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Abstract: The slime mould algorithm may not be enough and tends to trap into local optima, low
population diversity, and suffers insufficient exploitation when real-world optimization problems
become more complex. To overcome the limitations of SMA, the Gaussian mutation (GM) with a
novel strategy is proposed to enhance SMA and it is named as SMA-GM. The GM is used to increase
population diversity, which helps SMA come out of local optima and retain a robust local search
capability. Additionally, the oscillatory parameter is updated and incorporated with GM to set the
balance between exploration and exploitation. By using a greedy selection technique, this study
retains an optimal slime mould position while ensuring the algorithm’s rapid convergence. The SMA-
GM performance was evaluated by using unconstrained, constrained, and CEC2022 benchmark
functions. The results show that the proposed SMA-GM has a more robust capacity for global search,
improved stability, a faster rate of convergence, and the ability to solve constrained optimization
problems. Additionally, the Wilcoxon rank sum test illustrates that there is a significant difference
between the optimization outcomes of SMA-GM and each compared algorithm. Furthermore, the
engineering problem such as industrial refrigeration system (IRS), optimal operation of the alkylation
unit problem, welded beam and tension/compression spring design problem are solved, and results
prove that the proposed algorithm has a better optimization efficiency to reach the optimum value.

Keywords: optimization; slime mould algorithm; Gaussian mutation; constrained functions

MSC: 90C27

1. Introduction

The method of optimization involves finding the best global response for a given prob-
lem in the search space. Several real-world problems are facing optimization challenges.
The need for novel optimization strategies becomes more apparent than before as problems
become more complicated. Several approaches have been significantly advanced in the last
few decades to solve optimization problems. For example, prior to the development of
heuristic optimization techniques, the only method available for solving issues was mathe-
matical optimization. However, these techniques require knowledge of the optimization
problem’s properties, such as continuity or differentiability. Metaheuristic techniques have
gained increasing momentum in optimization techniques in recent years. Several popular
algorithms in this domain are particle swarm optimization (PSO) [1], genetic algorithms
(GA) [2], moth flame optimization [3], whale optimization algorithm [4], grey wolf opti-
mization [5], and so on. These algorithms find application in several fields of research and
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industry as well. Notwithstanding these optimizers’ advantages, the fundamental question
is whether an optimizer can solve each optimization problem. In optimization, as stated by
the No Free-Lunch (NFL) theorem [6], researchers are permitted to create new algorithms
that solve optimization problems more successfully. This makes it accessible to researchers
to propose algorithm improvements that are more effective in specific situations, which
advances the solution of complex problems in optimization.

Constrained optimization problems (COPs) are optimization problems that are cur-
rently in existence but are frequently limited by certain restrictions. Constrained evolu-
tionary algorithms handle constrained optimization problems by combining evolutionary
algorithms with constraint-handling technology. Evolutionary algorithms are commonly
employed to tackle constrained optimization problems because of their strong universality,
robustness, reliability, and low information requirements [7]. Meanwhile, over the past
20 years, numerous algorithm-based constraint-handling strategies have been suggested.
Currently, the most popular and straightforward approach for handling constraints is the
penalty function method [8], which includes or removes a penalty term from the objective
function to change a constrained optimization problem into an unconstrained optimization
problem. Since most real-world problems include constraints, it is essential to determine
the optimum solution for an optimization problem with constraints, such as resources,
time, cost, or design constraints. Slime Mould Algorithm (SMA), a unique bio-inspired
optimization method [9], was proposed in 2020 by Li et al. The oscillatory behavior of slime
mould during foraging serves as its inspiration. The benefits of the SMA are its excellent
scalability, few parameters, and straightforward concepts.

While the SMA has been shown to work exceptionally well, it is not without the
limitations. It is unable to find stability between the search trends—exploration and ex-
ploitation. This limitation could lead to inadequate solution precision, slower convergence,
and an inability to come out of local optimum values. To improve the limitations of the
SMA algorithm, this study proposes an enhanced algorithm called SMA-GM that presents
a Gaussian mutation (GM) technique for improving SMA. The main contributions are
as follows:

• The proposed work designs the Gaussian mutation (GM) scheme, which acts on the
current positions of slime mould. The proposed scheme can efficiently boost the local
search capability of the optimal position of slime mould and avoid falling into the
local optima;

• The greedy selection approach is used for selection purposes to make sure that the
slime mould with better fitness enters the next generation, ensures the algorithm’s
convergence speed, and preserves population diversity;

• The proposed strategy is verified by using 13 unconstrained and constrained optimiza-
tion problems and CEC2022 benchmark functions. Furthermore, the comparison of
the SMA-GM with the original SMA and with some well-established optimization al-
gorithms has been shown, and the constrained engineering problem is solved through
SMA-GM;

• The experimental results, along with the Wilcoxon rank sum test as a statistical test,
demonstrate the advantages and the superior performance of the proposed SMA-GM
algorithm. The findings prove that the GM approach effectively improves the classical
SMA’s search efficiency.

The remaining structure of this paper is organized as follows: Section 2 provides
related work. Section 3 presents the preliminaries. In Section 4, the proposed SMA-GM
algorithm is explained. Experimental results are given in Section 5. Section 6 includes
the mechanical engineering design problem. Lastly, conclusions and directions for further
study are presented in Section 7.

2. Related Work

The referenced literature studies show that the researchers have created a wide range
of hybrid and metaheuristic versions of SMA to address many kinds of stochastic prob-
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lems by mimicking the behavior of slime mould in finding out the food source. Yuan
L et al. [10] proposed an improved algorithm by embedding elite and chaotic stochastic
approaches into the structure of SMA for maintaining better stability among exploration
and exploitation stages. Naik et al. [11] enhanced the SMA’s exploration capability by
adding a balanced optimizer balanced pool, which improves the SMA individuals’ random-
ness. Houssein et al. [12] used an adaptive guided differential evolution (DE) algorithm
for improving SMA. Yu et al. [13] introduced a quantum-based enhanced SMA, which
gives better results in many optimization problems. A hybrid of arithmetic optimizer with
SMA was employed by Chauhan S et al. [14] for improving the lesser internal memory
and low convergence at local optimal. Zhao J et al. [15] enhanced the searching ability
of SMA by replacing random weights through levy flights. Abualigah L et al. [16] pro-
posed an opposition-based learning algorithm to increase the SMA rate of convergence and
further levy flight distribution is incorporated with SMA for improving exploration and
exploitation stages. Örnek et al. [17] propose the updating of SMA position by imposing the
reciprocal oscillation feature of sine and cosine through each generation, which successfully
boosts the exploration phase.

Gaussian mutation (GM) is also an optimization algorithm. Researchers have pro-
posed GM as an improvement mechanism to boost the exploration or exploitation function.
Yu et al. [18] proposed the quantum revolving door and GM approach for improving the
dragonfly algorithm (DA) performance efficiently. Zhang et al. [19] employed fruit fly
optimization (FOA) with a GM strategy and a chaotic local search approach for solving
problems of feature. Chen et al. [20] proposed improved bacterial foraging optimization
(BFO) with GM and a chaotic design for strengthening its performance. To balance explo-
ration and exploitation, Luo et al. [21] developed an enhanced multi-strategy grasshopper
optimization algorithm (GOA) with GM, levy flight, and opposition-based learning strate-
gies. An enhanced Gaussian barebone was proposed by S. Wu et al. [22] as the DE mutation
extension to improve the update approach of SMA.

3. Preliminary
3.1. Slime Mould Algorithm

With several novel characteristics and a unique mathematical framework that makes
use of adaptive weights to simulate positive and negative feedback through bio-oscillator-
based propagation waves as best paths for linking food for better exploration and exploita-
tion, the SMA [9] is a novel stochastic optimizer resulting from the slime mould oscillation
model in nature. The SMA mimics the behavioral changes that slime moulds undergo
when searching for and encircling food during the foraging phase. They have a fan-like
morphology at the front, followed by a web of connecting veins. The diffusive waves are
created by the slime mould’s bio-oscillator, which modifies the cytoplasmic flow in the
veins as they reach the food point and eventually generate the optimal path. The constant
z with value 0.03 and transition probabilities p are critical parameters for maintaining
balance in the SMA. SMA will randomly explore between the bounds set by lb and ub
when randomly created values are smaller than z. On the other hand, SMA will exploit and
search in neighboring areas of the current position if the random value, r, is greater than
p. SMA will wrap around the current best position when r is smaller than p. The current
location’s fit will determine the wrapping direction and radius. The following operations
highlight the SMA behavior.

Approach food: For simulating the contraction mode and to represent the approaching
behavior of slime mould, the given below rule is presented

−−−−−→
X(t + 1) =


−−−→
Xb(t) +

→
vb

(
→
W ∗

−−→
XA(t)−

−−→
XB(t)

)
, r < p

→
vc ∗

−→
X(t), r ≥ p

(1)
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where
→
vc decreases linearly from one to zero and

→
vb has a range of [−a, a].

→
X indicates the

location of the slime mould,
−→
XA , and

−→
XB signify two arbitrarily chosen individuals from

the population,
→
W means the slime mould weight, and t indicates the current iteration.

−→
Xb

represents the individual position with the maximum odor concentration. The following is
the p formula:

p = tanh|S(i)− DF| (2)

The following is the formula for
→
vb and

→
W:

a = arctanh
(
−
(

t
max_t

)
+ 1
)

(3)

−−−−−−→
W(SlI(i)) =


1 + r ∗ log

(
b f−S(i)
b f−w f + 1

)
, condition

1 − r ∗ log
(

b f−S(i)
b f−w f + 1

)
, others

(4)

SlI= sort(S) (5)

where SlI indicates the smell index, i.e., it is the sorted order of fitness values; b f signifies
the optimum fitness found in the current iterative manner, w f presents the poorest fitness
value found in the iterative course, and condition shows that S(i) ranks the first half of the
population and that the random value in the interval [0, 1] is denoted by r.

Wrap food: The mathematical strategy given below is applied for updating the location
of slime mould

−−−−−−→
X(t + 1) =



rand ∗ (ub − lb) + lb, rand < z

−−→
xb(t) +

→
vb ∗

(
→
W ∗

−−→
xA(t)−

−−→
xB(t)

)
, r < p

→
vc ∗

−−→
X(t) r ≥ p

(6)

where r and rand indicate the arbitrary value in [0, 1] and lb, ub indicates the lower and
upper boundaries of the search range, and z is the parameter taken as 0.03.

Oscillation: With the increasing number of iterations, the
→
vb value gradually ap-

proaches zero and oscillates arbitrarily between [−a, a].
→
vc oscillates from [−1, 1] and

ultimately tends to zero. The pseudocode of SMA is presented in Algorithm 1.

