Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (203)

Search Parameters:
Keywords = SLM printing

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 1293 KiB  
Review
Customized 3D-Printed Scaffolds for Alveolar Ridge Augmentation: A Scoping Review of Workflows, Technology, and Materials
by Saeed A. Elrefaei, Lucrezia Parma-Benfenati, Rana Dabaja, Paolo Nava, Hom-Lay Wang and Muhammad H. A. Saleh
Medicina 2025, 61(7), 1269; https://doi.org/10.3390/medicina61071269 - 14 Jul 2025
Viewed by 259
Abstract
Background and Objectives: Bone regeneration (BR) is a cornerstone technique in reconstructive dental surgery, traditionally using either barrier membranes, titanium meshes, or perforated non-resorbable membranes to facilitate bone regeneration. Recent advancements in 3D technology, including CAD/CAM and additive manufacturing, have enabled the development [...] Read more.
Background and Objectives: Bone regeneration (BR) is a cornerstone technique in reconstructive dental surgery, traditionally using either barrier membranes, titanium meshes, or perforated non-resorbable membranes to facilitate bone regeneration. Recent advancements in 3D technology, including CAD/CAM and additive manufacturing, have enabled the development of customized scaffolds tailored to patient needs, potentially overcoming the limitations of conventional methods. Materials and Methods: A scoping review was conducted according to the PRISMA guidelines. Electronic searches were performed in MEDLINE (PubMed), the Cochrane Library, Scopus, and Web of Science up to January 2025 to identify studies on digital technologies applied to bone augmentation. Eligible studies encompassed randomized controlled trials, cohort studies, case series, and case reports, all published in English. Data regarding digital workflows, software, materials, printing techniques, and sterilization methods were extracted from 23 studies published between 2015 and 2024. Results: The review highlights a diverse range of digital workflows, beginning with CBCT-based DICOM to STL conversion using software such as Mimics and Btk-3D®. Customized titanium meshes and other meshes like Poly Ether-Ether Ketone (PEEK) meshes were produced via techniques including direct metal laser sintering (DMLS), selective laser melting (SLM), and five-axis milling. Although titanium remained the predominant material, studies reported variations in mesh design, thickness, and sterilization protocols. The findings underscore that digital customization enhances surgical precision and efficiency in BR, with several studies demonstrating improved bone gain and reduced operative time compared to conventional approaches. Conclusions: This scoping review confirms that 3D techniques represent a promising advancement in BR. Customized digital workflows provide superior accuracy and support for BR procedures, yet variability in protocols and limited high-quality trials underscore the need for further clinical research to standardize techniques and validate long-term outcomes. Full article
(This article belongs to the Section Dentistry and Oral Health)
Show Figures

Figure 1

13 pages, 4323 KiB  
Article
The Impact of Additive and Subtractive Manufacturing on the Adhesion and Durability of Titanium–Zirconia Restorative Materials
by Omar Alageel, Najm Alfrisany, Abdullah Alshamrani and Omar Alsadon
J. Funct. Biomater. 2025, 16(7), 257; https://doi.org/10.3390/jfb16070257 - 11 Jul 2025
Viewed by 577
Abstract
This study aimed to investigate the bonding strength and durability of titanium alloys bonded to zirconia-based materials produced using subtractive and additive digital methods. Two titanium alloy groups (N = 20) and two zirconia ceramic groups (N = 60) were fabricated using CAD/CAM [...] Read more.
This study aimed to investigate the bonding strength and durability of titanium alloys bonded to zirconia-based materials produced using subtractive and additive digital methods. Two titanium alloy groups (N = 20) and two zirconia ceramic groups (N = 60) were fabricated using CAD/CAM milling from prefabricated discs (Ti-ML and Zr-ML), and 3D printing via SLM (Ti-3D) and DLP/LCM systems (Zr-3D). The specimens were bonded with dental cement to form four test groups: Zr-ML/Ti-ML, Zr-ML/Ti-3D, Zr-3D/Ti-ML, and Zr-3D/Ti-3D. Half of the specimens in each group underwent thermocycling to assess the effect of aging on bond strength. The density, microhardness, and surface morphology were evaluated, along with the shear bond strength and failure modes of the resin composites. Statistical differences were analyzed using one-way ANOVA and Tukey’s HSD test across all groups. The 3D-printed specimens of both materials exhibited higher microhardness and lower surface roughness than the milled specimens. The shear bond strength (SBS) was the highest in the Ti-ML/Zr-ML combination group before and after thermocycling, which had more cohesive failures, whereas the lowest bond strength was observed in the Ti-3D/Zr-ML group. The adhesion between titanium and zirconia-based materials was the strongest when both were fabricated using subtractive methods, followed by additive and mixed-method combinations. Full article
(This article belongs to the Section Dental Biomaterials)
Show Figures

