimic muscle movement. These SMA springs act as compact, lightweight substitutes for traditional actuators like motors or solenoids. The mechanism operates via short electrical impulses that trigger both opening and closing motions. A detailed design process was undertaken to optimize phalange lengths for cylindrical grasping and to select appropriate SMAs for reliable performance. Weighing only 50 g, the gripper leverages the high power-to-weight ratio and flexibility of SMAs, with the springs directly embedded within the phalanges to reduce size and mass while preserving high-force output. Experimental results demonstrate fast actuation and a grasping force of approximately 16 N, enabling the gripper to hold objects of varying shapes and sizes and perform perching, grasping, and carrying tasks. Compared to existing solutions, this mechanism offers a simpler, highly integrated structure with enhanced miniaturization and adaptability, making it especially suitable for low-payload MAV platforms like FWMAVs. Full article
(This article belongs to the Special Issue Bio-Inspired Robotics and Applications 2025)
Show Figures

Figure 1

22 pages, 6734 KiB  
Article
Envelope Morphology of an Elephant Trunk-like Robot Based on Differential Cable–SMA Spring Actuation
by Longfei Sun and Huiying Gu
Actuators 2025, 14(2), 100; https://doi.org/10.3390/act14020100 - 19 Feb 2025
Viewed by 787
Abstract
Most trunk-like robots are designed with distributed actuators to mimic the envelope-grasping behavior of elephant trunks in nature, leading to a complex actuation system. In this paper, a modular underactuated elephant trunk-imitating robot based on the combined drive of the cable and shape [...] Read more.
Most trunk-like robots are designed with distributed actuators to mimic the envelope-grasping behavior of elephant trunks in nature, leading to a complex actuation system. In this paper, a modular underactuated elephant trunk-imitating robot based on the combined drive of the cable and shape memory alloy (SMA) springs is designed. Unlike the traditional underactuated structure that can only passively adapt to the envelope of the object contour, the proposed elephant trunk robot can control the cable tension and the equivalent stiffness of the SMA springs to achieve active control of the envelope morphology for different target objects. The overall structure of the elephant trunk robot is designed and the principle of deformation envelope is elucidated. Based on the static model of the robot under load, the mapping relationship between the tension force and the tension angle between modules is derived. The positive kinematic model of the elephant trunk robot is established based on the Debavit–Hartenberg (D–H) method, the spatial position of the elephant trunk robot is obtained, and the Monte Carlo method is used to derive the robot’s working space. The active bending envelope grasping performance is further verified by building the prototype to perform grasping experiments on objects of various shapes. Full article
(This article belongs to the Section Actuators for Robotics)
Show Figures

Figure 1

16 pages, 28202 KiB  
Article
An Extendable and Deflectable Modular Robot Inspired by Worm for Narrow Space Exploration
by Shufeng Tang, Jianan Yao, Yue Yu and Guoqing Zhao
Actuators 2025, 14(2), 94; https://doi.org/10.3390/act14020094 - 15 Feb 2025
Cited by 1 | Viewed by 917
Abstract
Inspired by earthworm peristalsis, a novel modular robot suitable for narrow spaces is proposed, capable of elongation, contraction, deflection and crawling. Unlike motor-driven robots, the earthworm-inspired robot achieves extension and deflection in each module through “on–off” control of the SMA springs, utilizing the [...] Read more.
Inspired by earthworm peristalsis, a novel modular robot suitable for narrow spaces is proposed, capable of elongation, contraction, deflection and crawling. Unlike motor-driven robots, the earthworm-inspired robot achieves extension and deflection in each module through “on–off” control of the SMA springs, utilizing the cooperation of mechanical skeletons and gears to avoid posture redundancy. The return to the initial posture and the maintenance of the posture are achieved through tension and torsion springs. To study the extension and deflection characteristics, we established a model through kinematic and force analysis to estimate the relationship between the length change and tensile characteristics of the SMA on both sides and the robot’s extension length and deflection angle. Through model verification and experiments, the robot’s extension, deflection and movement characteristics in narrow spaces and varying curvature narrow spaces were comprehensively studied. The results show that the earthworm-inspired robot, as predicted by the model, possesses accurate extension and deflection performance, and can perform inspection tasks in complex and narrow space environments. Additionally, compared to motor-driven robots, the robot designed in this study does not require insulation in low-temperature environments, and the cold conditions can improve its movement efficiency. This new configuration design and the extension and deflection characteristics provide valuable insights for the development of new modular robots and robot drive designs for extremely cold environments. Full article
(This article belongs to the Section Actuators for Robotics)
Show Figures