Algorithm 1: Pseudocode of SMA

Begin
1. Initialize the parameters popsize, Max_iteration
2. Initialize the positions of slime mould Xi(i = 1, 2, . . . , n)
3. While t ≤ Max_iteration)

Calculate the fitness of all slime mould
Update bestFitness, Xb
Calculate the W by Equation (4)
For each search portion
Update p, vb, vc
Update positions by Equation (6)
End for
t = t + 1;

4. End While
5. Return the best fitness and best position

End
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3.2. Gaussian Mutation

The popular optimization technique that works well at the exploitation stage is the
Gaussian mutation (GM). The Gaussian distribution, represented by N

(
µ, σ2), where µ

and σ are the variable’s mean and standard deviation, is widely employed in statistics
and the natural sciences to represent real-valued random variables. Gaussian distribution
includes the renowned 3− σ rule, which provides a chance for foraging depending upon the
requirement of the problem. Gaussian distribution has been widely utilized in the literature
to modify control parameter values but it is rarely employed to create new mutation
operators to retain a robust local search capability while increasing diversity. The GM
operator is used to enhance the SMA to exploit the benefits of the Gaussian distribution
fully. The Gaussian probability density formulation is represented in the following way:

G(x) =
1√

2πσ2
exp

(
−(x − µ)2

2σ2

)
(7)

The scheme GM is expressed in the following way

mutant(x) = xi ∗ (1 + G(0, σ)) (8)

where xi is the parameter’s current value and G(0, σ) represents the arbitrary value from
Gaussian distribution with mean 0 and standard deviation σ. GM is the mutation operation
that introduces population variability and explores the search space. When using GM, the
original population is replaced with an arbitrary number that satisfies the variance and
mean values. The GM scheme emphasizes a local area close to the original individual based
on the normal distribution characteristics and it has demonstrated excellent efficiency in
various optimizers.

4. Proposed Methodology

SMA has limitations even though it performs competitively when compared to other
algorithms. The reduced population diversity of SMA enables it to enter the local optimum
quickly. As the problem grows more complex and converges more slowly in subsequent
iterations, SMA finds it challenging to balance exploration and exploitation. To further boost
the performance of SMA and considering that the NFL inspires us to enhance the existing
algorithms’ performance, Gaussian mutation (GM) is proposed to strengthen the SMA’s
search capability and to achieve local and global optimality and is named the SMA-GM
algorithm. Back and Schwefe [23] proposed using the Gaussian mutation (GM) to increase
the search efficiency of heuristic algorithms. In general, GM produces new solutions that
are near the candidate solutions. When the search is being conducted, it explores the search
space in small steps, increasing the diversity of the population. Random perturbations are
introduced to the current solution based on a Gaussian (normal) distribution. The proposed
SMA-GM holds a better position when compared with the target value of the current
optimum individual solution. The algorithm produces well-balanced local and global
results because of the proposed strategy. A random variable is created by taking the mean
of zero and the standard deviation of one. The Gaussian distribution function can be
expressed as follows:

Ggaussian(0,σ)(x) =
1√

2πσ2
exp

(
−(x − µ)2

2σ2

)
(9)

where the variance value of the candidate solutions is σ2. To thoroughly study the features
of the current population, two locations are arbitrarily selected, and their difference is
considered to link with the Gaussian distribution operator to construct the proposed GM
mechanism. The following is the presentation for GM strategy:
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−−−−−→
Gnew(t) =

−−−−−→
Xbest(t) ∗

(
1 + λ ∗

→
vb ∗ G(0, 1) ∗ (XC(t)− XD(t))

)
(10)

where G(0, 1) is the Gaussian distribution mechanism of Equation (9), and
−−−−−→
Xbest(t) is

the optimum location for the current iteration of the original SMA. Following the GM

operation, the new position is presented by
−−−−−→
Gnew(t) . The positions of the two slimes

selected randomly from the population are represented by XC(t) and XD(t), respectively.

The value of
→
vb oscillates randomly between [−a, a] and approaches 0 with increasing

iterations. In order to further balance the exploitation and exploration and making the
smooth oscillation process, the parameter a is updated as follows:

a = arctanh
(
−
(

t
max_t

)
+ 1
)
+ cos

(
π

2
∗ t

max_t

)
(11)

λ = 1 − t2

max_t2 (12)

where, λ is a dynamic parameter adaptively adjusted with the number of iterations. t indi-
cates the current iteration and max_t indicates maximum number of iterations. Algorithm 2
displays the proposed algorithm’s pseudocode after the normal execution of SMA while
updating the parameter a. The optimum location is mutated to create a new mutated
solution using the GM process through Equation (10).

Algorithm 2: Pseudocode of the SMA-GM algorithm

Begin
1. Initialize the parameters popsize, Max _iteration
2. Initialize the positions of slime mould Xi(i = 1, 2, . . . , n)
3. While t ≤ Max_iteration)

Calculate the fitness of all slime mould
Update bestFitness, Xb

Calculate the W by Equation (4) and a by Equation (11)
For each search portion
Update p, vb, vc;
Update positions by Equation (6)

Update the position of the slime mould and the optimal position as
−−−−−→
Xbest(t.)

Gaussian mutation mechanism
Update λ by Equation (12)
−−−−−→
Gnew(t) =

−−−−−→
Xbest(t)*

(
1 + λ*

→
vb ∗ G(0, 1)*

(
−−−−−→

XC(t) −
−−−−−→
XD(t)

))

If F

(
−−−−−→
Gnew(t)

)
< F

(
−−−−−→
Xbest(t)

)
Update optimal solution to

−−−−−→
Gnew(t)

Replace the parent slime with the generated mutant slimes if its fitness is found to be better.
End If
End For
t = t + 1;

4. End While
5. Return the best f itness and best position

End
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The new mutated solution is then compared to the optimal position of the original
SMA to determine whether the new mutated solution is still the better solution and if not,
the optimal position of the original SMA is updated to the optimal solution through a
greedy selection mechanism. Individuals who have better fitness are selected to enter the
next iteration. The computing process for this is shown below.

−−−−−→
X(t + 1) =


−−−−−→
Gnew(t) i f F

(
−−−−−→
Gnew(t)

)
< F

(
−−−−−→
Xbest(t)

)
−−−−−→
Xbest(t) else

(13)

The pseudocode of SMA-GM illustrates how the proposed method reconsiders the
position details following the original algorithm’s search for a feasible outcome. The above-
mentioned technique not only broadens the population’s diversity but also boosts the
effectiveness of the search process; in the process, the enhanced version keeps the original
algorithm’s structure relatively straightforward. SMA-GM consists of the subsequent parts
for complexity, such as initialization, fitness evaluation, sorting, weight update, position
update, Gaussian mutation, and greedy search. Among them, N represents the number of
slime mould, dim represents the dimension, and Maxt represents the maximum number
of iterations. The total complexity of SMA-GM is O(dim + Maxt ∗ N ∗ (2 + logN + dim)).
Figure 1 presents the flowchart of the SMA-GM algorithm.
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5. Experimental Setup and Results

Optimization problems are generally categorized into two: unconstrained and con-
strained. The optimization method in the unconstrained problems seeks for an objective
function’s minimum or maximum possible value. Since the optimal solution for the second
kind of problem must meet the constraints specified for the problem, the method is more
complex. In simple words, the solution ought to be feasible. To verify the performance of
SMA-GM, the results of the proposed algorithm are compared against four state-of-the-art
algorithms from the literature, including SMA [9], GWO [5], MFO [3], and WOA [4] and
two more improved optimization algorithms are included for fair comparison, which are
AGWO [24] and IChoA [25]. The parameter settings of these algorithms are given in Table 1.
The environmental conditions are an 11th Gen Intel(R) Core (TM) i3-1125G4 @ 2.00GHz,
8.00 GB of RAM and the Windows 11 operating system and the simulation experiments
are set up on the MATLAB R2021a platform. The SMA-GM algorithm was evaluated and
compared with other algorithms using 38 functions, including 13 unconstrained, 13 uncon-
strained (F1–F13), constrained benchmark functions (G1 to G13), and CEC2022 benchmark
functions. The “Mean”, “St.dev”, “Best”, and “Worst” values of the objective function
are given after each problem was run 30 times and the number of iterations of each algo-
rithm was fixed to 1000 with a population size 30 and the maximum number of function
evaluations is set to 30,000.

Table 1. Parameter setting of the involved algorithms.

Algorithm Parameters

Common
Population size = 30

Maximum iterations = 1000
Number of independent runs = 30

SMA z = 0.03

GWO a = [2, 0]

MFO b = 1, t = [−1, 1], a ∈ [−1, 2]

WOA a1 = [2, 0]; a2 = [−2, −1]; b = 1

AGWO B = 0.8, a = 2(nonlinear reduction from 2 to 0)

IChoA m = chaotic vector, C3 = 1, C4 = 2, l = 2.5 (nonlinear reduction from 2.5 to 0)

5.1. Unconstrained Benchmark Functions

This section includes the 13 benchmark functions that were utilized for the experiments.
These functions are categorized as unimodal (F1–F7) and multimodal functions (F8–F13).
The unimodal functions are employed for testing an algorithm’s potential for exploitation.
Conversely, the ability to explore and the stability of algorithms can be found in the
multimodal test functions that have a large number of local minima. For each function,
the experiment is carried out for 30, 60, and 200 dimensions and the search range of all
the functions is set to [−100, 100]. The main parameter values of each algorithm are
listed in Tables 1 and 2 lists the summary of unimodal and multimodal test functions.
It should be noted that SMA-GM employed the same parameter values as the original
algorithm. As such, it could offer a guarantee of stability in the proposed algorithm’s
performance. Additionally, for a fair comparison, the test conditions were the same as those
listed in Table 1.
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Table 2. Summary of unconstrained benchmark functions.

Function Dim Range fmin

F1 =
n
∑

i=1
u2

i
30, 60, 200 [−100, 100] 0

F2 =
n
∑

i=1
|ui|+

n
∏
i=1

|ui| 30, 60, 200 [−10, 10] 0

F3 =
n
∑

i=1

(
i

∑
j−1

uj

)2
30, 60, 200 [−100, 100] 0

F4 = maxi{|ui|, 1 ≤ i ≤ n} 30, 60, 200 [−100, 100] 0

F5 =
n−1
∑

i=1

[
100
(
ui+1 − u2

i
)2

+ (ui − 1)2
]

30, 60, 200 [−30, 30] 0

F6 =
n
∑

i=1
(⌊ui + 0.5⌋)2 30, 60, 200 [−100, 100] 0

F7 =
n
∑

i=1
iu4

i + random [0, 1) 30, 60, 200 [−1.28, 1.28] 0

F8 =
n
∑

i=1
−uisin

(√
|ui|
)

30, 60, 200 [−500, 500] −418.9829 × dim

F9 =
n
∑

i=1

[
u2

i − 10cos(2πui) + 10
]

30, 60, 200 [−5.12, 5.12] 0

F10 = −20 exp

(
−0.2

√
1
n

n
∑

i=1
u2

i

)
− exp

(
1
n

n
∑

i=n
cos2πui

)
+ 20 + e 30, 60, 200 [−32, 32] 0

F11 = 1
4000

n
∑

i=1
u2

i −
n
∏
i=1

cos
(

ui√
i

)
+ 1 30, 60, 200 [−600, 600] 0

F12(x) = π
n

{
10sin(πvi) +

n−1
∑

i=1
(vi − 1)2

[[
1 + 10sin2(πvi+1)

]
+ (vn−1)

2
]}

+
n
∑

i=1
x(ui, 10, 100, 4), vi = 1 + ui+1

4

x(ui, a, k, m) =


k(ui − a)m ui > a

0 −a < ui < a

k(−ui − a)m ui < −a

30, 60, 200 [−50, 50] 0

F13 = 0.1
{

sin2(3πu1)

+
n
∑

i=1
(ui − 1)2

[
1 + sin2(3πui + 1)

]
+(un − 1)2

[
1 + sin2(2πun)

]}
+

n
∑

i=1
x(ui, 5, 100, 4)

30, 60, 200 [−50, 50] 0

5.1.1. Exploration and Exploitation Analysis

Table 3 displays the results of the unimodal and multimodal test functions. Accord-
ing to the experimental findings, SMA-GM performs better in most of the test functions.
Most notably, SMA-GM achieved satisfactory results in both low and high dimensions
for the unimodal functions (F1–F7). In all three dimensions, SMA-GM is able to consis-
tently achieve the theoretically optimal solutions for F1 and F3. In comparison, the other
comparable algorithms are not very capable of achieving the theoretical optimal value
in all the test functions and perform weaker than SMA-GM. Comparing the test results
of each dimension, the results show that the SMA-GM’s performance has not dropped
too much with increasing dimensions, which illustrates that SMA-GM has outstanding
local exploitation capability. For the multimodal functions (F8–F13), the SMA-GM steadily
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achieves the theoretical optimal values at F9–F11 in all three dimensions (30, 60, and 200).
SMA-GM has the overall best performance in the multimodal functions, signifying that the
improved algorithm extensively boosts the global exploration capability of SMA.

