Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (40)

Search Parameters:
Keywords = Rayleigh criterion

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
32 pages, 907 KB  
Article
Performance Analysis of Uplink Opportunistic Scheduling for Multi-UAV-Assisted Internet of Things
by Long Suo, Zhichu Zhang, Lei Yang and Yunfei Liu
Drones 2026, 10(1), 18; https://doi.org/10.3390/drones10010018 - 28 Dec 2025
Viewed by 315
Abstract
Due to the high mobility, flexibility, and low cost, unmanned aerial vehicles (UAVs) can provide an efficient way for provisioning data communication and computing offloading services for massive Internet of Things (IoT) devices, especially in remote areas with limited infrastructure. However, current transmission [...] Read more.
Due to the high mobility, flexibility, and low cost, unmanned aerial vehicles (UAVs) can provide an efficient way for provisioning data communication and computing offloading services for massive Internet of Things (IoT) devices, especially in remote areas with limited infrastructure. However, current transmission schemes for unmanned aerial vehicle-assisted Internet of Things (UAV-IoT) predominantly employ polling scheduling, thus not fully exploiting the potential multiuser diversity gains offered by a vast number of IoT nodes. Furthermore, conventional opportunistic scheduling (OS) or opportunistic beamforming techniques are predominantly designed for downlink transmission scenarios. When applied directly to uplink IoT data transmission, these methods can incur excessive uplink training overhead. To address these issues, this paper first proposes a low-overhead multi-UAV uplink OS framework based on channel reciprocity. To avoid explicit massive uplink channel estimation, two scheduling criteria are designed: minimum downlink interference (MDI) and the maximum downlink signal-to-interference-plus-noise ratio (MD-SINR). Second, for a dual-UAV deployment scenario over Rayleigh block fading channels, we derive closed-form expressions for both the average sum rate and the asymptotic sum rate based on the MDI criterion. A degrees-of-freedom (DoF) analysis demonstrates that when the number of sensors, K, scales as ρα, the system can achieve a total of 2α DoF, where α0,1 is the user-scaling factor and ρ is the transmitted signal-to-noise ratio (SNR). Third, for a three-UAV deployment scenario, the Gamma distribution is employed to approximate the uplink interference, thereby yielding a tractable expression for the average sum rate. Simulations confirm the accuracy of the performance analysis for both dual- and three-UAV deployments. The normalized error between theoretical and simulation results falls below 1% for K > 30. Furthermore, the impact of fading severity on the system’s sum rate and DoF performance is systematically evaluated via simulations under Nakagami-m fading channels. The results indicate that more severe fading (a smaller m) yields greater multiuser diversity gain. Both the theoretical and simulation results consistently show that within the medium-to-high SNR regime, the dual-UAV deployment outperforms both the single-UAV and three-UAV schemes in both Rayleigh and Nakagami-m channels. This study provides a theoretical foundation for the adaptive deployment and scheduling design of UAV-assisted IoT uplink systems under various fading environments. Full article
Show Figures