Figure 1

17 pages, 4478 KiB  
Article
A Novel Design of a Torsional Shape Memory Alloy Actuator for Active Rudder
by Felipe S. Lima, Cícero R. Souto, Andersson G. Oliveira, Alysson D. Silvestre, Railson M. N. Alves, Sebastião E. S. Santos, Ricardo S. Gomez, Glauco R. F. Brito, André L. D. Bezerra, Diogenes S. M. Santana and Antonio G. B. Lima
Sensors 2024, 24(15), 4973; https://doi.org/10.3390/s24154973 - 31 Jul 2024
Viewed by 1659
Abstract
SMA actuators are a group of lightweight actuators that offer advantages over conventional technology and allow for simple and compact solutions to the increasing demand for electrical actuation. In particular, an increasing number of SMA torsional actuator applications have been published recently due [...] Read more.
SMA actuators are a group of lightweight actuators that offer advantages over conventional technology and allow for simple and compact solutions to the increasing demand for electrical actuation. In particular, an increasing number of SMA torsional actuator applications have been published recently due to their ability to supply rotational motion under load, resulting in advantages such as module simplification and the reduction of overall product weight. This paper presents the conceptual design, operating principle, experimental characterization and working performance of torsional actuators applicable in active rudder in aeronautics. The proposed application comprises a pair of SMA torsion springs, which bi-directionally actuate the actuator by Joule heating and natural cooling. The experimental results confirm the functionality of the torsion springs actuated device and show the rotation angle of the developed active rudder was about 30° at a heating current of 5 A. After the design and experiment, one of their chief drawbacks is their relatively slow operating speed in rudder positioning, but this can be improved by control strategy and small modifications to the actuator mechanism described in this work. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Figure 1

23 pages, 6793 KiB  
Article
Design and Control of a Shape Memory Alloy-Based Idle Air Control Actuator for a Mid-Size Passenger Vehicle Application
by Pacifique Turabimana, Jung Woo Sohn and Seung-Bok Choi
Appl. Sci. 2024, 14(11), 4784; https://doi.org/10.3390/app14114784 - 31 May 2024
Cited by 1 | Viewed by 1708
Abstract
The idle air control actuator is an important device in automotive engine management systems to reduce fuel consumption by controlling the engine’s idling operation. This research proposes an innovative idle air control (IAC) actuator for vehicle applications utilizing shape memory alloy (SMA) technology. [...] Read more.
The idle air control actuator is an important device in automotive engine management systems to reduce fuel consumption by controlling the engine’s idling operation. This research proposes an innovative idle air control (IAC) actuator for vehicle applications utilizing shape memory alloy (SMA) technology. The proposed actuator leverages the unique properties of SMAs, such as the ability to undergo large deformations upon thermal activation, to achieve precise and rapid controls in the air intake of automotive engines during idle conditions. The actuator structure mechanism consists of an SMA spring and an antagonistic spring made from steel. The design process utilizes both numerical and analytical approaches. The SMA spring is electrically supplied to activate the opening process of the actuator, and its closing state does not need electricity. However, the PID controller is used to control the applied current, which reduces the time taken by the actuator to achieve the actuation strokes. It shows good operability within multiple numbers of operation cycles. Additionally, the performance of the designed actuator is evaluated through mathematical algorithms by integrating it into the engine’s air intake system during idle operating conditions. The results demonstrate the effectiveness of the SMA-based actuator in achieving rapid control of the air intake through bypass, thereby improving engine idle conditions. Full article
Show Figures