Table 3. Results of the unconstrained benchmark function in different dimensions.

Func. Dim Metric SMA-GM SMA GWO MFO WOA AGWO IChoA

F1

30
Mean 0.0000E+00 0.0000E+00 1.1420e-58 3.6667e+03 1.2910E-150 1.3156E-287 1.6126E-21

Std 0.0000E+00 0.0000E+00 4.6065E-58 5.5605E+03 6.3122E-150 0.0000E+00 4.1464E-21

60
Mean 0.0000E+00 0.0000E+00 2.7410E-39 9.1879E+03 1.6816E-150 6.1214E-230 1.8770E-10

Std 0.0000E+00 0.0000E+00 4.2922E-39 1.0502E+04 4.8997E-150 0.0000E+00 6.4058E-10

200
Mean 0.0000E+00 1.9669E-305 3.9434E-20 1.9153E+05 7.1770E-147 5.3730E-69 8.7000E-02

Std 0.0000E+00 0.0000E+00 3.6218E-20 1.8886E+04 2.8695E-146 2.9429E-68 1.1720E-01

F2

30
Mean 7.6334E-200 2.6217E-191 8.8027E-35 3.2667E+01 7.6231E-100 2.9271E-163 1.3916E-14

Std 0.0000E+00 0.0000E+00 7.7522E-35 2.0160E+01 4.1689E-99 0.0000E+00 2.1687E-14

60
Mean 1.4896E-194 1.4056E-174 1.2233E-23 8.6110E+01 4.2500E-103 6.7393E-128 2.0968E-08

Std 0.0000E+00 0.0000E+00 6.6131E-24 4.0701E+01 1.8355E-102 2.5883E-127 2.3717E-08

200
Mean 8.4895E-177 2.7465E-158 1.4618E-12 5.6387E+02 8.7032E-102 2.2380E-47 5.7000E-03

Std 0.0000E+00 1.5043E-157 4.2765E-13 6.2588E+01 3.0302E-101 1.2258E-46 3.3000E-03

F3

30
Mean 0.0000E+00 0.0000E+00 6.0647E-15 1.7087E+04 2.2457E+04 1.6522E-167 2.7398E+00

Std 0.0000E+00 0.0000E+00 1.8196E-14 1.0410E+04 1.1010E+04 0.0000E+00 5.1045E+00

60
Mean 0.0000E+00 0.0000E+00 6.5304E-04 7.5837E+04 2.2594E+05 4.8340E-123 8.2193E+03

Std 0.0000E+00 0.0000E+00 1.6000E-03 3.1531E+04 4.4994E+04 2.6440E-122 5.9416E+03

200
Mean 0.0000E+00 6.3250e-320 3.4423E+03 6.9143E+05 4.2199E+06 1.3011E-32 3.4075E+05

Std 0.0000E+00 0.0000E+00 2.8117E+03 1.5015E+05 1.0616E+06 7.1244E-32 1.1396E+05

F4

30
Mean 4.6331E-210 4.0835E-198 1.3767E-14 6.5007E+01 3.8088E+01 4.6986E-125 2.7000E-03

Std 0.0000E+00 0.0000E+00 1.3959E-14 1.1037E+01 2.8905E+01 1.9603E-124 5.0000E-03

60
Mean 6.1647E-202 2.7375E-183 8.5570E-08 8.6026E+01 6.3206E+01 3.3964E-111 3.9345E+00

Std 0.0000E+00 0.0000E+00 9.8672E-08 3.7970E+00 2.7820E+01 1.4692E-110 3.6291E+00

200
Mean 9.1750E-189 1.8162E-142 8.8706E+00 9.7009E+01 7.6502E+01 2.7230E-98 5.3073E+00

Std 0.0000E+00 9.9477E-142 4.6248E+00 9.2640E-01 2.6037E+01 4.1843E-98 1.0233E+01

F5

30
Mean 2.5590E-01 3.7879E+00 2.6922E+01 5.3298E+06 2.7265E+01 2.7589E+01 2.5520E+01

Std 2.3510E-01 9.3190E+00 6.6630E-01 2.0255E+07 6.0040E-01 7.3900E-01 9.8440E-01

60
Mean 2.2271E+00 5.8131E+00 5.7298E+01 1.1389E+07 5.7782E+01 5.7853E+01 5.7956E+01

Std 1.9501E+00 1.4323E+01 9.2360E-01 2.6454E+07 6.0090E-01 6.2410E-01 9.9190E-01

200
Mean 1.3377E+01 4.1798E+01 1.9763E+02 5.9481E+08 1.9743E+02 1.9852E+02 5.1980E+02

Std 1.5351E+01 5.3705E+01 6.9930E-01 1.0827E+08 3.2160E-01 2.9500E-01 9.1577E+02

F6

30
Mean 9.7570E-04 9.3449E-04 7.0830E-01 1.6700E+03 5.9300E-02 3.0459E+00 7.5000E-03

Std 3.7960E-04 5.0173E-04 4.0930E-01 3.7984E+03 6.8300E-02 4.4440E-01 6.5000E-03

60
Mean 2.0600E-02 2.7500E-02 3.5305E+00 1.0899E+04 6.4480E-01 9.1116E+00 3.3529E+00

Std 1.6900E-02 1.5600E-02 6.9670E-01 9.7755E+03 3.1760E-01 4.0690E-01 6.9030E-01

200
Mean 9.0740E-01 2.1431E+00 2.7871E+01 1.8316E+05 6.8375E+00 4.3473E+01 3.7212E+01

Std 1.0581E+00 2.5638E+00 1.0950E+00 2.4172E+04 1.8806E+00 4.7210E-01 2.3697E+00

F7

30
Mean 8.7485E-05 9.6302E-05 8.7230E-04 2.2649E+00 1.6000E-03 1.1749E-04 1.6000E-03

Std 7.1310E-05 8.6358E-05 3.6967E-04 4.1453E+00 1.4000E-03 9.1413E-05 9.8050E-04

60
Mean 8.8723E-05 1.3046E-04 1.7000E-03 4.4999E+01 2.8000E-03 1.7075E-04 5.0000E-03

Std 8.8346E-05 1.0644E-04 6.1596E-04 4.5085E+01 3.0000E-03 1.3568E-04 3.2000E-03

200
Mean 1.5401E-04 2.3170E-04 4.4000E-03 1.9388E+03 2.1000E-03 7.4743E-04 7.6600E-02

Std 1.4408E-04 1.6692E-04 1.5000E-03 4.7091E+02 2.6000E-03 5.3142E-04 7.5000E-02
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Table 3. Cont.

