Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (95)

Search Parameters:
Keywords = RyR2 activation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 700 KB  
Review
The Ca2+ Bridge: From Neurons to Circuits in Rett Syndrome
by Luis Molina Calistro, Yennyfer Arancibia, Javiera Alarcón and Rodrigo Flavio Torres
Int. J. Mol. Sci. 2025, 26(21), 10490; https://doi.org/10.3390/ijms262110490 - 29 Oct 2025
Viewed by 374
Abstract
Rett syndrome (RTT) is a severe neurodevelopmental disorder caused primarily by mutations in the gene encoding the methyl-CpG-binding protein 2 (Mecp2). Mecp2 binds to methylated cytosines, playing a crucial role in chromatin organization and transcriptional regulation. At the neurobiological level, RTT is characterized [...] Read more.
Rett syndrome (RTT) is a severe neurodevelopmental disorder caused primarily by mutations in the gene encoding the methyl-CpG-binding protein 2 (Mecp2). Mecp2 binds to methylated cytosines, playing a crucial role in chromatin organization and transcriptional regulation. At the neurobiological level, RTT is characterized by dendritic spine dysgenesis and altered excitation–inhibition balance, drawing attention to the mechanisms that scale from mutations in a nuclear protein to altered neuronal connectivity. Although Mecp2 dysfunction disrupts multiple neuronal processes, emerging evidence highlights altered calcium (Ca2+) signaling as a central contributor to RTT pathophysiology. This review explores the link between Mecp2 and Ca2+ regulation by highlighting how Mecp2 affects Ca2+-dependent transcriptional pathways, while Ca2+ modulates Mecp2 function by inducing post-translational modifications. We discuss this crosstalk in light of evidence from RTT models, with a particular focus on the brain-derived neurotrophic factor BDNF-miR132-Mecp2 axis and the dysregulation of ryanodine receptors (RyRs). Additionally, we examine how these perturbations contribute to the reduced structural plasticity and the altered activity-driven gene expression that characterizes RTT. Understanding the intersection between Mecp2 function and Ca2+ homeostasis will provide critical insights into RTT pathogenesis and potential therapeutic targets aimed at restoring neuronal connectivity. Full article
(This article belongs to the Special Issue Calcium Homeostasis of Cells in Health and Disease: Third Edition)
Show Figures

Figure 1

20 pages, 41724 KB  
Article
TRIC-A Facilitates Sarcoplasmic Reticulum–Mitochondrial Ca2+ Signaling Crosstalk in Cardiomyocytes
by Ang Li, Xinyu Zhou, Ki Ho Park, Jianxun Yi, Xuejun Li, Jae-Kyun Ko, Yuchen Chen, Miyuki Nishi, Daiju Yamazaki, Hiroshi Takeshima, Jingsong Zhou and Jianjie Ma
Cells 2025, 14(20), 1579; https://doi.org/10.3390/cells14201579 - 11 Oct 2025
Viewed by 742
Abstract
TRIC-A is an intracellular cation channel enriched in excitable tissues that is recently identified as a key modulator of sarcoplasmic reticulum (SR) Ca2+ homeostasis through direct interaction with type 2 ryanodine receptors (RyR2). Given the intimate anatomical and functional coupling [...] Read more.
TRIC-A is an intracellular cation channel enriched in excitable tissues that is recently identified as a key modulator of sarcoplasmic reticulum (SR) Ca2+ homeostasis through direct interaction with type 2 ryanodine receptors (RyR2). Given the intimate anatomical and functional coupling between the SR and mitochondria, we investigated whether TRIC-A contributes to SR–mitochondrial crosstalk under cardiac stress conditions. Using a transverse aortic constriction (TAC) model, we found that TRIC-A−/− mice developed more severe cardiac hypertrophy, underwent maladaptive remodeling, and activated apoptotic pathways compared with wild-type littermates. At the cellular level, TRIC-A-deficient cardiomyocytes were more susceptible to H2O2-induced mitochondrial injury and displayed abnormal mitochondrial morphology. Live-cell imaging revealed exaggerated mitochondrial Ca2+ uptake during caffeine stimulation and increased propensity for store-overload-induced Ca2+ release (SOICR). Complementary studies in HEK293 cells expressing RyR2 demonstrated that exogenous TRIC-A expression attenuates RyR2-mediated mitochondrial Ca2+ overload, preserves respiratory function, and suppresses superoxide generation. Together, these findings identify TRIC-A as a critical regulator of SR–mitochondrial Ca2+ signaling. By constraining mitochondrial Ca2+ influx and limiting oxidative stress, TRIC-A safeguards cardiomyocytes against SOICR-driven injury and confers protection against pressure overload-induced cardiac dysfunction. Full article
Show Figures