Figure 1

37 pages, 8314 KiB  
Article
Slime Mould Algorithm Based on a Gaussian Mutation for Solving Constrained Optimization Problems
by Gauri Thakur, Ashok Pal, Nitin Mittal, Asha Rajiv and Rohit Salgotra
Mathematics 2024, 12(10), 1470; https://doi.org/10.3390/math12101470 - 9 May 2024
Cited by 4 | Viewed by 1564
Abstract
The slime mould algorithm may not be enough and tends to trap into local optima, low population diversity, and suffers insufficient exploitation when real-world optimization problems become more complex. To overcome the limitations of SMA, the Gaussian mutation (GM) with a novel strategy [...] Read more.
The slime mould algorithm may not be enough and tends to trap into local optima, low population diversity, and suffers insufficient exploitation when real-world optimization problems become more complex. To overcome the limitations of SMA, the Gaussian mutation (GM) with a novel strategy is proposed to enhance SMA and it is named as SMA-GM. The GM is used to increase population diversity, which helps SMA come out of local optima and retain a robust local search capability. Additionally, the oscillatory parameter is updated and incorporated with GM to set the balance between exploration and exploitation. By using a greedy selection technique, this study retains an optimal slime mould position while ensuring the algorithm’s rapid convergence. The SMA-GM performance was evaluated by using unconstrained, constrained, and CEC2022 benchmark functions. The results show that the proposed SMA-GM has a more robust capacity for global search, improved stability, a faster rate of convergence, and the ability to solve constrained optimization problems. Additionally, the Wilcoxon rank sum test illustrates that there is a significant difference between the optimization outcomes of SMA-GM and each compared algorithm. Furthermore, the engineering problem such as industrial refrigeration system (IRS), optimal operation of the alkylation unit problem, welded beam and tension/compression spring design problem are solved, and results prove that the proposed algorithm has a better optimization efficiency to reach the optimum value. Full article
(This article belongs to the Section E1: Mathematics and Computer Science)
Show Figures

Figure 1

22 pages, 11578 KiB  
Article
Shape Memory Alloys Patches to Mimic Rolling, Sliding, and Spinning Movements of the Knee
by Suyeon Seo, Minchae Kang and Min-Woo Han
Biomimetics 2024, 9(5), 255; https://doi.org/10.3390/biomimetics9050255 - 23 Apr 2024
Cited by 1 | Viewed by 2608
Abstract
Every year, almost 4 million patients received medical care for knee osteoarthritis. Osteoarthritis involves progressive deterioration or degenerative changes in the cartilage, leading to inflammation and pain as the bones and ligaments are affected. To enhance treatment and surgical outcomes, various studies analyzing [...] Read more.
Every year, almost 4 million patients received medical care for knee osteoarthritis. Osteoarthritis involves progressive deterioration or degenerative changes in the cartilage, leading to inflammation and pain as the bones and ligaments are affected. To enhance treatment and surgical outcomes, various studies analyzing the biomechanics of the human skeletal system by fabricating simulated bones, particularly those reflecting the characteristics of patients with knee osteoarthritis, are underway. In this study, we fabricated replicated bones that mirror the bone characteristics of patients with knee osteoarthritis and developed a skeletal model that mimics the actual movement of the knee. To create patient-specific replicated bones, models were extracted from computerized tomography (CT) scans of knee osteoarthritis patients. Utilizing 3D printing technology, we replicated the femur and tibia, which bear the weight of the body and support movement, and manufactured cartilage capable of absorbing and dispersing the impact of knee joint loads using flexible polymers. Furthermore, to implement knee movement in the skeletal model, we developed artificial muscles based on shape memory alloys (SMAs) and used them to mimic the rolling, sliding, and spinning motions of knee flexion. The knee movement was investigated by changing the SMA spring’s position, the number of coils, and the applied voltage. Additionally, we developed a knee-joint-mimicking system to analyze the movement of the femur. The proposed artificial-skeletal-model-based knee-joint-mimicking system appears to be applicable for analyzing skeletal models of knee patients and developing surgical simulation equipment for artificial joint replacement surgery. Full article
(This article belongs to the Special Issue Bioinspired Structures for Soft Actuators)
Show Figures