Figure 1

15 pages, 1683 KiB  
Review
Three-Dimensional Printing and CAD/CAM Milling in Prosthodontics: A Scoping Review of Key Metrics Towards Future Perspectives
by Catalina Cioloca Holban, Monica Tatarciuc, Anca Mihaela Vitalariu, Roxana-Ionela Vasluianu, Magda Antohe, Diana Antonela Diaconu, Ovidiu Stamatin and Ana Maria Dima
J. Clin. Med. 2025, 14(14), 4837; https://doi.org/10.3390/jcm14144837 - 8 Jul 2025
Viewed by 367
Abstract
Background/Objectives: Digital prosthodontics increasingly utilize both additive (3D printing) and subtractive Computer-Aided Design/Computer-Aided Manufacturing (CAD/CAM), yet comprehensive comparisons remain limited. This scoping review evaluates their relative performance across prosthodontic applications. Methods: Systematic searches (PubMed, Scopus, Web of Science, Embase, 2015–2025) identified [...] Read more.
Background/Objectives: Digital prosthodontics increasingly utilize both additive (3D printing) and subtractive Computer-Aided Design/Computer-Aided Manufacturing (CAD/CAM), yet comprehensive comparisons remain limited. This scoping review evaluates their relative performance across prosthodontic applications. Methods: Systematic searches (PubMed, Scopus, Web of Science, Embase, 2015–2025) identified 28 studies (27 in vitro, 1 retrospective). Data were extracted on accuracy, efficiency, materials, and outcomes. Results: CAD/CAM milling demonstrated superior accuracy for fixed prostheses, with marginal gaps for milled zirconia (123.89 ± 56.89 µm), comparable to optimized 3D-printed interim crowns (123.87 ± 67.42 µm, p = 0.760). For removable prostheses, milled denture bases achieved a trueness of 65 ± 6 µm, while SLA-printed dentures post-processed at 40 °C for 30 min showed the lowest root mean square error (RMSE) (30 min/40 °C group). Three-dimensional printing excelled in material efficiency (<5% waste vs. milling > 30–40%) and complex geometries, such as hollow-pontic fixed dental prostheses (FDPs) (2.0 mm wall thickness reduced gaps by 33%). Build orientation (45° for crowns, 30–45° for veneers) and post-processing protocols significantly influenced accuracy. Milled resins exhibited superior color stability (ΔE00: 1.2 ± 0.3 vs. 3D-printed: 4.5 ± 1.1, p < 0.05), while 3D-printed Co-Cr frameworks (SLM) showed marginal fits of 8.4 ± 3.2 µm, surpassing milling (130.3 ± 13.8 µm). Digital workflows reduced chairside time by 29% (154.31 ± 13.19 min vs. 218.00 ± 20.75 min). All methods met clinical thresholds (<120 µm gaps). Conclusions: Milling remains preferred for high-precision fixed prostheses, while 3D printing offers advantages in material efficiency, complex designs, and removable applications. Critical gaps include long-term clinical data and standardized protocols. Future research should prioritize hybrid workflows, advanced materials, and AI-driven optimization to bridge technical and clinical gaps. Full article
Show Figures