Figure 1

36 pages, 7997 KB  
Article
The Cannabinoid CB1 Receptor Inverse Agonist/Antagonist SR141716A Activates the Adenylate Cyclase/PKA Signaling Pathway Among Other Intracellular Emetic Signals to Evoke Vomiting in Least Shrews (Cryptotis parva)
by Yina Sun, Louiza Belkacemi, Weixia Zhong, Zollie Daily and Nissar A. Darmani
Int. J. Mol. Sci. 2025, 26(20), 9884; https://doi.org/10.3390/ijms26209884 - 11 Oct 2025
Viewed by 465
Abstract
Intracellular emetic signals involved in the cannabinoid CB1 receptor inverse agonist/antagonist SR141716A were investigated. SR141716A (20 mg/kg, i.p.)-evoked vomiting occurred via both the central and peripheral mechanisms. This was accompanied by robust emesis-associated increases in the following: (i) c-fos- and [...] Read more.
Intracellular emetic signals involved in the cannabinoid CB1 receptor inverse agonist/antagonist SR141716A were investigated. SR141716A (20 mg/kg, i.p.)-evoked vomiting occurred via both the central and peripheral mechanisms. This was accompanied by robust emesis-associated increases in the following: (i) c-fos- and phospho-glycogen synthase kinase-3α/β (p-GSK-3αβ)-expression in the shrew’s dorsal vagal complex (DVC), (ii) phospho-extracellular signal-regulated kinase1/2 (p-ERK1/2) expression in both the DVC and jejunal enteric nervous system, and (iii) time-dependent upregulation of cAMP levels and phosphorylation of protein kinase A (PKA), protein kinase B (Akt), GSK-3α/β, ERK1/2, and protein kinase C αβII (PKCαβII) in the brainstem. SR141716A-evoked emetic parameters were attenuated by diverse inhibitors of the following: PKA, ERK1/2, GSK-3, phosphatidylinositol 3-kinase (PI3K)-Akt pathway, phospholipase C (PLC), PKC, Ca2+/calmodulin-dependent protein kinase II (CaMKII), L-type Ca2+ channel (LTCC), store-operated Ca2+ entry (SOCE), inositol trisphosphate receptor (IP3R), ryanodine receptor (RyRs), both 5-HT3-, and D2/3-receptor antagonists, and the transient receptor potential vanilloid 1 receptor (TRPV1R) agonist. SR141716A appears to evoke vomiting via inverse agonist activity involving emesis-associated kinases, including cAMP/PKA, ERK1/2, PI3K/Akt/GSK-3, PLC/PKCαβII, and CaMKII, which depend upon Ca2+ mobilization linking extracellular Ca2+ entry via plasma membrane Ca2+ channels (LTCC, SOCE, TRIPV1R) and intracellular Ca2+ release via IP3Rs and RyRs. The 5-HT3, NK1, and D2/3 receptors also contribute to SR141716A-mediated vomiting. Full article
(This article belongs to the Special Issue G Protein-Coupled Receptors)
Show Figures

Figure 1

23 pages, 9866 KB  
Article
Dysferlin Protein–Protein Interaction Pathways in the Organ of Corti and Spiral Ganglion Intersect with Alzheimer’s Protein Pathways
by Marian J. Drescher, Dennis G. Drescher, Khalid M. Khan, James S. Hatfield and Darshi Hemani
Int. J. Mol. Sci. 2025, 26(19), 9559; https://doi.org/10.3390/ijms26199559 - 30 Sep 2025
Viewed by 474
Abstract
Dysferlin direct protein–protein interactions (PPI) previously have been elucidated with surface plasmon resonance (SPR) and predicted to underlie membrane repair in mechanotransducing myofibrils. In mechanotransducing inner ear hair cells, dysferlin is detected with Z-stack confocal immunofluorescence in the stereocilia and their inserts in [...] Read more.
Dysferlin direct protein–protein interactions (PPI) previously have been elucidated with surface plasmon resonance (SPR) and predicted to underlie membrane repair in mechanotransducing myofibrils. In mechanotransducing inner ear hair cells, dysferlin is detected with Z-stack confocal immunofluorescence in the stereocilia and their inserts in the tectorial membrane (TM) co-localizing with FKBP8, consistent with the SPR determination of tight, positively Ca2+-dependent interaction. FKBP8, a direct binding partner of mechanotransducing TMC1, when overexpressed, evokes an elevation in anti-apoptotic BCL2, inhibition of ryanodine receptor (RYR) activity, and a consequent reduction in Ca2+ release. RYR3 has now been immunolocalized to the tip of the TM in close association with a third-row outer hair cell (OHC) stereociliary BCL2-positive insertion. Dysferlin, annexin A2, and Alzheimer’s proteins BACE1 and amyloid precursor protein (APP) are also accumulated in these stereociliary insertions. RYR2 and RYR1 have been immunolocalized to the TM core, in position to influence TM Ca2+. Dysferlin PPI pathways also intersect with AD protein pathways in the spiral ganglion (SG). Dysferlin segregates with FKBP8, BACE1, and RYR3 in the interiors of SG type I cell bodies. RYR1, RYR2, PSEN1, BCL2, and caspase 3 are primarily confined to plasma membrane sites. RYR3 pathways traverse the plasma membrane to the cell body interior. Western analysis of dysferlinopathy proteins links FKBP8 and BCL2 overexpression with RYR inhibition, indicative of dysferlin targets that are ameliorative in AD. Full article
(This article belongs to the Section Molecular Neurobiology)
Show Figures