Figure 1

21 pages, 4058 KiB  
Article
Resistance Feedback of a Ni-Ti Alloy Actuator at Room Temperature in Still Air
by Francesco Durante, Terenziano Raparelli and Pierluigi Beomonte Zobel
Micromachines 2024, 15(4), 545; https://doi.org/10.3390/mi15040545 - 18 Apr 2024
Cited by 2 | Viewed by 1405
Abstract
This paper illustrates an experimental activity for the closed-loop position control of an actuator made using shape memory alloy (SMA) wire. A solution with the self-sensing effect was implemented to miniaturize the systems, i.e., without external sensors. A proportional control algorithm was initially [...] Read more.
This paper illustrates an experimental activity for the closed-loop position control of an actuator made using shape memory alloy (SMA) wire. A solution with the self-sensing effect was implemented to miniaturize the systems, i.e., without external sensors. A proportional control algorithm was initially used, demonstrating the idea’s feasibility; the wire can behave simultaneously as an actuator and sensor. An experimental investigation was subsequently conducted for the optimization of the developed actuator. As for the material, a Flexinol wire, Ni-Ti alloy, with a diameter of 0.150 mm and a length of 200 mm, was used. Preliminarily, characterization of the SMA wire at constant and variable loads was carried out; the characteristics detected were elongation vs. electric current and elongation vs. electrical resistance. The control system is PC based with a data acquisition card (DAQ). A drive board was designed and built to read the wire’s electrical resistance and power it by pulse width modulation (PWM). A notable result is that the actuator works with good precision and in dynamic conditions, even when it is called to support a load up to 65% different from that for which the electrical resistance–length correlation has previously been experimentally obtained, on which the control is based. This opens up the possibility of using the actuator in a counteracting configuration with a spring, which makes hardware implementation and control management simple. Full article
(This article belongs to the Special Issue Smart Material-Based Micromechatronics in Soft Robotics)
Show Figures

Figure 1

24 pages, 8774 KiB  
Article
Snake Robot with Motion Based on Shape Memory Alloy Spring-Shaped Actuators
by Ricardo Cortez, Marco Antonio Sandoval-Chileño, Norma Lozada-Castillo and Alberto Luviano-Juárez
Biomimetics 2024, 9(3), 180; https://doi.org/10.3390/biomimetics9030180 - 16 Mar 2024
Cited by 12 | Viewed by 3054
Abstract
This study presents the design and evaluation of a prototype snake-like robot that possesses an actuation system based on shape memory alloys (SMAs). The device is constructed based on a modular structure of links connected by two degrees of freedom links utilizing Cardan [...] Read more.
This study presents the design and evaluation of a prototype snake-like robot that possesses an actuation system based on shape memory alloys (SMAs). The device is constructed based on a modular structure of links connected by two degrees of freedom links utilizing Cardan joints, where each degree of freedom is actuated by an agonist–antagonist mechanism using the SMA spring-shaped actuators to generate motion, which can be easily replaced once they reach a degradation point. The methodology for programming the spring shape into the SMA material is described in this work, as well as the instrumentation required for the monitoring and control of the actuators. A simplified design is presented to describe the way in which the motion is performed and the technical difficulties faced in manufacturing. Based on this information, the way in which the design is adapted to generate a feasible robotic system is described, and a mathematical model for the robot is developed to implement an independent joint controller. The feasibility of the implementation of the SMA actuators regarding the motion of the links is verified for the case of a joint, and the change in the shape of the snake robot is verified through the implementation of a set of tracking references based on a central pattern generator. The generated tracking results confirm the feasibility of the proposed mechanism in terms of performing snake gaits, as well as highlighting some of the drawbacks that should be considered in further studies. Full article
(This article belongs to the Special Issue Recent Advances in Robotics and Biomimetics)
Show Figures