Figure 1

16 pages, 5101 KiB  
Article
Trabecular Titanium Architecture Drives Human Mesenchymal Stem Cell Proliferation and Bone Differentiation
by Laura Caliogna, Micaela Berni, Giulia Gastaldi, Federico Alberto Grassi, Eugenio Jannelli, Mario Mosconi, Elisa Salatin, Silvia Burelli, Riccardo Toninato, Michele Pressacco and Gianluigi Pasta
Int. J. Mol. Sci. 2025, 26(13), 6354; https://doi.org/10.3390/ijms26136354 - 1 Jul 2025
Viewed by 325
Abstract
The aim of this in vitro study is to investigate the adhesion, proliferation, and differentiation of human adipose-derived mesenchymal stem cells (hASC) on Trabecular Titanium scaffolds manufactured with different manufacturing processes (EBM and SLM). The in vitro adhesion and proliferation of hASC on [...] Read more.
The aim of this in vitro study is to investigate the adhesion, proliferation, and differentiation of human adipose-derived mesenchymal stem cells (hASC) on Trabecular Titanium scaffolds manufactured with different manufacturing processes (EBM and SLM). The in vitro adhesion and proliferation of hASC on titanium scaffolds with WST assays have been carried out. The comparison of the gene expression profiles of typical bone genes (Alp, Bglap, Col1a1, and Osx) through real-time PCR assays and the evaluation of extracellular matrix composition with immunofluorescence and SEM analysis have been performed. In addition, the possible osteoinductive properties of the two scaffolds have been investigated through real-time PCR and ALP assays. Data showed that Trabecular Titanium supports human adipose-derived mesenchymal stem cell colonization and induces differentiation in bone with the deposition of the abundant extracellular mineralized matrix regardless of the manufacturing process, proving that the micro- and macro-design features are the key factors responsible for the osteoinduction behavior. These features can only be achieved through tailored 3D printing process parameters. Full article
(This article belongs to the Section Molecular Pathology, Diagnostics, and Therapeutics)
Show Figures

Figure 1

40 pages, 10781 KiB  
Review
Recent Developments in Additively Manufactured Crash Boxes: Geometric Design Innovations, Material Behavior, and Manufacturing Techniques
by Ahmed Saber, A. M. Amer, A. I. Shehata, H. A. El-Gamal and A. Abd_Elsalam
Appl. Sci. 2025, 15(13), 7080; https://doi.org/10.3390/app15137080 - 24 Jun 2025
Cited by 2 | Viewed by 651
Abstract
Crash boxes play a vital role in improving vehicle safety by absorbing collision energy and reducing the forces transmitted to occupants. Additive manufacturing (AM) has become a powerful method for developing advanced crash boxes by enabling complex geometries. This review provides a comprehensive [...] Read more.
Crash boxes play a vital role in improving vehicle safety by absorbing collision energy and reducing the forces transmitted to occupants. Additive manufacturing (AM) has become a powerful method for developing advanced crash boxes by enabling complex geometries. This review provides a comprehensive examination of recent progress in AM crash boxes, with a focus on three key aspects: geometric design innovations, material behavior, and manufacturing techniques. The review investigates the influence of various AM-enabled structural configurations, including tubular, origami-inspired, lattice, and bio-inspired designs, on crashworthiness performance. Among these, bio-inspired structures exhibit superior energy absorption characteristics, achieving a mean specific energy absorption (SEA) of 21.51 J/g. Material selection is also explored, covering polymers, fiber-reinforced polymers, metals, and multi-material structures. Metallic AM crash boxes demonstrate the highest energy absorption capacity, with a mean SEA of 28.65 J/g. In addition, the performance of different AM technologies is evaluated, including Stereolithography (SLA), Material Jetting (MJT), Selective Laser Melting (SLM), Selective Laser Sintering (SLS), Fused Deposition Modeling (FDM), and hybrid manufacturing techniques. Among these, crash boxes produced by SLM show the most favorable energy absorption performance, with a mean SEA of 16.50 J/g. The findings presented in this review offer critical insights to guide future research and development in the design and manufacturing of next-generation AM crash boxes intended to enhance vehicle safety. Full article
(This article belongs to the Section Additive Manufacturing Technologies)
Show Figures