Figure 1

16 pages, 3462 KB  
Article
LPS-Induced Intracellular Complement 3 Activation Regulated ATP Production in Yak Rumen Epithelial Cells
by Qiang Han, Qiqi Zhang, Duoting Wu, Zihan Yang, Jinyang Huang, Zhisheng Wang, Huawei Zou, Quanhui Peng, Yukun Meng, Yahui Jiang, Jianxin Xiao and Rui Hu
Vet. Sci. 2025, 12(9), 841; https://doi.org/10.3390/vetsci12090841 - 31 Aug 2025
Viewed by 666
Abstract
This study aimed to investigate whether intracellular complement 3 (C3) activation regulates ATP production in yak rumen epithelial cells under inflammatory conditions and its potential mechanism. An in vitro inflammation model was established by stimulating yak rumen epithelial cells with lipopolysaccharide (LPS). Then, [...] Read more.
This study aimed to investigate whether intracellular complement 3 (C3) activation regulates ATP production in yak rumen epithelial cells under inflammatory conditions and its potential mechanism. An in vitro inflammation model was established by stimulating yak rumen epithelial cells with lipopolysaccharide (LPS). Then, protease inhibitors targeting C3 activation enzymes were added. Additionally, to explore the downstream signaling pathway, exogenous C3a and the C3a receptor (C3aR) inhibitor C3aRY were applied to the inflammation model. After treatment with different concentrations of LPS, the gene expression levels and concentrations of pro-inflammatory cytokines, such as TNF-α, IL-1β, and IL-6 were significantly up-regulated (p < 0.05), while a significant reduction in cellular ATP levels was observed (p < 0.05), along with a significant reduction in mitochondrial membrane potential (p < 0.05). After treating the inflammation model with different protease inhibitors, the ATP content and gene expression of the ATP synthase subunit ATP5A were significantly increased (p < 0.05). Exogenous addition of the C3aR inhibitor C3aRY in the inflammation model exhibited a significant increase in ATP content and ATP5A gene expression (p < 0.05) when compared to the inflammation model. These results demonstrated that intracellular C3 activation inhibited ATP production in yak rumen epithelial cells under inflammatory conditions, likely through C3a–C3aR signaling and the cAMP/PKA pathway. Full article
Show Figures

Figure 1

27 pages, 1862 KB  
Review
The Yin and Yang of Heartbeats: Magnesium–Calcium Antagonism Is Essential for Cardiac Excitation–Contraction Coupling
by Chiara Marabelli, Demetrio J. Santiago and Silvia G. Priori
Cells 2025, 14(16), 1280; https://doi.org/10.3390/cells14161280 - 18 Aug 2025
Viewed by 1901
Abstract
While calcium (Ca2+) is a universal cellular messenger, the ionic properties of magnesium (Mg2+) make it less suited for rapid signaling and more for structural integrity. Still, besides being a passive player, Mg2+ is the only active Ca [...] Read more.
While calcium (Ca2+) is a universal cellular messenger, the ionic properties of magnesium (Mg2+) make it less suited for rapid signaling and more for structural integrity. Still, besides being a passive player, Mg2+ is the only active Ca2+ antagonist, essential for tuning the efficacy of Ca2+-dependent cardiac excitation–contraction coupling (ECC) and for ensuring cardiac function robustness and stability. This review aims to provide a comprehensive framework to link the structural and molecular mechanisms of Mg2+/Ca2+ antagonistic binding across key proteins of the cardiac ECC machinery to their physiopathological relevance. The pervasive “dampening” effect of Mg2+ on ECC activity is exerted across various players and mechanisms, and lies in the ions’ physiological competition for multiple, flexible binding protein motifs across multiple compartments. Mg2+ profoundly modulates the cardiac action potential waveform by inhibiting the L-type Ca2+ channel Cav1.2, i.e., the key trigger of cardiac ryanodine receptor (RyR2) opening. Cytosolic Mg2+ favors RyR2 closed or inactive conformations not only through physical binding at specific sites, but also indirectly through modulation of RyR2 phosphorylation by Camk2d and PKA. RyR2 is also potently inhibited by luminal Mg2+, a vital mechanism in the cardiac setting for preventing excessive Ca2+ release during diastole. This mechanism, able to distinguish between Ca2+ and Mg2+, is mediated by luminal partners Calsequestrin 2 (CASQ2) and Triadin (TRDN). In addition, Mg2+ favors a rearrangement of the RyR2 cluster configuration that is associated with lower Ca2+ spark frequencies. Full article
Show Figures