Figure 1

17 pages, 4444 KiB  
Article
Research on SPAD Estimation Model for Spring Wheat Booting Stage Based on Hyperspectral Analysis
by Hongwei Cui, Haolei Zhang, Hao Ma and Jiangtao Ji
Sensors 2024, 24(5), 1693; https://doi.org/10.3390/s24051693 - 6 Mar 2024
Cited by 3 | Viewed by 1395
Abstract
With the rapid progression of agricultural informatization technology, the methodologies of crop monitoring based on spectral technology are constantly upgraded. In order to carry out the efficient, precise and nondestructive detection of relative chlorophyll (SPAD) during the booting stage, we acquired hyperspectral reflectance [...] Read more.
With the rapid progression of agricultural informatization technology, the methodologies of crop monitoring based on spectral technology are constantly upgraded. In order to carry out the efficient, precise and nondestructive detection of relative chlorophyll (SPAD) during the booting stage, we acquired hyperspectral reflectance data about spring wheat vertical distribution and adopted the fractional-order differential to transform the raw spectral data. After that, based on correlation analysis, fractional differential spectra and fractional differential spectral indices with strong correlation with SPAD were screened and fused. Then, the least-squares support vector machine (LSSSVM) and the least-squares support vector machine (SMA-LSSSVM) optimized on the slime mold algorithm were applied to construct the estimation models of SPAD, and the model accuracy was assessed to screen the optimal estimation models. The results showed that the 0.4 order fractional-order differential spectra had the highest correlation with SPAD, which was 9.3% higher than the maximum correlation coefficient of the original spectra; the constructed two-band differential spectral indices were more sensitive to SPAD than the single differential spectra, in which the correlation reached the highest level of 0.724. The SMA-LSSSVM model constructed based on the two-band fractional-order differential spectral indices was better than the single differential spectra and the integration of both, which realized the assessment of wheat SPAD. Full article
(This article belongs to the Section Optical Sensors)
Show Figures

Figure 1

4 pages, 1281 KiB  
Proceeding Paper
Development of a Shape-Memory-Alloy-Based Overheating Protection System
by Arun Anbalagan, Santosh Sampath, Balasubramaniyan Chandrasekaran, Anuraag M. Nair, R. S. Shri Sabarish, P. V. Shravan and A. Vigneshwar
Eng. Proc. 2024, 61(1), 31; https://doi.org/10.3390/engproc2024061031 - 5 Feb 2024
Viewed by 1560
Abstract
Shape Memory Alloys (SMAs) are a class of metallic alloys that have the ability to return to their original shape after being deformed. NiTi (nickel–titanium) alloy a type of shape memory alloy that possesses unique properties such as remembering its shape, biocompatibility, and [...] Read more.
Shape Memory Alloys (SMAs) are a class of metallic alloys that have the ability to return to their original shape after being deformed. NiTi (nickel–titanium) alloy a type of shape memory alloy that possesses unique properties such as remembering its shape, biocompatibility, and super-elasticity. These SMAs have the ability to deform when heated and regain their original shape when allowed to cool. The disadvantage of a fuse is that it can only be used once. By replacing a wire that melts with a NiTi shape memory alloy, we can turn it into a switch that opens when an excessive current (which leads to an increase in temperature of the wire) is applied. Magnets keep the circuit closed. When the wire heats up, the spring-shaped coil shrinks, which opens the circuit. The circuit can then be closed manually once the problems are rectified. Full article
Show Figures

Figure 1

22 pages, 6714 KiB  
Article
A Novel Dual Self-Centering Friction Damper for Seismic Responses Control of Steel Frame
by Juntong Qu, Xinyue Liu, Yuxiang Bai, Wenbin Wang, Yuheng Li, Junxiang Pu and Chunlei Zhou
Buildings 2024, 14(2), 407; https://doi.org/10.3390/buildings14020407 - 2 Feb 2024
Cited by 4 | Viewed by 1830
Abstract
Due to their weight, the seismic response control of buildings needs a large-scale damper. To reduce the consumption of shape memory alloys (SMAs), this study proposed a dual self-centering pattern accomplished by the coil springs and SMA, which could drive the energy dissipation [...] Read more.
Due to their weight, the seismic response control of buildings needs a large-scale damper. To reduce the consumption of shape memory alloys (SMAs), this study proposed a dual self-centering pattern accomplished by the coil springs and SMA, which could drive the energy dissipation device to recenter. Combined with the friction energy dissipation device (FD), the dual self-centering friction damper (D-SCFD) was designed, and the motivation and parameters were described. The mechanical properties of D-SCFD, including the simplified D-SCFD mechanical model, theoretical index calculations of recentering, and energy dissipation performance, were then investigated. The seismic response mitigation of the steel frame adopting the D-SCFDs under consecutive strong earthquakes was finally analyzed. The results showed that a decrease in the consumption of SMA by the dual self-centering pattern was feasible, especially in the case of low demand for the recentering performance. Reducing the D-SCFD’s recentering performance hardly affected the steel frame’s residual inter-story drift ratios when the residual deformation rate was less than 50%, which can help strengthen the controls on the steel frame’s peak seismic responses. It is recommended to utilize the D-SCFD with not too high a recentering performance to mitigate the seismic response of the structure. Full article
Show Figures