Func. Dim Metric SMA-GM SMA GWO MFO WOA AGWO IChoA

F8

30
Mean −1.2569E+04 −1.2569E+04 −6.0789E+03 −8.6141E+03 −1.1297E+04 −3.3244E+03 −7.7426E+03

Std 6.3400E−02 1.0400E-01 8.0426E+02 1.1705E+03 1.5114E+03 3.8411E+02 9.0124E+02

60
Mean −2.5138E+04 −2.5138E+04 −1.0625E+04 −1.5298E+04 −2.2263E+04 −4.4142E+03 −1.0631E+04

Std 1.1267E+00 1.0520E+00 1.0626E+03 1.4798E+03 3.2644E+03 7.2947E+02 1.7171E+03

200
Mean −8.3789E+04 −8.3786E+04 −2.9174E+04 −4.0031E+04 −7.6030E+04 −8.1330E+03 −2.5357E+04

Std 1.0139E+01 1.8694E+01 4.6872E+03 3.7644E+03 9.5686E+03 9.2865E+02 2.6464E+03

F9

30
Mean 0.0000E+00 0.0000E+00 2.4930E-01 1.6683E+02 0.0000E+00 0.0000E+00 1.9671E+01

Std 0.0000E+00 0.0000E+00 7.7990E-01 4.2543E+01 0.0000E+00 0.0000E+00 1.7795E+01

60
Mean 0.0000E+00 0.0000E+00 1.1348E+00 3.7428E+02 0.0000E+00 0.0000E+00 2.3614E+01

Std 0.0000E+00 0.0000E+00 2.5719E+00 7.2331E+01 0.0000E+00 0.0000E+00 2.8944E+01

200
Mean 0.0000E+00 0.0000E+00 1.5482E+00 1.9325E+03 1.5158E-14 0.0000E+00 4.1362E+01

Std 0.0000E+00 0.0000E+00 3.4541E+00 1.0024E+02 8.3025E-14 0.0000E+00 3.1214E+01

F10

30
Mean 8.8818E-16 8.8818E-16 1.5573E-14 1.4131E+01 3.7303E-15 4.6777E-15 2.4759E-12

Std 0.0000E+00 0.0000E+00 2.5945E-15 8.0236E+00 2.8605E-15 9.0135E-16 7.7754E-12

60
Mean 8.8818E-16 8.8818E-16 4.2218E-14 1.9587E+01 3.7303E-15 6.3357E-15 2.2566E-06

Std 0.0000E+00 0.0000E+00 3.0208E-15 4.8200E-01 2.1681E-15 1.8027E-15 3.2071E-06

200
Mean 8.8818E-16 8.8818E-16 1.2428E-11 1.9942E+01 3.7303E-15 7.6383E-15 1.9300E-02

Std 0.0000E+00 0.0000E+00 5.1053E-12 1.6200E-02 2.5380E-15 1.0840E-15 1.3000E-02

F11

30
Mean 0.0000E+00 0.0000E+00 1.8000E-03 1.8086E+01 5.7000E-03 0.0000E+00 3.2000E-03

Std 0.0000E+00 0.0000E+00 6.4000E-03 4.3768E+01 3.1100E-02 0.0000E+00 5.6000E-03

60
Mean 0.0000E+00 0.0000E+00 2.6000E-03 1.0863E+02 6.2000E-03 0.0000E+00 2.7000E-03

Std 0.0000E+00 0.0000E+00 6.1000E-03 1.0392E+02 2.3600E-02 0.0000E+00 7.2000E-03

200
Mean 0.0000E+00 0.0000E+00 2.9000E-03 1.6379E+03 0.0000E+00 0.0000E+00 4.2600E-02

Std 0.0000E+00 0.0000E+00 9.3000E-03 2.3127E+02 0.0000E+00 0.0000E+00 4.7800E-02

F12

30
Mean 8.3411E-04 1.3000E-03 3.5500E-02 9.0740E-01 4.3200E-02 2.2990E-01 8.9249E-04

Std 8.5665E-04 1.6000E-03 1.9600E-02 1.0168E+00 2.0430E-01 6.2200E-02 1.4000E-03

60
Mean 2.1000E-03 2.6000E-03 1.2490E-01 2.5636E+07 1.1500E-02 5.1330E-01 1.9970E-01

Std 3.0000E-03 5.0000E-03 6.8700E-02 7.8110E+07 6.2000E-03 6.2300E-02 6.4100E-02

200
Mean 1.6000E-03 3.1000E-03 4.9390E-01 1.1459E+09 2.3900E-02 9.1770E-01 1.0377E+00

Std 3.2000E-03 6.8000E-03 3.8100E-02 3.5311E+08 9.7000E-03 2.3400E-02 1.5627E+00

F13

30
Mean 6.2781E-04 1.4000E-03 6.1850E-01 4.8580E-01 2.0330E-01 2.1164E+00 1.2368E+00

Std 4.5182E-04 2.8000E-03 2.5900E-01 1.1769E+00 1.3870E-01 1.5080E-01 4.2830E-01

60
Mean 6.5000E-03 9.5000E-03 2.8045E+00 7.7544E+07 8.3050E-01 5.1814E+00 4.7267E+00

Std 4.7000E-03 1.5400E-02 4.1280E-01 1.9330E+08 3.8300E-01 1.3920E-01 3.0040E-01

200
Mean 7.9700E-02 1.7200E-01 1.5998E+01 2.4956E+09 3.9585E+00 1.9365E+01 3.0459E+01

Std 1.1340E-01 2.5920E-01 4.6650E-01 5.9820E+08 1.2726E+00 1.1070E-01 2.2853E+01

5.1.2. Convergence and Scalability Analysis

In order to study the convergence performance of SMA-GM, convergence curves are
plotted according to the results with 60 dimensions, as given in Figure 2. In unimodal
functions, the curve is smooth and continuously decreasing, demonstrating the algorithm’s
ability to find the optimal solution. For multimodal functions, the convergence curve
descends in steps, signifying the algorithm’s capability to steadily escape local optima and
reach the global optimum. At the beginning of the iteration, the decline speed for F1, F2,
F4, and F10 of SMA and AGWO in the convergence curve is faster than that of SMA-GM.
But in the later stage of the iteration, SMA-GM exceeds SMA and AGWO, indicating the
robust development ability of the proposed algorithm. Therefore, the improvement strategy
proposed in this paper can successfully enhance the convergence speed of SMA and achieve
better optimization results.
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The scalability test reveals the performance fluctuation of optimization algorithms.
In this study, the performance of SMA-GM in various dimensions (dim = 30, 60, 200) was
also tested. It is evident that the algorithm will have greater difficulty in locating the global
optimal solution for the higher dimension. Notably, all other experimental parameters
were constant in accordance with the aforementioned descriptions, with the exception of
the dimension setting. The experiments’ mean value (mean) and standard deviation (Std)
are used to measure the results and Table 3 displays the experimental results. A particular
algorithm’s quality and accuracy are indicated by its mean value, while its stability is
indicated by its standard deviation. The results of the unimodal and multimodal functions
both showed that SMA-GM performed exceptionally well in higher dimensions. SMA-GM
outperformed SMA and other well-known algorithms in all of the functions except F6. It
should be mentioned that these comparison algorithms (GWO, MFO, WOA, AGWO, and
IChoA) usually showed weak optimization capabilities, particularly in higher dimensions
where the algorithms’ performance fluctuates with increasing dimensionality. Hence, the
proposed SMA-GM performed more consistently with better optimization behavior when
handling high-dimensional problems.
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5.1.3. Diversity Analysis

Generally, the algorithm that gives priority to the exploitation phase will have a high
convergence rate but there would be a risk of trapping into the local optima. However, the
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algorithm that focusses more on the exploration phase finds the more search space and the
chance of finding the global solution increases though the convergence rate may be weak.
Thus, a rationally working algorithm attempts to maintain the balance between these two
phases. The diversity test is one of the methods for balance analysis between these two
phases. The diversity curves, as seen in Figure 3 for unconstrained functions, indicate the
average distance between the search agents during the iterations. The diversity is derived
using the following equations, which were inspired by certain studies [26,27]:

DV j =
1
N

N

∑
i=1

∣∣∣median
(

xj − xj
i

∣∣∣) (14)

DV =
1
m

m

∑
j=1

DV j (15)

where N is the number of search agents, m indicates the dimension of the problem, xj
i

presents the dimension j of search agent i, and median
(
xj) presents the median of dimension

j of the total population.
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The diversity in each dimension is defined as the distance between the dimension j
of each search agent and the average median of the dimension. The variation in diversity
between the original SMA and SMA-GM is shown in Figure 3. The average distance
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between the search agents is displayed on the vertical axis, while the number of iterations is
displayed on the horizontal axis. Because of the random initialization process, it is evident
that both algorithms reflect high diversity in the initial phase of the execution. Then, as
a result of various algorithmic operations, the diversity varies. As the iterations increase,
the search agents traverse the whole search space and the average distance gradually
becomes smaller, making the diversity decrease, and the algorithms gradually go into the
exploitation phase, which is consistent with the above analysis. However, in most of the
test functions, the average distance in each iteration is high for the SMA-GM algorithm as
compared to SMA, which shows the better ability of search in the SMA-GM in terms of
exploring new search regions of the search space. This shows the effect of improving the
search mechanism of slime moulds through the GM strategy in the SMA-GM algorithm.

5.2. Constrained Handling Technique

The intelligent constrained handling strategy must use the constraints (restrictions)
conditions during optimization to optimize the constrained problems [28,29]. The method
of including a penalty to the objective function’s value is employed in this article. Equations
(16)–(19) were applied for this purpose. The constraint and objective function values are
denoted by the parameters c(u) and f (u), respectively, in these equations. Furthermore,
the constraint values are g(u) for the inequality and h(u) for the equality constraints. Here,
u is the solution vector. Additionally, the number of inequality and equality constraints is q
and m, respectively, and the whole constraint is j. In this study, 1E-04 is the small tolerance
for the δ parameter.

f itness = f (u) + 1020
j

∑
1

C2
j (16)

Cj(u) =

{
max

(
0, gj(u)

)
i f 1 ≤ j ≤ q

max
(
0,
(∣∣hj(u)|

)
− δ
)

i f q + 1 ≤ j ≤ m
(17)

inequality constraints : gj(u) ≤ 0, (j = 1, . . . , q) (18)

equality constraints : hj(u) = 0, (j = q + 1, . . . , m) (19)

5.3. Results and Discussion on Constrained Functions

Considering 13 commonly used constrained benchmark functions, the proposed SMA-
GM’s capability to handle constrained problems was evaluated. Table 4 shows the different
linear, non-linear, and quadratic equations for each problem in the set that take the form
of equality and inequality constraints. Table 5 illustrates the results for each constrained
benchmark function employed with SMA-GM and other algorithms. The results clearly
illustrate that SMA-GM outperforms all other algorithms for 10 of the 13 constrained
benchmark functions with excellent efficiency, showing the superiority of the proposed
algorithm. IChoA outperformed SMA-GM in the G2 problem; in the G8 problem, SMA-GM
performed better than SMA but could not outperform the other algorithms for the G8
problem and for the G5 problem, IChoA performed better than SMA-GM. For problem
G11, compared with SMA, GWO, and IChoA, SMA-GM obtained similar results and for
the G12 problem, SMA-GM, MFO, and IChoA acquired identical results. The algorithm has
produced satisfactory results, either optimal or nearly optimal. According to the results,
the proposed Gaussian mutation (GM)-based SMA-GM outperforms the competitive meta-
heuristic techniques in terms of solution accuracy except for the G2, G5, and G8 problems.
Boxplots in Figure 4 strengthen the conclusion mentioned above. The SMA-GM algorithm
demonstrates excellent robustness for handling constrained problems, as evidenced by the
lowermost position and least height of the box, which is plotted by the obtained outcomes.
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Table 4. Summary of constrained benchmark functions.

Func. Objective Function Constraints No. of
Variables Global Best

G1
f (u) = 5

4
∑

i=1
ui − 5

4
∑

i=1
u2

i − 5
13
∑

i=5
ui

g1 = 2u1 + 2u2 + u10 + u11 − 10 ≤ 0
g2 = 2u1 + 2u3 + u10 + u12 − 10 ≤ 0
g3 = 2u2 + 2u3 + u11 + u12 − 10 ≤ 0
g4 = −8u1 + u10 ≤ 0
g5 = −8u2 + u11 ≤ 0
g6 = −8u3 + u12 ≤ 0
g7 = −2u4 − 2u5 + u10 ≤ 0
g8 = −2u6 − u7 + u11 ≤ 0
g9 = −2u8 − u9 + u12 ≤ 0

13 −15

G2 f (u) = ∑n
i=1 cos4(ui)−2∏n

n=1 cos2(u i)√
∑4

i=1 iu2
i

g1 = −
n
∏
i=1

ui + 0.75 ≤ 0

g2 =
n
∑

i=1
ui − 7.5n ≤ 0

20 −0.803619

G3 f (u) = (
√

nn
)

n
∏
i=1

ui g1 =
n
∑

i=1
u2

i − 1 = 0 20 −1

G4

f (u) = −5.3578547u2
3+

0.8356891u1u5+

37.293239 u1 − 40792.141

g1 = p(u)− 92 ≤ 0
g2 = −p(u) ≤ 0
g3 = r(u)− 110 ≤ 0
g4 = −r(u) + 90 ≤ 0
g5 = s(u)− 25 ≤ 0
g6 = −s(u) + 20 ≤ 0
where
p(u) = 85.334407 + 0.0056858u2u5 + 0.0006262u1u4 − 0.0022053u3u5
r(u) = 80.51249 + 0.0071317u2u5 + 0.0029955u1u2 + 0.0021813u2