Figure 1

21 pages, 5238 KB  
Article
Monascus Yellow Pigments Ameliorate Hyperuricemia via Dual Mechanisms: Xanthine Oxidase Inhibition and Uric Acid Transporter Modulation (ABCG2, URAT1, and GLUT9)
by Furong Xue, Renqin Zhu, Jiaxing Li, Zheng Liu, Lidan Niu, Wei Chen, Chengtao Wang and Jie Zheng
Foods 2025, 14(16), 2765; https://doi.org/10.3390/foods14162765 - 8 Aug 2025
Viewed by 947
Abstract
The increasing global prevalence of hyperuricemia (HUA), particularly among younger populations, underscores the urgent need for safe and effective dietary interventions. Monascus fungi, long utilized in East Asian food culture, ferment rice to produce red yeast rice (RYR), a functional food rich in [...] Read more.
The increasing global prevalence of hyperuricemia (HUA), particularly among younger populations, underscores the urgent need for safe and effective dietary interventions. Monascus fungi, long utilized in East Asian food culture, ferment rice to produce red yeast rice (RYR), a functional food rich in monacolin K and Monascus pigments. Among these, Monascus yellow pigments (MYPs)—natural azaphilone compounds used as food additives and colorants—have shown antioxidant, anti-inflammatory, and metabolic regulatory activities. However, their potential to alleviate hyperuricemia remains unexplored. This study investigates the urate-lowering and organ-protective effects of MYPs through a combination of in vitro, in vivo, and gut microbiota analyses. MYPs exhibited significant xanthine oxidase (XOD) inhibitory activity, and molecular docking confirmed that monascin (MS) and ankaflavin (AK) competitively bind to the XOD active site. In a murine HUA model, MYPs significantly reduced serum uric acid (SUA) levels without causing hepatic or renal toxicity. Mechanistically, MYPs downregulated renal UA reabsorption transporters (URAT1, GLUT9) and upregulated the excretory transporter ABCG2, enhancing uric acid (UA) excretion. These findings highlight MYPs as promising food-derived bioactives with dual XOD inhibition and uricosuric effects, offering a novel nutraceutical strategy for hyperuricemia prevention and management. Full article
(This article belongs to the Section Food Microbiology)
Show Figures

Graphical abstract

17 pages, 463 KB  
Review
PDE9A Promotes Calcium-Handling Dysfunction in Right Heart Failure via cGMP–PKG Pathway Suppression: A Mechanistic and Therapeutic Review
by Spencer Thatcher, Arbab Khalid, Abu-Bakr Ahmed, Randeep Gill and Ali Kia
Int. J. Mol. Sci. 2025, 26(13), 6361; https://doi.org/10.3390/ijms26136361 - 1 Jul 2025
Viewed by 1355
Abstract
Right heart failure (RHF) is a major cause of morbidity and mortality, often resulting from pulmonary arterial hypertension and characterized by impaired calcium (Ca2+) handling and maladaptive remodeling. Phosphodiesterase 9A (PDE9A), a cGMP-specific phosphodiesterase, has been proposed as a potential contributor [...] Read more.
Right heart failure (RHF) is a major cause of morbidity and mortality, often resulting from pulmonary arterial hypertension and characterized by impaired calcium (Ca2+) handling and maladaptive remodeling. Phosphodiesterase 9A (PDE9A), a cGMP-specific phosphodiesterase, has been proposed as a potential contributor to RHF pathogenesis by suppressing the cardioprotective cGMP–PKG signaling pathway—a conclusion largely extrapolated from left-sided heart failure models. This review examines existing evidence regarding PDE9A’s role in RHF, focusing on its effects on intracellular calcium cycling, fibrosis, hypertrophy, and contractile dysfunction. Data from preclinical models demonstrate that pathological stress upregulates PDE9A expression in cardiomyocytes, leading to diminished PKG activation, impaired SERCA2a function, RyR2 instability, and increased arrhythmogenic Ca2+ leak. Pharmacological or genetic inhibition of PDE9A restores cGMP signaling, improves calcium handling, attenuates hypertrophic and fibrotic remodeling, and enhances ventricular compliance. Early-phase clinical studies in heart failure populations suggest that PDE9A inhibitors are well tolerated and effectively augment cGMP levels, although dedicated trials in RHF are still needed. Overall, these findings indicate that targeting PDE9A may represent a promising therapeutic strategy to improve outcomes in RHF by directly addressing the molecular mechanisms underlying calcium mishandling and myocardial remodeling. Full article
(This article belongs to the Special Issue Editorial Board Members’ Collection Series: "Enzyme Inhibition")
Show Figures