Figure 1

14 pages, 3593 KiB  
Article
Design of a Shape-Memory-Alloy-Based Carangiform Robotic Fishtail with Improved Forward Thrust
by Mithilesh Kumar Koiri, Vineet Dubey, Anuj Kumar Sharma and Daniel Chuchala
Sensors 2024, 24(2), 544; https://doi.org/10.3390/s24020544 - 15 Jan 2024
Cited by 4 | Viewed by 2122
Abstract
Shape memory alloys (SMAs) have become the most common choice for the development of mini- and micro-type soft bio-inspired robots due to their high power-to-weight ratio, ability to be installed and operated in limited space, silent and vibration-free operation, biocompatibility, and corrosion resistance [...] Read more.
Shape memory alloys (SMAs) have become the most common choice for the development of mini- and micro-type soft bio-inspired robots due to their high power-to-weight ratio, ability to be installed and operated in limited space, silent and vibration-free operation, biocompatibility, and corrosion resistance properties. Moreover, SMA spring-type actuators are used for developing different continuum robots, exhibiting high degrees of freedom and flexibility. Spring- or any elastic-material-based antagonistic or biasing force is mostly preferred among all other biasing techniques to generate periodic oscillation of SMA actuator-based robotic body parts. In this model-based study, SMA-based spring-type actuators were used to develop a carangiform-type robotic fishtail. Fin size optimization for the maximization of forward thrust was performed for the developed system by varying different parameters, such as caudal fin size, current through actuators, pulse-width modulation signal (PWM), and operating depth. A caudal fin with a mixed fin pattern between the Lunate and Fork “Lunafork” and a fin area of approximately 5000 mm2 was found to be the most effective for the developed system. The maximum forward thrust developed by this fin was recorded as 40 gmf at an operation depth of 12.5 cm in a body of still water. Full article
(This article belongs to the Section Intelligent Sensors)
Show Figures

Figure 1

15 pages, 7969 KiB  
Article
Development of Wearable Finger Prosthesis with Pneumatic Actuator for Patients with Partial Amputations
by Hyunho Kim, Sujin Jang, Phuoc Thien Do, Chang Kee Lee, Bummo Ahn, Suncheol Kwon, Handdeut Chang and Yeongjin Kim
Actuators 2023, 12(12), 434; https://doi.org/10.3390/act12120434 - 23 Nov 2023
Cited by 5 | Viewed by 3341
Abstract
As the number of patients with amputations increases, research on assistive devices such as prosthetic limbs is actively being conducted. However, the development of assistive devices for patients with partial amputations is insufficient. In this study, we developed a finger prosthesis for patients [...] Read more.
As the number of patients with amputations increases, research on assistive devices such as prosthetic limbs is actively being conducted. However, the development of assistive devices for patients with partial amputations is insufficient. In this study, we developed a finger prosthesis for patients with partial amputations. The design and mathematical modeling of the prosthesis are briefly presented. A pneumatic actuator, based on the McKibben muscle design, was employed to drive the finger prosthesis. We characterized the relationship between the actuator’s force and axial length changes with varying pressure. An empirical model derived from conventional mathematical modeling of force and axis length changes was proposed and compared with experimental data, and the error was measured to be between about 3% and 13%. In order to control the actuator using an electromyography (EMG) signal, an electrode was attached to the user’s finger flexors. The EMG signal was measured in relation to the actual gripping force and was provided with visual feedback, and the magnitude of the signal was evaluated using root mean square (RMS). Depending on the evaluated EMG signal magnitude, the pressure of the actuator was continuously adjusted. The pneumatic pressure was adjusted between 100 kPa and 250 kPa, and the gripping force of the finger prosthesis ranged from about 0.7 N to 6.5 N. The stiffness of the prosthesis can be varied using the SMA spring. The SMA spring is switched to a fully austenite state at 50 °C through PID control, and when the finger prosthesis is bent to a 90° angle, it can provide approximately 1.2 N of assistance force. Finally, the functional evaluation of the finger prosthesis was performed through a pinch grip test of eight movements. Full article
(This article belongs to the Section Actuators for Robotics)
Show Figures

Figure 1

Back to TopTop