Figure 1

20 pages, 39672 KiB  
Article
Enhanced Mechanical Performance of SLM-Printed Inconel 718 Lattice Structures Through Heat Treatments
by María J. Briones-Montemayor, Rigoberto Guzmán-Nogales, Parisa Majari, Jorge A. Estrada-Díaz, Alex Elías-Zúñiga, Daniel Olvera-Trejo, Oscar Martínez-Romero and Imperio A. Perales-Martínez
Metals 2025, 15(7), 686; https://doi.org/10.3390/met15070686 - 20 Jun 2025
Viewed by 326
Abstract
Selective laser melting (SLM) allows the production of complex lattice structures with tunable mechanical properties. This study proposes an integrated approach to enhance the mechanical properties of Inconel 718 (IN718) lightweight structures by applying distinct heat treatment protocols and tailoring key printing parameters. [...] Read more.
Selective laser melting (SLM) allows the production of complex lattice structures with tunable mechanical properties. This study proposes an integrated approach to enhance the mechanical properties of Inconel 718 (IN718) lightweight structures by applying distinct heat treatment protocols and tailoring key printing parameters. Four lattice geometries—body-centered cube (BCC), diamond, inverse woodpile (IWP), and gyroid—were selected for evaluation. Three heat treatment protocols were applied to assess their effect on mechanical behavior. Additionally, the influence of key SLM parameters such as laser power, scan speed, hatch spacing, and layer thickness on structural performance was investigated. By combining process tailoring and post-processing strategies, this work demonstrates a method to improve the mechanical response of complex IN718 lattices. The results highlight significant improvements in yield strength and energy absorption for high-performance applications in aerospace and automotive engineering. Full article
Show Figures

Figure 1

32 pages, 5566 KiB  
Review
Additive Manufacturing of Metals Using the MEX Method: Process Characteristics and Performance Properties—A Review
by Katarzyna Jasik, Lucjan Śnieżek and Janusz Kluczyński
Materials 2025, 18(12), 2744; https://doi.org/10.3390/ma18122744 - 11 Jun 2025
Viewed by 656
Abstract
Compared to traditional manufacturing methods, additive manufacturing (AM) enables the production of parts with arbitrary structures, effectively addressing the challenges faced when fabricating complex geometries using conventional techniques. The dynamic development of this technology has led to the emergence of increasingly advanced materials. [...] Read more.
Compared to traditional manufacturing methods, additive manufacturing (AM) enables the production of parts with arbitrary structures, effectively addressing the challenges faced when fabricating complex geometries using conventional techniques. The dynamic development of this technology has led to the emergence of increasingly advanced materials. One of the best examples is metal–polymer composites, which allow the manufacturing of fully dense components consisting of stainless steel and titanium alloys, employing the widely available AM technology based on material extrusion (MEX). Metallic materials intended for this type of 3D printing may serve as an alternative to currently prevalent techniques including techniques like selective laser melting (SLM), owing to significantly lower equipment and material costs. Particularly applicable in low-volume production, where total costs and manufacturing time are critical factors, MEX technology of polymer–metallic composites offer relatively fast and economical AM of metal components, proving beneficial during the design of geometrically complex, and low-cost equipment. Due to the significant advancements in AM technology, this review focuses on the latest developments in the additive manufacturing of metallic components using the MEX approach. The discussion encompasses the printing process characteristics, materials tailored to this technology, and post-processing steps (debinding and sintering) necessary for obtaining fully metallic MEX components. Additionally, the article characterizes the printing process parameters and their influence on the functional characteristics of the resulting components. Finally, it presents the drawbacks of the process, identifies gaps in existing research, and outlines challenges in refining the technology. Full article
(This article belongs to the Special Issue Progress and Challenges of Advanced Metallic Materials and Composites)
Show Figures