Figure 1

23 pages, 2709 KB  
Review
Ryanodine Receptors in Islet Cell Function: Calcium Signaling, Hormone Secretion, and Diabetes
by Md. Shahidul Islam
Cells 2025, 14(10), 690; https://doi.org/10.3390/cells14100690 - 10 May 2025
Viewed by 3583
Abstract
Ryanodine receptors (RyRs) are large intracellular Ca2+ release channels primarily found in muscle and nerve cells and also present at low levels in pancreatic islet endocrine cells. This review examines the role of RyRs in islet cell function, focusing on calcium signaling [...] Read more.
Ryanodine receptors (RyRs) are large intracellular Ca2+ release channels primarily found in muscle and nerve cells and also present at low levels in pancreatic islet endocrine cells. This review examines the role of RyRs in islet cell function, focusing on calcium signaling and hormone secretion, while addressing the ongoing debate regarding their significance due to their limited expression. We explore conflicting experimental results and their potential causes, synthesizing current knowledge on RyR isoforms in islet cells, particularly in beta and delta cells. The review discusses how RyR-mediated calcium-induced calcium release enhances, rather than drives, glucose-stimulated insulin secretion. We examine the phosphorylation-dependent regulation of beta-cell RyRs, the concept of “leaky ryanodine receptors”, and the roles of RyRs in endoplasmic reticulum stress, apoptosis, store-operated calcium entry, and beta-cell electrical activity. The relationship between RyR dysfunction and the development of impaired insulin secretion in diabetes is assessed, noting their limited role in human diabetes pathogenesis given the disease’s polygenic nature. We highlight the established role of RyR-mediated CICR in the mechanism of action of common type 2 diabetes treatments, such as glucagon-like peptide-1, which enhances insulin secretion. By integrating findings from electrophysiological, molecular, and clinical studies, this review provides a balanced perspective on RyRs in islet cell physiology and pathology, emphasizing their significance in both normal insulin secretion and current diabetes therapies. Full article
(This article belongs to the Special Issue Molecular Mechanisms of Signal Transduction in the Islet Cells)
Show Figures

Graphical abstract

11 pages, 1664 KB  
Article
Aging Favors Calcium Activation of Ryanodine Receptor Channels from Brain Cortices and Hippocampi and Hinders Learning and Memory in Male Rats
by Jamileth More, José Pablo Finkelstein, José Luis Valdés, Cecilia Hidalgo and Ricardo Bull
Int. J. Mol. Sci. 2025, 26(5), 2101; https://doi.org/10.3390/ijms26052101 - 27 Feb 2025
Viewed by 848
Abstract
The response of ryanodine receptor (RyR) channels to increases in free cytoplasmic calcium concentration ([Ca2+]) is tuned by several mechanisms, including redox signaling. Three different responses to [Ca2+] have been described in RyR channels, low, moderate and high activity [...] Read more.
The response of ryanodine receptor (RyR) channels to increases in free cytoplasmic calcium concentration ([Ca2+]) is tuned by several mechanisms, including redox signaling. Three different responses to [Ca2+] have been described in RyR channels, low, moderate and high activity responses, which depend on the RyR channel protein oxidation state. Thus, reduced RyR channels display the low activity response, whereas partially oxidized channels display the moderate response and more oxidized channels, the high activity response. As described here, RyR channels from rat brain cortices or hippocampi displayed aged-related marked changes in the distribution of these channel responses; RyR channels from aged rats displayed reduced fraction of low activity channels and increased fraction of high activity channels, which would favor Ca2+-induced Ca2+ release. In addition, compared with young rats, aged rats displayed learning and memory defects, with lower hit rates when tested in the Oasis maze, a dry version of the Morris water maze. Previous oral administration of N-acetylcysteine for 3 weeks prevented both the age-dependent effects on RyR channel activation by [Ca2+], and the learning and memory defects. Based on these results, it is proposed that redox-sensitive neuronal RyR channels partake in the mechanism underlying the learning and memory disruptions displayed by aged rats. Full article
(This article belongs to the Special Issue Calcium Homeostasis of Cells in Health and Disease: 2nd Edition)
Show Figures