3
s(u) = 9.300961 + 0.0047026u3u5 + 0.0012547u1u3 + 0.0019085u3u4

5 −30 665.539

G5
f (u) = 3u1 + 10−6u1

3 + 2u2+
2
3 ∗ 10−6u2

3

g1 = u3 − u4 − 0.55 ≤ 0
g2 = u4 − u3 − 0.55 ≤ 0
g3 = 1000[sin(−u3 − 0.25)] + sin(−u4 − 0.25) + 894.8 − u1 = 0
g4 = 1000[sin(u3 − 0.25)] + sin(u3 − u4 − 0.25) + 894.8 − u2 = 0
g5 = 1000[sin(u4 − 0.25)] + sin(u4 − u3 − 0.25) + 1294.8 = 0

4 5126.4981

G6 f (u) = (u1 − 10)3 + (u2 − 20)3 g1 = −(u1 − 5)2 − (u2 − 5)2 + 100 ≤ 0
g2 = (u1 − 6)2 + (u2 − 5)2 − 82.81 ≤ 0

2 −6961.81388

G7

f (u) = u2
1 + u2

2 + u1u2−
14u1 − 16u2 + (u3 − 10)2+

4(u4 − 5)2 + (u5 − 3)2+

2(u6 − 1)2 + 5u2
7 + 7(u8 − 11)2+

2(u9 − 10)2 + (u10 − 7)2 + 45

g1 = 4u1 + 5u2 − 3u7 + 9u8 − 105 ≤ 0
g2 = 10u1 − 8u2 − 17u7 + 2u8 ≤ 0
g3 = −8u1 + 2u2 + 5u9 − 2u10 − 12 ≤ 0
g4 = 3(u1 − 2)2 + 4(u2 − 3)2 + 2u2

3 − 7u4 − 120 ≤ 0
g5 = 5u2

1 + 8u2 + (u3 − 6)2 + 2u4 − 40 ≤ 0
g6 = u2

1 + 2(u2 − 2)2 − 2u1u2 + 14u5 − 6u6 ≤ 0
g7 = 0.5(u1 − 8)2 + 2(u2 − 4)2 + 3u2

5 − u6 − 30 ≤ 0
g8 = −3u1 + 6u2 + 12(u9 − 8)2 + 7u10 ≤ 0

10 24.3062091

G8 f (u) = sin3(2πu1)sin(2πu2)

u3
1(u1+u2)

g1 = u2
1 − u2 + 1 ≤ 0

g2 = 1 − u1 + (u2 − 4)2 ≤ 0
2 0.095825

G9

f (u) = (u1 − 10)2 + 5(u2 − 12)2+

u4
3 + 3(u4 − 11)2+

10u6
5 + 7u2

6 + u4
7 − 4u6u7−

10u6 − 8u7

g1 = 2u2
1 + 3u4

2 + u3 + 4u2
4 + 5u5 − 127 ≤ 0

g2 = 7u1 + 3u2 + 10u2
3 + u4 − u5 − 282 ≤ 0

g3 = 23u1 + u2
2 + 6u2

6 − 8u7 − 196 ≤ 0

g4 = 4u2
1 + u2

2 − 3u1u2 + 2u2
3 + 5u6 − 11u7 ≤ 0

7 680.6300573

G10 f (u) = u1 + u2 + u3

g1 = −1 + 0.0025(u4 + u6) ≤ 0
g2 = −1 + 0.0025(−u4 + u5 + u7) ≤ 0
g3 = −1 + 0.01(−u5 + u8) ≤ 0
g4 = 100u1 − u1u6 + 833.33252u4 − 83333.333 ≤ 0
g5 = u2u4 − u2u7 − 1250u4 + 1250u5 ≤ 0
g6 = u3u5 − u3u8 − 2500u5 + 1250000 ≤ 0

8 7049.3307
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Table 4. Cont.

Func. Objective Function Constraints No. of
Variables Global Best

G11 f (u) = u2
1 + (u2 − 1)2 g1 = u2 − u2

1 = 0 2 0.75

G12 f (u) = 1 − 0.01
[
(u1 − 5)2+

(u2 − 5)2 + (u3 − 5)2
] g{(p,r,s)} = (u1 − p)2 + (u2 − r)2 + (u3 − s)2 − 0.0625 ≤ 0

p, r, s = 1, . . . , 9
3 −1

G13 f (u) = eu1u2u3u4u5

g1 = u2
1 + u2

2 + u2
3 + u2

4 + u2
5 − 10 = 0

g2 = u2u3 − 5u4u5 = 0

g3 = u3
1 + u3

2 + 1 = 0

5 0.0539498

Table 5. Comparison results of constrained benchmark functions.

Func. Metric SMA-GM SMA GWO MFO WOA AGWO IChoA

G1

Mean −1.4834E+01 −1.3171E+01 −1.0193E+01 −1.1600E+01 −5.9204E+00 −7.8403E+00 −1.2915E+01
Std 5.9100E−02 1.7645E+00 2.3500E+00 2.0443E+00 3.2965E+00 1.7856E+00 1.5116E+00
Best −1.5000E+01 −1.5000E+01 −1.4965E+01 −1.5000E+01 −1.4927E+01 −1.1854E+01 −1.4954E+01

Worst −1.4692E+01 −9.0061E+00 −5.9998E+00 −9.0000E+00 −2.0000E+00 −5.0000E+00 1.5116E+00

G2

Mean −5.3780E-01 −4.4930E-01 −7.0890E-01 −4.5880E-01 −4.2790E-01 −5.6220E-01 −7.7500E-01
Std 1.1250E-01 2.1100E-02 5.7100E-02 1.2080E-01 1.1570E-01 5.3500E-02 1.4300E-02
Best −7.7790E-01 −5.0900E-01 −7.9150E-01 −6.4820E-01 −6.1450E-01 −7.1270E-01 −7.9160E-01

Worst −3.0110E-01 −4.3220E-01 −5.8000E-01 −2.2600E-01 −2.5680E-01 5.3500E−02 −7.3300E−01

G3

Mean −1.0000E+00 −9.8190E-01 −8.9930E-01 −9.8070E-01 −9.8400E-02 −9.6580E-01 −9.9360E-01
Std 2.5096E-08 9.9000E-03 4.0650E-02 1.0600E-02 1.3470E-01 1.2300E-02 1.9000E-03
Best −1.0000E+00 −9.9100E-01 −9.9700E-01 −9.9610E-01 −5.7960E-01 −9.8630E-01 −9.9630E-01

Worst −1.0000E+00 −9.5580E-01 0.0000E+00 −9.5730E-01 0.0000E+00 −9.3630E-01 −9.8970E-01

G4

Mean −3.0666E+04 −3.0666E+04 −3.0660E+04 −3.0662E+04 −2.9825E+04 −3.0652E+04 −3.0664E+04
Std 1.7000E-03 4.9000E-03 3.1921E+00 2.0642E+01 2.5829E+02 7.8038E+00 1.1844E+00
Best −3.0666E+04 −3.0666E+04 −3.0665E+04 −3.0666E+04 −3.0153E+04 −3.0663E+04 −3.0665E+04

Worst −3.0665E+04 4.9000E-03 −3.0654E+04 −3.0552E+04 −2.8958E+04 −3.0628E+04 1.1844E+00

G5

Mean 5.2398E+03 5.3587E+03 5.2782E+03 5.4571E+03 5.7436E+03 5.2632E+03 5.1614E+03
Std 9.6915E+01 2.3378E+02 1.0116E+02 2.8011E+02 4.1954E+02 4.8620E+01 1.1303E+01
Best 5.1265E+03 5.1269E+03 5.1289E+03 5.1280E+03 5.1701E+03 5.1565E+03 5.1401E+03

Worst 5.4664E+03 5.9295E+03 5.5960E+03 6.0631E+03 6.6413E+03 5.3114E+03 5.1869E+03

G6

Mean −6.9618E+03 −6.9616E+03 −6.9179E+03 1.5639E+19 2.5558E+19 1.4141E+18 −6.9588E+03
Std 2.3600E-02 1.9630E-01 2.3803E+01 4.5209E+19 3.9435E+19 7.7453E+18 2.2065E+00
Best −6.9618E+03 −6.9618E+03 −6.9734E+03 −6.9562E+03 −6.9496E+03 −6.9504E+03 −6.9607E+03

Worst −6.9617E+03 −6.9610E+03 −6.8502E+03 2.3980E+20 2.0342E+20 4.2423E+19 −6.9498E+03

G7

Mean 2.5207E+01 2.6543E+01 3.7482E+01 1.5192E+02 1.3137E+02 3.2642E+01 2.6184E+01
Std 4.0710E-01 1.8443E+00 2.4819E+01 1.8031E+02 1.6180E+02 3.9615E+02 4.6660E-01
Best 2.4380E+01 2.4390E+01 2.7835E+01 2.5275E+01 3.4038E+01 3.2642E+01 2.5374E+01

Worst 2.7376E+01 3.1575E+01 1.3469E+02 6.0889E+02 7.7964E+02 9.6900E+02 2.7474E+01

G8

Mean −8.4600E-02 1.2524E+20 −9.5800E-02 −9.5800E-02 −9.5800E-02 −9.5800E-02 −9.5800E-02
Std 2.5600E-02 3.3375E+20 3.7948E-07 1.8937E-17 2.6006E-07 2.2121E-06 1.6094E-17
Best −9.5400E-02 −2.1700E-02 −9.5800E-02 −9.5800E-02 −9.5800E-02 −9.5800E-02 −9.5800E-02

Worst −2.5500E-02 1.6954E+21 −9.5800E-02 −9.5800E-02 −9.5800E-02 −9.5800E-02 −9.5800E-02

G9

Mean 6.8080E+02 6.8186E+02 6.8640E+02 6.8133E+02 7.2166E+02 7.1236E+02 6.8088E+02
Std 1.0620E-01 1.2547E+00 5.8186E+00 7.1000E-01 2.9694E+01 4.8318E+01 7.5500E-02
Best 6.8065E+02 6.8077E+02 6.8100E+02 6.8068E+02 6.8838E+02 6.8436E+02 6.8076E+02

Worst 6.8112E+02 6.8669E+02 7.0999E+02 6.8335E+02 8.2469E+02 9.0186E+02 6.8113E+02
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Table 5. Cont.