Figure 1

22 pages, 5474 KiB  
Article
3D Printing of Optimized Titanium Scaffold for Bone Replacement
by Parvathi Nathan, Siaw Meng Chou and Wai Yee Yeong
Processes 2025, 13(6), 1827; https://doi.org/10.3390/pr13061827 - 9 Jun 2025
Viewed by 751
Abstract
Critical-sized bone defects or CSDs result from bone loss due to trauma, tumor removal, congenital defects, or degenerative diseases. Though autologous bone transplantation is the current gold standard in treating CSDs, its limitations include donor-site morbidity, unavailability of donor bone tissues, risk of [...] Read more.
Critical-sized bone defects or CSDs result from bone loss due to trauma, tumor removal, congenital defects, or degenerative diseases. Though autologous bone transplantation is the current gold standard in treating CSDs, its limitations include donor-site morbidity, unavailability of donor bone tissues, risk of infection, and mismatch between the bone geometry and the defect site. Customized scaffolds fabricated using 3D printing and biocompatible materials can provide mechanical integrity and facilitate osseointegration. Ti-6Al-4V (Ti64) is one of the most widely used commercial alloys in orthopedics. To avoid elastic modulus mismatch between bones and Ti64, it is imperative to use porous lattice structures. Ti64 scaffolds with diamond, cubic, and triply periodic minimal surface (TPMS) gyroid lattice architectures were fabricated using selective laser melting (SLM)with pore sizes ranging from 300 to 900 μm using selective laser melting and evaluated for mechanical and biological performance. Increasing pore size led to higher porosity (up to 90.54%) and reduced mechanical properties. Young’s modulus ranged from 13.18 GPa to 1.01 GPa, while yield stress decreased from 478.16 MPa to 14.86 MPa. Diamond and cubic scaffolds with 300–600 μm pores exhibited stiffness within the cortical bone range, while the 900 μm diamond scaffold approached trabecular stiffness. Gyroid scaffolds (600–900 μm) also showed modulus and yield strength within the cortical bone range but were not suitable for trabecular applications due to their higher stiffness. Cytocompatibility was confirmed through leachate analysis and DAPI-stained osteoblast nuclei. The biological evaluation reported maximum cell adherence in lower pore sizes, with gyroid scaffolds showing a statistically significant (p < 0.01) increase in cell proliferation. These findings suggest that 300–600 μm lattice scaffolds offer an optimal balance between mechanical integrity and biological response for load-bearing bone repair. Full article
(This article belongs to the Special Issue Recent Advances in Additive Manufacturing and 3D Printing)
Show Figures

Figure 1

20 pages, 3820 KiB  
Article
Improvement of Anti-Collision Performance of Concrete Columns Using Bio-Inspired Honeycomb Column Thin-Walled Structure (BHTS)
by Jingbo Wang, Hongxiang Xia and Shijie Wang
Biomimetics 2025, 10(6), 355; https://doi.org/10.3390/biomimetics10060355 - 1 Jun 2025
Viewed by 360
Abstract
In recent years, frequent vehicle–bridge pier collision accidents have posed a serious threat to people’s economic and life security. In order to avert the impairment of reinforced concrete bridge piers (RCBPs) under the impact of vehicles, three kinds of Mg–Al alloy AlSi10Mg anti-collision [...] Read more.
In recent years, frequent vehicle–bridge pier collision accidents have posed a serious threat to people’s economic and life security. In order to avert the impairment of reinforced concrete bridge piers (RCBPs) under the impact of vehicles, three kinds of Mg–Al alloy AlSi10Mg anti-collision structures designed by selective laser melting (SLM) printing were tested by the numerical simulation method in this study: an ultra-high performance concrete (UHPC) anti-collision structure, a bio-inspired honeycomb column thin-walled structure (BHTS) buffer interlayer, and a UHPC–BHTS composite structure were used to reduce the damage degree of RCBPs caused by vehicle impact. In accordance with the prototype configuration of the pier, a scaled model with a scale ratio of 1:10 was fabricated. Three anti-collision structures were installed on the reinforced concrete (RC) column specimens for the steel ball impact test. The impact simulation under low-energy and high-energy input was carried out successively, and the protective effect of the three anti-collision devices on the RC column was comprehensively evaluated. The outcomes demonstrate that the BHTS buffer interlayer and the UHPC–BHTS composite structure are capable of converting the shear failure of RC columns into bending failure, thereby exerting an efficacious role in safeguarding RC columns. The damage was evaluated under all impact conditions of BHTS and UHPC–BHTS composite structures, and the RC column only suffered slight damage, while the RC column without protective measures and the RC column with the UHPC anti-collision structure alone showed serious damage and collapse behavior. This approach can offer a valuable reference for anti-collision design within analogous projects. Full article
Show Figures