Figure 1

24 pages, 13252 KB  
Article
A Comparative Effect of 12-Week Dietary Intervention of Policosanol (Raydel®) and Red Yeast Rice (RYR, Kobayashi) in Managing Dyslipidemia and Organ Damage in Hyperlipidemic Zebrafish
by Kyung-Hyun Cho, Ashutosh Bahuguna, Ji-Eun Kim, Sang Hyuk Lee, Yunki Lee and Cheolmin Jeon
Pharmaceuticals 2025, 18(2), 200; https://doi.org/10.3390/ph18020200 - 1 Feb 2025
Cited by 2 | Viewed by 3010
Abstract
Background: A comparative 12-week dietary intervention of red yeast rice (RYR, Beni-koji, Kobayashi, Japan) and Cuban policosanol (PCO, Raydel®, Thornleigh, Australia) was assessed for dyslipidemia, antioxidant status, and vital organ functionality in hyperlipidemic zebrafish. Methods: Hyperlipidemic zebrafish were supplemented with [...] Read more.
Background: A comparative 12-week dietary intervention of red yeast rice (RYR, Beni-koji, Kobayashi, Japan) and Cuban policosanol (PCO, Raydel®, Thornleigh, Australia) was assessed for dyslipidemia, antioxidant status, and vital organ functionality in hyperlipidemic zebrafish. Methods: Hyperlipidemic zebrafish were supplemented with a high-cholesterol diet (HC, final 4%, w/w) infused with either a powdered RYR tablet (final 1.0%, w/w), a PCO tablet (final 1.0%, w/w), or a combination of 0.5% (w/w) each of RYR and PCO powder for 12 weeks. Subsequently, blood and organs were collected and processed for biochemical and histological examination. Results: RYR and PCO consumption showed a substantial effect against HC-induced hyperlipidemia by reducing the total cholesterol (TC), triglyceride (TG), and low-density lipoprotein cholesterol (LDL-C). Exclusively, PCO supplementation revealed a significant elevation in the HC-diminished high-density lipoprotein cholesterol (HDL-C). In addition, PCO supplementation showed a significant elevation in plasma ferric ion-reducing ability (FRA) and sulfhydryl content, as well as alleviating the blood glucose level of hyperlipidemic zebrafish. The most noteworthy impact, with a significant two-fold (p < 0.001) augmentation of HC-diminished plasma paraoxonase (PON) activity, was observed in response to PCO. In contrast, the RYR supplementation failed to establish curative effects against HC-disturbed plasma antioxidant variables and blood glucose levels. The histological outcome revealed a severe toxicological impact of the RYR on the liver, reflected by fatty liver changes and three-fold heightened IL-6 production compared to HC control. Contrastingly, PCO exhibited significant hepatoprotection and effectively neutralized the hepatic toxicity triggered by HC and RYR. Also, RYR showed kidney atrophy, intense ROS generation, apoptosis, and senescence. Conversely, the PCO supplementation protected the kidney from HC- and RYR-induced toxicity. Likewise, PCO supplementation notably alleviated histological alterations and oxidative stress in the brain, ovary, and testis of hyperlipidemic zebrafish. Conclusions: This comparative study establishes PCO’s therapeutic effect against the challenges posed by HC, while RYR emerged with serious toxicological concerns towards the liver, kidney, and other organs of hyperlipidemic zebrafish. Full article
(This article belongs to the Section Pharmacology)
Show Figures