Func. Metric SMA-GM SMA GWO MFO WOA AGWO IChoA

G10

Mean 7.8444E+03 8.2845E+03 8.0568E+03 9.0121E+17 1.0923E+19 8.4891E+03 8.1973E+03
Std 3.4986E+02 4.5156E+02 4.0786E+02 2.1431E+18 2.6706E+19 3.5825E+02 3.9594E+02
Best 7.0652E+03 7.2193E+03 7.2777E+03 7.0684E+03 9.6935E+03 7.7745E+03 7.6514E+03

Worst 8.5464E+03 9.2693E+03 8.9547E+03 8.3416E+18 1.2393E+20 9.0926E+03 8.6863E+03

G11

Mean 7.5000E-01 7.5000E-01 7.5000E-01 7.5070E-01 7.5050E-01 7.5010E-01 7.5000E-01
Std 1.7737E-05 5.9117E-05 1.5477E-05 6.7194E-04 1.0000E-03 8.0545E-05 1.0865E-05
Best 7.5000E-01 7.5000E-01 7.5000E-01 7.5000E-01 7.5000E-01 7.5000E-01 7.5000E-01

Worst 7.5010E-01 7.5020E-01 7.5010E-01 7.5270E-01 7.5460E-01 7.5030E-01 7.5010E-01

G12

Mean −1.0000E+00 −1.0000E+00 −1.0000E+00 −1.0000E+00 −1.0000E+00 −1.0000E+00 −1.0000E+00
Std 0.0000E+00 1.7076E-09 2.0459E-08 0.0000E+00 4.9676E-08 1.6854E-07 0.0000E+00
Best −1.0000E+00 −1.0000E+00 −1.0000E+00 −1.0000E+00 −1.0000E+00 −1.0000E+00 −1.0000E+00

Worst −1.0000E+00 −1.0000E+00 −1.0000E+00 −1.0000E+00 −1.0000E+00 −1.0000E+00 −1.0000E+00

G13

Mean 9.0910E-01 1.1229E+00 1.5451E+00 9.7310E-01 7.5399E+15 3.4936E+15 2.9115E+16
Std 3.5220E-01 6.0810E-01 2.4258E+00 4.2510E-01 1.7540E+16 5.2593E+16 4.6794E+16
Best 7.7400E-02 5.9700E-01 2.5760E-01 3.0590E-01 9.3930E-01 7.2668E+13 2.9424E+13

Worst 1.9110E+00 3.5430E+00 1.0792E+01 2.9538E+00 6.4159E+16 5.2593E+16 2.1279E+17
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5.4. Results and Discussions on CEC2022 Benchmark Functions

In this section, the most recent CEC2022 test functions are selected to further evaluate
the performance of the proposed SMA-GM and compare it with other above-mentioned
algorithms. The highly complex global optimization problems are simulated by the CEC
2022 test function [30]. All functions were tested in 20-dimensional space to guarantee
the validity and fairness of the experimental results. In total, 12 test functions, 4 of which
are classified as compositional, unimodal, essential, and hybrid, are included in Table 6 as
the summary of CEC2022. The algorithm parameter values used were the same as those
listed in Table 1. Table 7 presents the mean and standard deviation (Std) for 30 independent
runs, illustrating the higher performance of SMA-GM for 10 out of the 12 test functions in
the CEC-2022 test suite. By analyzing the results, it is clear that SMA-GM has satisfactory
exploration and exploitation abilities to solve optimization problems. Compared with
other algorithms, its optimization accuracy, solution stability, and adaptability to different
functions have noticeable advantages and SMA-GM has gained more competitive results.

As seen in Figure 5, the convergent graphs are extracted from the CEC2022 test
functions to thoroughly validate the SMA-GM algorithm’s performance. The convergence
curve shows that whereas other algorithms enter local optima too early, SMA-GM has
a faster rate of convergence in the functions C1–C3 and C6–C12. In order to prevent
stagnation into local minima, SMA-GM’s performance first explored the majority of the
search space. Later, it gradually switched to the exploitation operator to quickly reduce
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diversity during the second half of the optimization process, speeding convergence toward
the most promising region so far found. Due to the search process variation, the SMA-GM
performs well, which allows the algorithm to have a strong exploration and exploitation
operator during the optimization process. The GM operator helps to preserve population
diversity, prevents the system from becoming stuck in local optima, and speeds up the
convergence towards the best-so-far solution.

Table 6. Description of CEC2022 functions.

No. Type Functions Global Optima

C1 Unimodal function Shifted and Full Rotated Zakharov Function 300

C2

Basic functions

Shifted and Full Rotated Rosenbrock’s Function 400
C3 Shifted and Full Rotated Expanded Schaffer’s f6 Function 600
C4 Shifted and Full Rotated Non-continuous Rastrigin’s Function 800
C5 Shifted and Rotated Levy Function 900

C6
Hybrid functions

Hybrid Function 1 (N = 3) 1800
C7 Hybrid Function 2 (N = 6) 2000
C8 Hybrid function 3 (N = 5) 2200

C9

Composition Functions

Composition Function 1 (N = 5) 2300
C10 Composition Function 2 (N = 4) 2400
C11 Composition Function 3 (N = 5) 2600
C12 Composition Function 4 (N = 6) 2700

Search range: [−100, 100] D

Table 7. Comparison results of SMA-GM with other algorithms for CEC2022 functions.

Function Measure SMA-GM SMA GWO MFO WOA AGWO IChoA

C1
Mean 3.0075E+02 3.0606E+02 1.5556E+04 3.7841E+04 2.6617E+04 1.8679E+04 6.3721E+03

Std 1.0474E+00 1.1659E+01 5.3757E+03 2.2427E+04 8.5331E+03 4.6890E+03 2.1821E+03

C2
Mean 4.5264E+02 4.6056E+02 5.0443E+02 5.5281E+02 5.5932E+02 6.7119E+02 4.5511E+02

Std 2.6936E+01 3.5103E+01 4.6753E+01 1.3298E+02 6.3667E+01 1.0402E+02 1.1528E+01

C3
Mean 6.0185E+02 6.0336E+02 6.2079E+02 6.0498E+02 6.6742E+02 6.4909E+02 6.0198E+02

Std 1.2369E+00 3.2547E+00 1.0238E+01 2.8857E+00 1.2927E+01 8.6198E+00 3.1905E+00

C4
Mean 8.6863E+02 8.7890E+02 8.5632E+02 8.9231E+02 9.2433E+02 8.9681E+02 9.1443E+02

Std 1.7006E+01 2.6378E+01 2.0991E+01 2.6189E+01 2.9938E+01 1.6206E+01 2.5496E+01

C5
Mean 1.4174E+03 1.6059E+03 1.1853E+03 2.8859E+03 3.7702E+03 2.2381E+03 2.1262E+03

Std 4.2994E+02 5.2857E+02 2.8897E+02 1.0928E+03 1.2968E+03 5.3361E+02 6.6054E+02

C6
Mean 1.6826E+04 1.6887E+04 1.0582E+06 5.3890E+06 1.9337E+06 9.3540E+06 2.2690E+06

Std 8.1372E+03 7.7127E+03 2.7053E+06 1.1969E+07 3.8576E+06 1.1970E+07 5.6906E+06

C7
Mean 2.0754E+03 2.0852E+03 2.0937E+03 2.1307E+03 2.2072E+03 2.1544E+03 2.0962E+03

Std 3.0956E+01 4.5286E+01 4.1485E+01 5.5167E+01 7.1031E+01 4.5667E+01 2.8800E+01

C8
Mean 2.2442E+03 2.2840E+03 2.2783E+03 2.2724E+03 2.3070E+03 2.2744E+03 2.2603E+03

Std 4.2107E+01 7.4723E+01 5.9580E+01 6.1209E+01 8.4745E+01 6.8001E+01 3.8452E+01

C9
Mean 2.4810E+03 2.4810E+03 2.5107E+03 2.5126E+03 2.5661E+03 2.5804E+03 2.4814E+03

Std 1.9860E-01 2.1650E-01 2.5276E+01 3.3465E+01 4.9679E+01 3.0063E+01 2.2150E-01

C10
Mean 2.9457E+03 2.9854E+03 3.5612E+03 3.9601E+03 4.7196E+03 4.8970E+03 3.6656E+03

Std 3.1960E+02 3.4560E+02 8.7356E+02 9.2908E+02 1.3148E+03 1.2388E+03 1.6121E+03

C11
Mean 2.9271E+03 2.9743E+03 3.5838E+03 4.1465E+03 3.6249E+03 4.5947E+03 3.0641E+03

Std 1.1749E+02 1.1053E+02 3.6136E+02 8.5659E+02 6.5494E+02 6.5468E+02 1.9326E+02

C12
Mean 2.9458E+03 2.9495E+03 2.9769E+03 2.9565E+03 3.0552E+03 3.0823E+03 3.0141E+03

Std 6.5767E+00 8.8285E+00 2.4279E+01 1.2255E+01 7.2826E+01 6.5608E+01 6.6373E+01
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5.5. Wilcoxon Rank Sum Test

The statistical analysis of the significant difference between the two methods can be
conducted using the non-parametric Wilcoxon rank sum test [31]. The Wilcoxon rank
sum test method is employed in this study to evaluate if the experimental findings of the
SMA-GM algorithm and the counterpart algorithms differ significantly from one another.
The results of each algorithm running independently 30 times on the 13 constrained
functions (G1–G13) and CEC2022 test functions listed above provide the data utilized in the
rank sum test. The rank sum test p-value between SMA-GM and each comparison algorithm
is displayed in Table 8. The null hypothesis is rejected when the difference between the two
algorithms is significant (p < 0.05). In Table 8, the NaN denotes the independent results
obtained from SMA-GM and its corresponding optimizer are identical. The majority of
p-values shown in Table 8 is less than 5%, which indicates that the alternative hypothesis is
accepted. Hence, the outcome of SMA-GM is different from those of the other compared
algorithms. Thus, SMA-GM is a robust optimizer, as verified by its capability to overcome
SMA, GWO, MFO, WOA, AGWO, and IChoA, which are the most competent and highly
cited metaheuristic optimizers.

Table 8. Wilcoxon rank sum test results (p-values) of SMA-GM with each algorithm for the constrained
function and CEC2022 test function.

Func. SMA GWO MFO WOA AGWO IChoA

G1 2.7100E-02 5.5727E-10 8.0899E-06 5.3893E-10 3.0199E-11 3.8307E-05
G2 1.0300E-02 3.4742E-10 6.1000E-03 3.3000E-03 1.2541E-07 1.3289E-10
G3 3.0199E-11 2.9543E-11 3.0199E-11 3.0180E-11 3.0199E-11 3.0199E-11
G4 1.1000E-03 3.0199E-11 5.3195E-05 3.0199E-11 3.0199E-11 3.0199E-11
G5 2.8100E-02 8.0000E-03 1.6813E-04 2.0338E-09 8.7000E-03 8.5641E-04
G6 3.4971E-09 5.5727E-10 2.9822E-11 3.0199E-11 3.0199E-11 3.0199E-11
G7 8.1465E-05 3.0199E-11 2.3715E-10 3.0199E-11 3.0199E-11 1.8500E-08
G8 1.7769E-10 9.2340E-01 1.2118E-12 7.0100E-02 7.7310E-01 1.2118E-12
G9 8.1014E-10 5.4941E-11 2.2539E-04 3.0199E-11 3.0199E-11 3.8307E-05