Figure 1

13 pages, 1564 KiB  
Article
Modeling Porosity Surface of 3D Selective Laser Melting Metal Materials
by Matej Babič, Roman Šturm, Teofil-Florin Gălățanu, Ildikó-Renáta Száva and Ioan Száva
Fractal Fract. 2025, 9(6), 331; https://doi.org/10.3390/fractalfract9060331 - 22 May 2025
Viewed by 452
Abstract
The most popular method for additively printing metal components is selective laser melting (SLM), which works well for creating working models and prototypes. A fine metal powder, often (stainless) steel or aluminum, serves as the initial material. A very accurate laser is used [...] Read more.
The most popular method for additively printing metal components is selective laser melting (SLM), which works well for creating working models and prototypes. A fine metal powder, often (stainless) steel or aluminum, serves as the initial material. A very accurate laser is used to melt this layer by layer. The most important factor here is the short throughput time in comparison to milling. Selective laser melting becomes increasingly valuable as geometry becomes more complex. Presented study models the porosity of 3D SLM of metal materials using genetic programming and network theory. We used fractal dimensions to determine the complexity of the microstructure of selective laser melting specimens. The method’s usefulness and efficiency were confirmed by experimental work using an EOS M 290 3D printer and EOS Maraging Steel MS1. This study then presented a novel viewpoint on porosity and has important ramifications for additive manufacturing quality control, which could improve the accuracy and effectiveness of 3D metal printing. The goal was to present a modeling porosity of 3D SLM of metal materials by using a method of intelligent system. Full article
Show Figures

Figure 1

26 pages, 8497 KiB  
Article
Topology Optimization Study of a Refrigeration Block Manufactured with Powder Bed Fusion Selective Laser Melting
by Guido Servetti, Federico Valente, Jérôme Laurent and Jitendra Singh Rathore
J. Manuf. Mater. Process. 2025, 9(5), 164; https://doi.org/10.3390/jmmp9050164 - 19 May 2025
Viewed by 625
Abstract
Powder bed fusion with a selective laser melting (SLM) process is a versatile technology that allows for the manufacturing of complex geometries and lightweight structures. A prototype of a redesigned refrigeration block is made with topology optimization, thereby demonstrating the capabilities and challenges [...] Read more.
Powder bed fusion with a selective laser melting (SLM) process is a versatile technology that allows for the manufacturing of complex geometries and lightweight structures. A prototype of a redesigned refrigeration block is made with topology optimization, thereby demonstrating the capabilities and challenges of this approach in terms of design and manufacturing. The geometry obtained was more efficient in terms of thermal performance with respect to the original design, and the simulation of the printing process indicated ways to reduce distortions. Moreover, a demonstrator was printed and measured through X-ray computed tomography (XCT) scanning, showing that the approach used was effective in terms of process parameters, technology used, and materials. In fact, it was found to have a low level of porosity, and although there were some differences in the dimensional comparison, such differences were lower in the areas where greater accuracy was required. The manufacturability was possible because of the appropriate choice of process parameters and the combination of the additive with subtractive manufacturing techniques, such as CNC milling. Overall, the methodology used proved effective for the purpose of the component in terms of thermal efficiency and weight reduction. Full article
Show Figures