Figure 1

22 pages, 3912 KB  
Article
Complex Actions of FKBP12 on RyR1 Ion Channel Activity Consistent with Negative Co-Operativity in FKBP12 Binding to the RyR1 Tetramer
by Spencer J. Richardson, Chris G. Thekkedam, Marco G. Casarotto, Nicole A. Beard and Angela F. Dulhunty
Cells 2025, 14(3), 157; https://doi.org/10.3390/cells14030157 - 21 Jan 2025
Viewed by 1355
Abstract
The association of the 12 KDa FK506 binding protein (FKBP12) with ryanodine receptor type 1 (RyR1) in skeletal muscle is thought to suppress RyR1 channel opening and contribute to healthy muscle function. The strongest evidence for this role is increased RyR1 channel activity [...] Read more.
The association of the 12 KDa FK506 binding protein (FKBP12) with ryanodine receptor type 1 (RyR1) in skeletal muscle is thought to suppress RyR1 channel opening and contribute to healthy muscle function. The strongest evidence for this role is increased RyR1 channel activity following FKBP12 dissociation. However, the corollary that channel activity will decrease when FKBP12 is added back to FKBP12-depleted RyR1 is not well established, and when reported, the time- and concentration-dependence of inhibition vary over orders of magnitude. Here, we address this problem with an investigation of the molecular mechanisms of the FKBP12 regulation of RyR1. Muscle processing to obtain sarcoplasmic reticulum (SR) vesicle preparations enriched in RyR1 resulted in substantial FKBP12 dissociation from RyR1, indicating low-affinity binding. Conversely, high-affinity binding was indicated by some FKBP12 remaining bound to RyR1 after solubilization. We report, for the first time, an increase in the activity of FKBP12-depleted channels after the addition of exogenous FKBP12 (5 nM to 5 µM), followed by a reduction in activity consistent with inhibition after 20–30 min exposure to higher [FKBP12]s. Both the increase and later decline in activity were time- and concentration-dependent. The results suggest a high-affinity activation when FKBP12 binding sites on the RyR1 tetramer are partially occupied by FKBP12 and lower affinity inhibition as more RyR1 monomers become occupied. These novel results imply negative cooperativity in FKBP12 binding to RyR1 and a dynamic role for FKBP12/RyR1 interactions in intact muscle fibers. Full article
Show Figures

Graphical abstract

15 pages, 2990 KB  
Article
A Novel Approach for In Vitro Testing and Hazard Evaluation of Nanoformulated RyR2-Targeting siRNA Drugs Using Human PBMCs
by Valeria Bettinsoli, Gloria Melzi, Angelica Crea, Lorenzo Degli Esposti, Michele Iafisco, Daniele Catalucci, Paolo Ciana and Emanuela Corsini
Life 2025, 15(1), 95; https://doi.org/10.3390/life15010095 - 14 Jan 2025
Cited by 2 | Viewed by 2225
Abstract
Nucleic acid (NA)-based drugs are promising therapeutics agents. Beyond efficacy, addressing safety concerns—particularly those specific to this class of drugs—is crucial. Here, we propose an in vitro approach to screen for potential adverse off-target effects of NA-based drugs. Human peripheral blood mononuclear cells [...] Read more.
Nucleic acid (NA)-based drugs are promising therapeutics agents. Beyond efficacy, addressing safety concerns—particularly those specific to this class of drugs—is crucial. Here, we propose an in vitro approach to screen for potential adverse off-target effects of NA-based drugs. Human peripheral blood mononuclear cells (PBMCs), purified from buffy coats of healthy donors, were used to investigate the ability of NA-drugs to trigger toxicity pathways and inappropriate immune stimulation. PBMCs were selected for their ability to represent potential human responses, given their likelihood of interacting with administered drugs. As proof of concept, a small interfering RNA (siRNA) targeting Ryanodine Receptor mRNA (RyR2) identified by the Italian National Center for Gene Therapy and Drugs based on RNA Technology as a potential therapeutic target for dominant catecholaminergic polymorphic ventricular tachycardia, was selected. This compound and its scramble were formulated within a calcium phosphate nanoparticle-based delivery system. Positive controls for four toxicity pathways were identified through literature review, each associated with a specific type of cellular stress: oxidative stress (tert-butyl hydroperoxide), mitochondrial stress (rotenone), endoplasmic reticulum stress (thapsigargin), and autophagy (rapamycin). These controls were used to define specific mRNA signatures triggered in PBMCs, which were subsequently used as indicators of off-target effects. To assess immune activation, the release of pro-inflammatory cytokines (interleukin-6, interleukin-8, tumor necrosis factor-α, and interferon-γ) was measured 24 h after exposure. The proposed approach provides a rapid and effective screening method for identifying potential unintended effects in a relevant human model, which also allows to address gender effects and variability in responses. Full article
(This article belongs to the Section Pharmaceutical Science)
Show Figures