G10 3.0939E-06 4.0000E-03 9.0595E-08 3.0199E-11 5.5329E-08 3.5923E-05
G11 2.8100E-02 1.9900E-02 2.1947E-08 1.8580E-01 4.8011E-07 3.7900E-01
G12 1.2118E-12 1.2118E-12 NaN 1.2118E-12 1.2118e-12 NaN
G13 3.1500E-02 2.4200E-02 7.9580E-01 1.4643E-10 3.0199E-11 3.0199E-11
C1 5.5999E-07 3.0199E-11 3.0199E-11 3.0199E-11 3.0199E-11 3.0199E-11
C2 3.5100E-02 3.3520E-08 2.1327E-05 3.4742E-10 3.3384E-11 2.9730E-01
C3 2.6100E-02 3.0939E-06 3.6897E-11 3.0199E-11 3.0199E-11 4.5100E-02
C4 4.5100E-02 8.2400E-02 2.8389E-04 1.5465E-09 3.8053E-07 1.6980E-08
C5 4.2100E-02 5.3700E-02 2.3897E-08 8.9934E-11 4.8011E-07 2.5974E-05
C6 7.2400E-02 1.6000E-03 9.9000E-03 3.0199E-11 3.0199E-11 3.0059E-04
C7 4.5100E-02 2.3200E-02 7.1988E-05 1.3289E-10 6.0720E-11 2.6384E-06
C8 8.0000E-03 7.6973E-04 1.4932E-04 2.1959E-07 3.4285E-04 5.9000E-03
C9 2.9200E-02 3.3384E-11 5.5282E-08 3.0199E-11 7.5527E-11 5.0757E-13

C10 3.5100E-02 5.8000E-03 8.1465E-05 4.4205E-06 3.1770E-01 2.1232E-06
C11 4.6800E-02 1.7769E-10 4.4440E-07 4.9752E-11 1.9460E-09 5.6073E-05
C12 3.6400E-02 2.6695E-09 1.9963E-05 3.6897E-11 9.5867E-18 4.3116E-12

6. Constrained Engineering Design Problem

The goal of developing and improving any stochastic search algorithm is to find
solutions to real-world problems. In the preceding section, the SMA-GM efficacy was
studied through numerical constrained experiments. This section evaluates the exploration
and exploitation abilities in real-life situations using the SMA-GM algorithm. In this section,
the SMA-GM algorithm is used to solve mechanical engineering design problems, such
as the industrial refrigeration system (IRS) design problem, optimization of the alkylation
unit procedure, welded beam, and tension/compression spring design problem.
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6.1. Optimal Design of an Industrial Refrigeration System

Solving engineering design problems aims to provide the best possible design scheme
while taking into account a variety of constraints. SMA-GM is compared with the meta-
heuristic algorithms mentioned above and the same parameter settings are listed in Table 1.
Nowadays, energy saving and emission reduction work has become the focus of several
fields. IRS accounts for a large proportion of energy consumption, so it is essential to opti-
mize and control the IRS [32]. The optimal design of IRS is a highly complex mechanical
engineering design problem, which has 14 design variables and 15 constraints. Below is an
illustration of its mathematical formulation.

Minimize

f (u) = 63098.88u2u4u12 + 5441.5u2
2u12 + 115055.5u1.664

2 u6 + 6172.27u2
2u6

+63098.88u1u3u11 + 5441.5u2
1u11 + 115055.5u1.664

1 u5 + 6172.27u2
1u5

+140.53u1u11 + 281.29u3u11 + 70.26u2
1 + 281.29u1u3 + 281.29u2

3

+14437u1.8812
8 u0.3424

12 u10u−1
14 u2

1u7u−1
9 + 20470.2u2.893

7 u0.316
11 u2

1

subject to

g1(u) = 1.524u−1
7 ≤ 1,

g2(u) = 1.524u−1
8 ≤ 1,

g3(u) = 0.07789u1 − 2u−1
7 u9 − 1 ≤ 0,

g4(u) = 7.05305u−1
9 u2

1u10u−1
8 u−1

2 u−1
14 − 1 ≤ 0,

g5(u) = 0.0833u−1
13 u14 − 1 ≤ 0,

g6(u) = 47.136u0.333
2 u−1

10 u12 − 1.333u8u2.1195
13 + 62.08u2.1195

13 u−1
12 u0.2

8 u−1
10 − 1 ≤ 0,

g7(u) = 0.04771u10u1.8812
8 u0.3424

12 − 1 ≤ 0,

g8(u) = 0.0488u9u1.893
7 u0.316

11 − 1 ≤ 0,

g9(u) = 0.0099u1u−1
3 − 1 ≤ 0,

g10(u) = 0.0193u2u−1
4 − 1 ≤ 0,

g11(u) = 0.0298u1u−1
5 − 1 ≤ 0,

g12(u) = 0.056u2u−1
6 − 1 ≤ 0,

g13(u) = 2u−1
9 − 1 ≤ 0,

g14(u) = 2u−1
10 − 1 ≤ 0,

g15(u) = u12u−1
11 − 1 ≤ 0,

With bounds
0.001 ≤ ui ≤ 5, i = 1, . . . , 14.

Table 9 compares the results of SMA-GM with the other four optimizers to show which
one is best at solving the IRS design problem. Table 10 presents the optimal constraint
values. These findings show that SMA-GM outperforms the other optimizers and converges
faster than the other optimizers, as shown in Figure 6.
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Table 9. Optimal design of IRS.

Variable SMA-GM SMA GWO MFO WOA AGWO IChoA

u1 0.001 0.001 0.001 0.001 0.0010253 0.001 0.0010023
u2 0.001 0.001 0.0010429 0.001 0.001026 0.001 0.0011995
u3 0.0010002 0.0010004 0.0010131 0.001 0.00573 0.001 0.0016858
u4 0.0010007 0.001 0.0010678 0.001 0.0010258 0.0010188 0.009546
u5 0.001 0.001 0.001041 0.001 0.0010253 0.0010128 0.0015728
u6 0.001 0.001 0.0023688 0.001 0.0010252 0.001009 0.0013415
u7 1.524 1.524 1.5244 1.524 1.524 1.5388 1.559
u8 1.524 1.5241 1.5249 1.524 1.5319 1.5249 1.5677
u9 5 5 4.9991 5 4.9996 4.9699 4.9931
u10 2.0002 2.7834 2.0433 2.1899 2.3719 2.0121 2.4023
u11 0.0010001 0.0019607 0.0035254 0.026399 0.012986 0.001 0.0030193
u12 0.001 0.0019593 0.0030939 0.026399 0.0010252 0.001 0.0029526
u13 0.0072936 0.011703 0.012496 0.034757 0.0010256 0.0065311 0.012581
u14 0.087553 0.14049 0.14981 0.41726 0.011957 0.077074 0.13863

Optimal
value 0.032216 0.036524 0.036843 0.054407 0.2536 0.035847 0.046458

Table 10. Constraint values of the IRS design problem.

Constraint SMA-GM SMA GWO MFO WOA AGWO IChoA

g1 −0.0000 −0.0000 0.0000 0 −0.2368 −0.0000 −0.0287
g2 −0.0000 0.0006 −0.0003 0 −0.0168 0.2793 −0.0420
g3 −7.5614 −7.5616 −7.5617 −7.5616 −6.0062 −0.0010 −7.3166
g4 −0.9788 −0.9774 −0.9899 −0.9935 −0.8470 0.0867 −0.9864
g5 −0.0002 −0.0001 −0.0056 0 −0.4332 −0.0000 −0.0513
g6 −0.9802 −0.9777 −0.9665 −0.8329 −0.9796 −0.0010 −0.9687
g7 −0.9389 −0.9389 −0.8976 −0.8123 −0.8982 −0.0010 −0.9021
g8 −0.9901 −0.9901 −0.9903 −0.9901 −0.9975 −0.0010 −0.9950
g9 −0.9807 −0.9807 −0.9917 −0.9807 −1.0000 −0.0010 −0.9967

g10 −0.9702 −0.9702 −0.9730 −0.9702 −0.9702 −0.0010 −0.9860
g11 −0.0004 0.0000 −0.0053 0 −0.9491 0.0974 −0.2135
g12 −0.9440 −0.9440 −0.9742 −0.9440 −0.9963 −0.0009 −0.9501
g13 −0.6000 −0.6000 −0.6000 −0.6000 −0.5999 1.9990 −0.5964
g14 −0.0010 −0.1145 −0.0049 −0.6000 0.0003 0.3814 −0.0725
g15 −0.0000 0 −0.1081 0 0 −0.0001 −0.3702
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6.2. Optimal Operation of an Alkylation Unit

The optimal operation of an alkylation unit is very common in the petroleum indus-
try [33]. In the alkylation process, the reactor is filled with the olefin feedstock (100%
butane), pure isobutane recycling, and 100% isobutene supplement, along with the acid
catalyst. The reactor product is then sent through a fractionator to separate the isobutene
and alkane. Additionally, spent acid, the base product, is taken out of the reactor. The alky-
lation product is the objective function and the primary goal of this problem is to raise the
octane number of the olefin feedstock in acidic conditions. This is a complex optimization
problem with 14 constraints and 7 variables. Below is an illustration of its mathematical
formulation.

Maximize
f (u) = 0.035u1u6 + 1.715u1 + 10.0u2 + 4.0565u3 − 0.063u3u5

subject to

g1(u) = 0.0059553571u2
6u1 + 0.88392857u3 − 0.1175625u6u1 − u1 ≤ 0,

g2(u) = 1.1088u1 + 0.1303533u1u6 − 0.0066033u1u2
6 − u3 ≤ 0,

g3(u) = 6.66173269u2
6 − 56.596669u4 + 172.39878u5 − 10000 − 191.20592u6 ≤ 0,

g4(u) = 1.08702u6 − 0.03762u2
6 + 0.32175u4 + 56.85075 − u5 ≤ 0,

g5(u) = 0.006198u7u4u3 + 2462.3121u2 − 25.125634u2u4 − u3u4 ≤ 0,

g6(u) = 161.18996u3u4 + 5000.0u2u4 − 489510.0u2 − u3u4u7 ≤ 0,

g7(u) = 0.33u7 + 44.333333 − u5 ≤ 0,

g8(u) = 0.022556u5 − 1.0 − 0.007595u7 ≤ 0,

g9(u) = 0.00061u3 − 1.0 − 0.0005u1 ≤ 0,

g10(u) = 0.819672u1 − u3 + 0.819672 ≤ 0,

g11(u) = 24500.0u2 − 250.0u2u4 − u3u4 ≤ 0,

g12(u) = 1020.4082u4u2 + 1.2244898u3u4 − 100000u2 ≤ 0,

g13(u) = 6.25u1u6 + 6.25u1 − 7.625u3 − 100000 ≤ 0,

g14(u) = 1.22u3 − u6u1 − u1 + 1.0 ≤ 0,

With bounds

1000 ≤ u1 ≤ 2000, 0 ≤ u2 ≤ 100, 2000 ≤ u3 ≤ 4000, 0 ≤ u4 ≤ 100,

0 ≤ u5 ≤ 100, 0 ≤ u6 ≤ 20, 0 ≤ u7 ≤ 200.

Table 11 shows that the SMA-GM algorithm performs better than other algorithms,
signifying that it can maximize the alkylation product value and has a better result for the
optimization of the alkylation process. The convergence curve for the optimal operation of
the alkylation unit is shown in Figure 7 and Table 12 shows the constraint values. It can be
seen from the Figure that the convergence performance of the proposed algorithm is not
optimal at the initial stage. But at the later stage of the iteration, the SMA-GM algorithm
can get rid of the local optima and continue exploring to improve the overall optimization
performance.
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Table 11. Optimal operation of an alkylation unit.