Figure 1

27 pages, 1112 KB  
Article
Joint Coherent/Non-Coherent Detection for Distributed Massive MIMO: Enabling Cooperation Under Mixed Channel State Information
by Supuni Gunasekara, Peter Smith, Margreta Kuijper and Rajitha Senanayake
Sensors 2025, 25(21), 6800; https://doi.org/10.3390/s25216800 - 6 Nov 2025
Viewed by 749
Abstract
Beyond-5G wireless systems increasingly rely on distributed massive multiple-input multiple-output (MIMO) architectures to achieve high spectral efficiency, low latency, and wide coverage. A key challenge in such networks is that cooperating base stations (BSs) often possess different levels of channel state information (CSI) [...] Read more.
Beyond-5G wireless systems increasingly rely on distributed massive multiple-input multiple-output (MIMO) architectures to achieve high spectral efficiency, low latency, and wide coverage. A key challenge in such networks is that cooperating base stations (BSs) often possess different levels of channel state information (CSI) due to fronthaul constraints, user mobility, or hardware limitation. In this paper, we propose two novel detectors that enable cooperation between BSs with differing CSI availability. In this setup, some BSs have access to instantaneous CSI, while others only have long-term channel information. The proposed detectors—termed the coherent/non-coherent (CNC) detector and the differential CNC detector—integrate coherent and non-coherent approaches to signal detection. This framework allows BSs with only long-term information to actively contribute to the detection process, while leveraging instantaneous CSI where available. This approach enables the system to integrate the advantages of non-coherent detection with the precision of coherent processing, improving overall performance without requiring full CSI at all cooperating BSs. We formulate the detectors based on the maximum likelihood (ML) criterion and derive analytical expressions for their pairwise block error probabilities under Rayleigh fading channels. Leveraging the pairwise block error probability expression for the CNC detector, we derive a tight upper bound on the average block error probability. Numerical results show that the CNC and differential CNC detectors outperform their respective single-BS baseline-coherent ML and non-coherent differential detection. Moreover, both detectors demonstrate strong resilience to mid-to-high range correlation at the BS antennas. Full article
(This article belongs to the Special Issue Future Wireless Communication Networks: 3rd Edition)
Show Figures

Graphical abstract

24 pages, 1057 KB  
Article
A New Weibull–Rayleigh Distribution: Characterization, Estimation Methods, and Applications with Change Point Analysis
by Hanan Baaqeel, Hibah Alnashri, Amani S. Alghamdi and Lamya Baharith
Axioms 2025, 14(9), 649; https://doi.org/10.3390/axioms14090649 - 22 Aug 2025
Viewed by 927
Abstract
Many scholars are interested in modeling complex data in an effort to create novel probability distributions. This article proposes a novel class of distributions based on the inverse of the exponentiated Weibull hazard rate function. A particular member of this class, the Weibull–Rayleigh [...] Read more.
Many scholars are interested in modeling complex data in an effort to create novel probability distributions. This article proposes a novel class of distributions based on the inverse of the exponentiated Weibull hazard rate function. A particular member of this class, the Weibull–Rayleigh distribution (WR), is presented with focus. The WR features diverse probability density functions, including symmetric, right-skewed, left-skewed, and the inverse J-shaped distribution which is flexible in modeling lifetime and systems data. Several significant statistical features of the suggested WR are examined, covering the quantile, moments, characteristic function, probability weighted moment, order statistics, and entropy measures. The model accuracy was verified through Monte Carlo simulations of five different statistical estimation methods. The significance of WR is demonstrated with three real-world data sets, revealing a higher goodness of fit compared to other competing models. Additionally, the change point for the WR model is illustrated using the modified information criterion (MIC) to identify changes in the structures of these data. The MIC and curve analysis captured a potential change point, supporting and proving the effectiveness of WR distribution in describing transitions. Full article
(This article belongs to the Special Issue Probability, Statistics and Estimations, 2nd Edition)
Show Figures

Figure 1

17 pages, 4285 KB  
Article
3D-Printed Circular Horn Antenna with Dielectric Lens for Focused RF Energy Delivery
by Aviad Michael and Nezah Balal
Electronics 2025, 14(16), 3191; https://doi.org/10.3390/electronics14163191 - 11 Aug 2025
Viewed by 1675
Abstract
This paper presents the design, simulation, and fabrication of a horn antenna integrated with a dielectric lens for focusing RF energy at 10 GHz. The antenna system combines established electromagnetic principles with 3D printing techniques to produce a cost-effective alternative to commercial focusing [...] Read more.
This paper presents the design, simulation, and fabrication of a horn antenna integrated with a dielectric lens for focusing RF energy at 10 GHz. The antenna system combines established electromagnetic principles with 3D printing techniques to produce a cost-effective alternative to commercial focusing antennas. The design methodology employs the lensmaker’s formula and Snell’s law to determine lens curvature for achieving a specified focal length of 100 mm. COMSOL Multiphysics simulations indicate that adding a PTFE lens increases power density concentration compared to a standard horn antenna, with a simulated focal point at approximately 100 mm. Surface roughness analysis based on the Rayleigh criterion supports 3D printing suitability for this application. Experimental validation includes radiation pattern measurements of the antenna without the lens and power density measurements versus distance with the lens, both showing good agreement with simulation results. The measured focal length was 95±5 mm, closely matching simulation predictions. This work presents an approach for implementing focused RF delivery solutions for medical treatments, wireless power transfer, and precision sensing at significantly lower costs than commercial alternatives. Full article
Show Figures