Figure 1

28 pages, 16808 KiB  
Article
Experimental and Numerical Study on Flow and Heat Transfer Characteristics of Additively Manufactured Triply Periodic Minimal Surface (TPMS) Heat Exchangers for Micro Gas Turbine
by Xiyuan Su, Yueliang Zhang, Yu Rao, Kirttayoth Yeranee and Xintong Wang
Aerospace 2025, 12(5), 416; https://doi.org/10.3390/aerospace12050416 - 7 May 2025
Cited by 2 | Viewed by 1096
Abstract
This paper proposes two compact, efficient, and lightweight heat exchangers based on triply periodic minimal surfaces (TPMSs). Designed in an annular configuration, the heat exchangers meet the requirements of micro gas turbines for compactness. Two prototypes of Diamond and Gyroid modular TPMS heat [...] Read more.
This paper proposes two compact, efficient, and lightweight heat exchangers based on triply periodic minimal surfaces (TPMSs). Designed in an annular configuration, the heat exchangers meet the requirements of micro gas turbines for compactness. Two prototypes of Diamond and Gyroid modular TPMS heat exchangers were fabricated using selective laser melting (SLM) with stainless steel. The flow and heat transfer experimental results indicate that, within a Reynolds number range of 200 to 800, the effectiveness of both heat exchangers remained above 0.62, and the average Nusselt numbers of the Diamond and Gyroid structures reached 3.60 and 4.06 times that of the printed circuit heat exchanger (PCHE), respectively. Although both heat exchangers exhibited relatively high friction factors, their overall performance surpassed that of conventional heat exchangers. Additionally, performance comparisons with existing TPMS heat exchangers revealed that smaller lattice sizes contribute to improved volume-based power density, although they result in increased pressure loss. Simulation results indicated that the “merge–split” effect present in both structures enhances heat transfer between the fluid and the wall. Furthermore, the complex channels of the TPMS structures ensure that the fluid maintains strong turbulence intensity throughout the heat exchanger. This study demonstrates that stainless steel TPMS structures can serve as excellent candidates for applications in micro gas turbines. Full article
(This article belongs to the Section Aeronautics)
Show Figures

Figure 1

14 pages, 4123 KiB  
Article
Research on the Impact Toughness of 3D-Printed CoCrMo Alloy Components Based on Fractal Theory
by Guoqing Zhang, Junxin Li, Han Wang, Congcong Shangguan, Juanjuan Xie and Yongsheng Zhou
Biomimetics 2025, 10(5), 292; https://doi.org/10.3390/biomimetics10050292 - 6 May 2025
Viewed by 381
Abstract
In order to obtain high-performance 3D printed parts, this study focuses on the key performance indicator of impact toughness. The parametric modeling software Rhino 6 is used to design impact specimens, and the laser selective melting equipment DiMetal-100, independently developed by the South [...] Read more.
In order to obtain high-performance 3D printed parts, this study focuses on the key performance indicator of impact toughness. The parametric modeling software Rhino 6 is used to design impact specimens, and the laser selective melting equipment DiMetal-100, independently developed by the South China University of Technology, is used to manufacture impact specimens. Subsequently, the CoCrMo alloy parts were annealed using an MXQ1600-40 box-type atmosphere furnace and subjected to impact testing using a cantilever beam impact testing machine XJV-22. Fractal theory was applied to analyze the fractal behavior of the resulting impact fracture surfaces. The research results indicate that the 3D-printed impact specimens exhibited excellent surface quality, characterized by brightness, low roughness, and the absence of significant defects such as warping or deformation. In terms of annealing treatment, lower annealing temperatures did not improve the impact performance of SLM-formed CoCrMo alloy parts but instead led to a decrease in toughness. While increasing the annealing temperature can improve toughness to some extent, the effect is limited. Furthermore, the relationship between impact energy and heat treatment temperature exhibits a U-shaped trend. The fractal dimension analysis shows that the parts annealed in a 1200 °C furnace have the highest fractal dimension and better toughness performance. This study introduces a novel approach by comprehensively integrating advanced 3D printing technology, annealing processes, and fractal theory analysis to systematically investigate the influence of annealing temperature on the impact properties of 3D-printed CoCrMo alloy parts, thereby establishing a solid foundation for the application of high-performance 3D printed parts. Full article
Show Figures