Variable SMA-GM SMA GWO MFO WOA AGWO IChoA

u1 2000 2000 2000 2000 1999.9606 1706.8626 1991.0172
u2 0 4.8302E-18 0 0 0 0 1.4796E-06
u3 2571.4216 2473.1669 2457.5344 2820.406 3094.9607 2682.5542 2904.3814
u4 0 0 0 0 0 0 6.1598E-07
u5 58.139421 57.723041 57.663054 59.229379 61.102948 61.070298 61.106755
u6 1.2386014 0.8260777 0.76253731 2.3850848 4.2767875 4.5800474 3.1824157
u7 41.381011 40.379902 40.033248 44.584016 50.817011 50.391441 26.440249

Optimal value −4529.1132 −4526.428 −4524.7028 −4513.7265 −4370.0026 −3761.7272 3.2702E+13

Table 12. Constraint values of the optimal operation of an alkylation unit.

Constraint SMA-GM SMA GWO MFO WOA AGWO IChoA

g1 −0.0000 0.0000 −0.0054 −0.0050 −0.0056 −0.0015 −0.0035
g2 −0.0053 −0.0054 −0.0003 −0.0009 −0.0001 −0.0025 −0.0009
g3 −0.0205 −0.0205 −0.0221 −0.0215 −0.0234 −0.0188 −0.0102
g4 −0.0000 −0.0000 0.0000 0.0000 0.0000 −0.0000 −0.0001
g5 0.0000 0.0000 0 0 0 0 0.0000
g6 −0.0000 −0.0000 0 0 0 0 −0.0000
g7 −0.0000 −0.0000 −0.0000 −0.0000 −0.0000 −0.0013 −0.0009
g8 −0.0000 −0.0000 −0.0000 −0.0000 −0.0000 0.0000 0.0000
g9 −0.0000 −0.0000 −0.0000 0.0000 −0.0000 −0.0001 −0.0000

g10 −0.1030 −0.1068 −0.1629 −0.1639 −0.1631 −0.0639 −0.0865
g11 0.0000 0.0000 0 0 0 0 0.0000
g12 −0.0000 −0.0000 0 0 0 0 −0.0000
g13 −8.6920 −8.5088 −3.2088 −4.1828 −3.5747 −9.9144 −9.0460
g14 −0.2092 −0.2385 −1.0865 −0.9306 −1.0279 −0.0136 −0.1525
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6.3. Welded Beam Design

The objective of the problem is to construct a welded beam [33] with minimal cost
under the bounds of buckling load (Pc), end deflection of the beam (δ), bending stress (θ),
and shear stress (τ). It considers the weld thickness h, the joint length l, the height t of the
beam, and the thickness b as variables and the mathematical formulation of this problem is
shown as follows:
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Consider

Variable u = [u1,u2, u3, u4] = [h, l, t, b]

Minimize
f (u) = 0.04811u3u4(u2 + 14) + 1.10471u2

1u2

subject to
g1(u) = u1 − u4 ≤ 0,

g2(u) = δ(u)− δmax ≤ 0,

g3(u) = P ≤ Pc(u),

g4(u) = τmax ≥ τ(u),

g5(u) = σ(u)− σmax ≤ 0,

where,

τ =
√

τ′2 + τ
′′2 + 2τ′τ′′ u2

2R , τ′′ = RM
J , τ′ = P√

2u2u1
, M = p

( u2
2 + L

)
,

R =

√
u2

2
4 +

(
u1+u3

2

)2
, J = 2

((
u2

2
4 +

(
u1+u3

2

)2
)√

2u1u2

)
, σ(u) = 6PL

u4u2
3
,

δ(u) = 6PL3

Eu4u2
3
, Pc(u) =

4.013Eu3u3
4

6L2

(
1 − u3

2L

√
E

4G

)
, L = 14in, P = 6000lb,

E = 30.106 psi, σmax = 30, 000psi, Tmax = 13, 600psi, G = 12.106 psi, δmax = 0.25in.

With bounds
0.1 ≤ u3, u2 ≤ 10, 0.1 ≤ u4 ≤ 2, 0.125 ≤ u1 ≤ 2.

The optimal solution of SMA-GM and other counterparts on the welded beam problem
are presented in Tables 13 and 14, which gives the corresponding constraint values of these
algorithms for this problem. According to the comparative results, SMA-SM achieved
optimum parameter values resulting in optimum cost function value 1.7249 with ideal
parameter [0.20573, 3.4704, 9.037, 0.20573] for welded beam design problem. Figure 8
shows the convergence behavior of the SMA-GM and other algorithms for this problem.

Table 13. Optimal result of the welded beam design problem.

Variable SMA-GM SMA GWO MFO WOA AGWO IChoA

u1 0.20573 0.20557 0.20555 0.20612 0.17825 0.2004 0.2057
u2 3.4704 3.474 3.4724 3.4654 4.5602 3.5899 3.4719
u3 9.037 9.0366 9.0506 9.028 8.9823 9.0493 9.0357
u4 0.20573 0.20573 0.20572 0.20612 0.20823 0.20587 0.20577

Optimum cost 1.7249 1.7251 1.7271 1.7263 1.8302 1.7358 1.7252

Table 14. Constraint values of the welded beam design problem.

Constraint SMA-GM SMA GWO MFO WOA AGWO IChoA

g1 −0.0100 0.3094 −34.3397 0 −890.2884 −25.7247 9.9250
g2 −2.4395 5.0397 −41.6530 0 −194.3126 176.6754 10.3670
g3 −0.0000 0.0000 −0.0010 0. 0000 −0.0300 −0.0023 −0.0001
g4 −3.4329 −0.0000 −3.4279 −3.4272 −3.3184 −3.4287 −3.4325
g5 −0.0807 0. 0000 −0.0802 −0.0829 −0.0536 −0.0795 −0.0810
g6 −0.2355 0.0002 −0.2356 −0.2355 −0.2356 −0.2354 −0.2355
g7 −0.1228 0.0001 −39.7059 −169.2802 −245.6852 −70.7822 −24.0572
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6.4. Tension/Compression Spring Design Problem

The tension/compression spring problem is a classic structural engineering design
problem [33], whose purpose is to minimize the weight of tension or compression spring
under certain constraints such as shear stress, surge frequency, and deflection. To solve the
problem, three core variables are needed: the diameter of the wire (d), mean value of the
coil diameter (D), and number of active coils (N). The mathematical model of this problem
is as follows:

Consider

Variable u = [u1,u2, u3] = [d, D, N]

Minimize
f (u) = u2

1u2(2 + u3)

subject to

g1(u) = 1 − u2
3u3

71785u4
1
≤ 0,

g2(u) =
4u2

2−u1u2

12566(u2u3
1−u4

1)
+ 1

5108u2
1
− 1 ≤ 0,

g3(u) = 1 − 140.45u1
u2

2u3
≤ 0,

g4(u) =
u1+u2

1.5 − 1 ≤ 0,

with bounds
0.05 ≤ u1 ≤ 2.00, 0.25 ≤ u2 ≤ 1.30, 2.00 ≤ u3 ≤ 15.0.

The results of SMA-GM and competitor algorithms in terms of achieving the optimal
solution for the tension/compression spring design optimization problem are reported
in Table 15. In addition, Table 16 provides the corresponding constraint values of these
algorithms for this problem. As can be seen from Table 15, the SMA-GM algorithm not only
performed the best out of all comparison algorithms but also obtained the solution closest
to the optimal value of the tension/compression spring design problem. For qualitative
analysis, the convergence plots were recorded and illustrated in Figure 9 and the figure
simply proves the efficient convergence potential of the SMA-GM. Therefore, we can say
that the SMA-GM algorithm not only has an excellent ability to solve complex engineering
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problems but also shows high efficiency and accuracy and obtains the optimal solution
with the best parameter and constraint values.

Table 15. Optimal result of the tension/compression spring design problem.

Variable SMA-GM SMA GWO MFO WOA AGWO IChoA

u1 0.0514206 0.0503801 0.0517674 0.0523125 0.0526395 0.05 0.0513004
u2 0.350294 0.326035 0.358598 0.371903 0.380017 0.317405 0.347299
u3 11.6757 13.3437 11.1885 10.4512 10.0432 14.0373 11.8796

Optimum weight 0.012667 0.012697 0.012674 0.012672 0.012681 0.012726 0.012686

Table 16. Constraint values of the tension/compression spring design problem.

Variable SMA-GM SMA GWO MFO WOA AGWO IChoA

g1 0 0.9303 0.0007 0 −0.0000 0.5120 −0.0873
g2 0 −0.1657 −0.0012 −0.0000 0.0040 −0.1662 0.0022
g3 −4.0409 −55.1800 −4.0544 −4.0828 −4.1181 −7.0128 −3.6005
g4 −0.7322 −0.8000 −0.7265 −0.7172 −0.7121 −0.8000 −0.7486
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7. Conclusions

A novel algorithm named SMA-GM has been proposed in this paper. SMA-GM has
been proposed to address the shortcomings of the original SMA algorithm, such as its
tendency to trap into local optima and insufficient exploitation. In the proposed method
for avoiding SMA’s limitations, the exploitation phase of the original SMA has improved
through the Gaussian mutation (GM) mechanism. The proposed SMA-GM performs excep-
tionally well in terms of convergence rate, stability, and optimization reliability compared to
other metaheuristic algorithms. According to experiments conducted on the unconstrained,
constrained, and CEC2022 functions and to further check the potential of SMA-GM, the
complex constrained engineering problems show the superiority of the proposed algorithm
as compared to other algorithms. To avoid the local optima, the GM strategy introduces a
slight arbitrary variation into the group of search agents, improving convergence and en-
hancing exploitation potential while expanding the individual search space. Strengthening
the global search and boosting the updated population is the primary goal of the proposed
GM strategy. To guarantee that slime moulds with better fitness enter the next generation,



Mathematics 2024, 12, 1470 33 of 34

the greedy selection mechanism was included. Convergence curves, diversity curves, and
boxplot results showed that the proposed SMA-GM algorithm has efficiently enhanced the
convergence accuracy, fitness performance, and the algorithm’s stability.

The proposed SMA-GM has some limitations in practical application. If the scale of
the problem is too large, difficulty could arise in selecting the optimal solution. However,
like other stochastic algorithms, SMA-GM might not always reach the global optima for all
benchmark functions and is susceptible to being trapped at local minima. The limitations
of SMA-GM must be addressed to improve its ability to provide global solutions. By over-
coming these challenges, SMA-GM can advance toward becoming a widely accepted and
widely used state-of-the-art algorithm.

In future studies, more effective constraint processing methods must be developed
and incorporated into other metaheuristic algorithms. Multi-objective optimization is also
a highly challenging area. Future work can focus on combining the proposed algorithm
with different techniques to handle multi-objective optimization problems, focusing more
on the operators to analyze the diversity and striking a balance between exploration and
exploitation. Consequently, the proposed algorithm can be applied to complex optimization
problems involving many design variables. It is worthwhile to investigate whether the
SMA-GM may be used for a more extensive variety of real-life problems in future research.
This will contribute to further validating the algorithm’s applicability to generate optimal
solutions for a wide variety of optimization problems.
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