Figure 1

21 pages, 2775 KB  
Article
Flecainide Specifically Targets the Monovalent Countercurrent Through the Cardiac Ryanodine Receptor, While a Dominant Opposing Ca2+/Ba2+ Current Is Present
by Jana Gaburjakova, Michaela Domsicova, Alexandra Poturnayova and Marta Gaburjakova
Int. J. Mol. Sci. 2025, 26(1), 203; https://doi.org/10.3390/ijms26010203 - 29 Dec 2024
Cited by 1 | Viewed by 1594
Abstract
Catecholaminergic polymorphic ventricular tachycardia (CPVT) is a highly arrhythmogenic syndrome triggered by stress, primarily linked to gain-of-function point mutations in the cardiac ryanodine receptor (RyR2). Flecainide, as an effective therapy for CPVT, is a known blocker of the surface-membrane Na+ channel, also [...] Read more.
Catecholaminergic polymorphic ventricular tachycardia (CPVT) is a highly arrhythmogenic syndrome triggered by stress, primarily linked to gain-of-function point mutations in the cardiac ryanodine receptor (RyR2). Flecainide, as an effective therapy for CPVT, is a known blocker of the surface-membrane Na+ channel, also affecting the intracellular RyR2 channel. The therapeutic relevance of the flecainide-RyR2 interaction remains controversial, as flecainide blocks only the RyR2 current flowing in the opposite direction to the physiological Ca2+ release from the sarcoplasmic reticulum (SR). However, it has been proposed that charge-compensating countercurrent from the cytosol to SR lumen plays a critical role, and its reduction may indeed suppress excessive diastolic SR Ca2+ release through RyR2 channels in CPVT. Monitoring single-channel properties, we examined whether flecainide can target intracellular pathways for charge-balancing currents carried by RyR2 and SR Cl channels under cell-like conditions. Particularly, the Tris+ countercurrent flowed through the RyR2 channel simultaneously with a dominant reverse Ca2+/Ba2+ current. We demonstrate that flecainide blocked the RyR2-mediated countercurrent without affecting channel activity. In contrast, the SR Cl channel was completely resistant to flecainide. Based on these findings, it is reasonable to propose that the primary intracellular target of flecainide in vivo is the RyR2-mediated countercurrent. Full article
(This article belongs to the Special Issue Ion Conductance and Ion Regulation in Human Health and Disease)
Show Figures

Figure 1

24 pages, 4759 KB  
Article
Proteomic Analysis of Biomarkers Predicting Treatment Response in Patients with Head and Neck Cancers
by Emeshaw Damtew Zebene, Rita Lombardi, Biagio Pucci, Hagos Tesfay Medhin, Edom Seife, Elena Di Gennaro, Alfredo Budillon and Gurja Belay Woldemichael
Int. J. Mol. Sci. 2024, 25(23), 12513; https://doi.org/10.3390/ijms252312513 - 21 Nov 2024
Cited by 6 | Viewed by 1866
Abstract
Head and neck cancers (HNCs) are the sixth most commonly diagnosed cancer and the eighth leading cause of cancer-related mortality worldwide, with squamous cell carcinoma being the most prevalent type. The global incidence of HNCs is steadily increasing, projected to rise by approximately [...] Read more.
Head and neck cancers (HNCs) are the sixth most commonly diagnosed cancer and the eighth leading cause of cancer-related mortality worldwide, with squamous cell carcinoma being the most prevalent type. The global incidence of HNCs is steadily increasing, projected to rise by approximately 30% per year by 2030, a trend observed in both developed and undeveloped countries. This study involved serum proteomic profiling to identify predictive clinical biomarkers in cancer patients undergoing chemoradiotherapy (CRT). Fifteen HNC patients at Tikur Anbessa Specialized Hospital, Radiotherapy (RT) center in Addis Ababa were enrolled. Serum samples were collected before and after RT, and patients were classified as responders (R) or non-responders (NR). Protein concentrations in the serum were determined using the Bradford assay, followed by nano-HPLC–MS/MS for protein profiling. Progenesis QI for proteomics identified 55 differentially expressed proteins (DEPs) between R and NR, with a significance of p < 0.05 and a fold-change (FC) ≥ 1.5. The top five-up-regulated proteins included MAD1L1, PSMC2, TRIM29, C5, and SERPING1, while the top five-down-regulated proteins were RYR1, HEY2, HIF1A, TF, and CNN3. Notably, about 16.4% of the DEPs were involved in cellular responses to DNA damage from cancer treatments, encompassing proteins related to deoxyribonucleic acid (DNA) damage sensing, checkpoint activation, DNA repair, and apoptosis/cell cycle regulation. The analysis of the relative abundance of ten proteins with high confidence scores identified three DEPs: ADIPOQ, HEY2, and FUT10 as potential predictive biomarkers for treatment response. This study highlighted the identification of three potential predictive biomarkers—ADIPOQ, HEY2, and FUT10—through serum proteomic profiling in HNC patients undergoing RT, emphasizing their significance in predicting treatment response. Full article
(This article belongs to the Special Issue DNA Damage Response from Molecular Mechanisms to Cancer Therapy)
Show Figures

Figure 1

Back to TopTop