Figure 1

10 pages, 3322 KiB  
Communication
Selective Laser Melting of Molybdenum Alloy on Silicon Carbide Substrate
by Marina Aghayan and Tsovinar Ghaltaghchyan
Materials 2025, 18(9), 2121; https://doi.org/10.3390/ma18092121 - 5 May 2025
Viewed by 534
Abstract
Additive manufacturing (AM) technologies allow for the creation of components with greater design flexibility. The complexity in geometry and composition can enhance functionality, while parts made from multiple materials have the capacity to deliver improved performance. Nonetheless, most multimaterial printing methods are still [...] Read more.
Additive manufacturing (AM) technologies allow for the creation of components with greater design flexibility. The complexity in geometry and composition can enhance functionality, while parts made from multiple materials have the capacity to deliver improved performance. Nonetheless, most multimaterial printing methods are still in their infancy and face numerous challenges. Numerous materials require individual post-treatment, and some may not be compatible with each other regarding shrinkage, melting or sintering temperatures, and interactions. In this study, we introduce a technique for producing a metal–ceramic multimaterial prototype for electronic packages through powder-bed additive manufacturing technology. Silicon carbide-based ceramic substrate was manufactured by selective laser melting, on which molybdenum-based conductive tracks were printed. The results indicated that the SiC-based samples exhibit a relatively uniform microstructure with homogeneously distributed porosity. Mo-based powder containing 5% silicon was successfully SLM-ed on the SiC layer. The microstructural and chemical analyses show that Mo reacted with Si during selective laser melting, resulting in formation of molybdenum silicides. The surface of Mo-based layer surface is smooth; however, there are few cracks on it. The Vickers hardness was measured to be 7.6 ± 1 GPa. The electrical resistivity of the conductive track is 2.8 × 10−5 Ω·m. Full article
Show Figures

Figure 1

22 pages, 2007 KiB  
Article
Design and Contact Performance Analysis of 3D-Printed Alloy Metal Inertial Micro Switch
by Jinghao Li, Zhipeng Li and Hejuan Chen
Micromachines 2025, 16(5), 560; https://doi.org/10.3390/mi16050560 - 5 May 2025
Viewed by 2014
Abstract
In order to reduce space occupation and improve reliability, the modularization and integration of micro switches and their components are a necessary path for development. In this paper, a scheme for an alloy metal inertial micro switch using 3D printing technology is proposed [...] Read more.
In order to reduce space occupation and improve reliability, the modularization and integration of micro switches and their components are a necessary path for development. In this paper, a scheme for an alloy metal inertial micro switch using 3D printing technology is proposed for an integrated design. The switch realizes the turn-on function by causing the deformable electrodes to undergo plastic deformation and make close contact with the outer sleeve under the columnar block extrusion. The influence of electrode structure parameters on electrode contact performance was studied by the orthogonal experimental method. And the best parameter combination scheme for the electrode was determined. The aluminum alloy switch and titanium alloy switch were processed by SLM (selective laser melting) technology. The plastic deformation of the 3D-printed titanium alloy electrode occurred later than that of the 3D-printed aluminum alloy electrode under the same impact. The aluminum alloy electrode underwent plastic deformation and realized stable contact with a response time of 5 µs when the impact load was applied with an amplitude of 627 N and a pulse width of 2.7 ms (simulating high acceleration), which meets the application requirement of the response time being no more than 20 µs. The feasibility of 3D printing technology in high-precision and complex-structure micro switch manufacturing was verified. The research in this paper will provide guidance and reference for engineering applications. Full article
(This article belongs to the Section E:Engineering and Technology)
Show Figures

Figure 1

Back to TopTop