Figure 1

21 pages, 15016 KB  
Article
Flowering Patterns of Cornus mas L. in the Landscape Phenology of Roadside Green Infrastructure Under Climate Change Conditions in Serbia
by Mirjana Ocokoljić, Nevenka Galečić, Dejan Skočajić, Jelena Čukanović, Sara Đorđević, Radenka Kolarov and Djurdja Petrov
Sustainability 2025, 17(12), 5334; https://doi.org/10.3390/su17125334 - 9 Jun 2025
Cited by 2 | Viewed by 1297
Abstract
One of the emerging services provided by roadside green infrastructure is its contribution to the quality of landscape phenology, which is measured through the succession of colours and forms throughout the seasons. In the seasonal dynamics of space, flowering phenological patterns play a [...] Read more.
One of the emerging services provided by roadside green infrastructure is its contribution to the quality of landscape phenology, which is measured through the succession of colours and forms throughout the seasons. In the seasonal dynamics of space, flowering phenological patterns play a key role, particularly in early blooming species such as Cornus mas L. Therefore, this paper aims to highlight the significance of the Cornelian cherry as a component of roadside green infrastructure in the southwestern suburban zone of Belgrade. Through an integrative approach to phenological and climatic elements, and by means of a specific case study covering the period from 2007 to 2025, under climate change conditions, the influence of air temperature and precipitation on local flowering patterns of the Cornelian cherry has been assessed. Based on 1140 phenological observations conducted over 19 consecutive years, from January to April, key flowering elements were identified—those that influence pollination, fruiting, and the species’ practical potential. The Mann–Kendall, Sen’s slope, Rayleigh, and Watson–Williams tests were used to examine spatio-temporal changes in flowering patterns, while the Spearman Rank test and circular statistics were applied to quantify correlations among the analysed parameters. The results confirm that Cornelian cherry is an adaptive and sustainable species that continuously provides visual identity during its flowering period, while simultaneously reflecting climate change through phenological responses. These phenological responses are closely linked to local climatic conditions. In addition to enriching landscape phenology with vibrant visual features during the colder months, Cornelian cherry also enhances biodiversity by providing ecosystem services as a nectar-producing species, with its pollen serving as an early and valuable food source for bees. The study also confirms that the seasonal dynamics of landscape phenology can be used as a scientifically valid criterion for assessing the ecological quality of roadside green infrastructure. Full article
(This article belongs to the Section Sustainability, Biodiversity and Conservation)
Show Figures

Figure 1

58 pages, 3865 KB  
Review
Flow and Flame Mechanisms for Swirl-Stabilized Combustors
by Paul Palies
Aerospace 2025, 12(5), 430; https://doi.org/10.3390/aerospace12050430 - 12 May 2025
Cited by 4 | Viewed by 5494
Abstract
This article reviews the physical and chemical mechanisms associated with unsteady swirl-stabilized partially or fully lean premixed combustion. The processes of flame stabilization, mode conversion, swirl number oscillation, equivalence ratio oscillation, and vortex rollup are described. The key challenges associated with flow-flame dynamics [...] Read more.
This article reviews the physical and chemical mechanisms associated with unsteady swirl-stabilized partially or fully lean premixed combustion. The processes of flame stabilization, mode conversion, swirl number oscillation, equivalence ratio oscillation, and vortex rollup are described. The key challenges associated with flow-flame dynamics for several sources of perturbations are presented and discussed. The Rayleigh criterion is discussed. This article summarizes the scientific knowledge gained on swirling flames dynamics in terms of modeling, theoretical analysis, and transient measurements with advanced diagnostics. The following are specifically documented: (i) the effect of the swirler on swirling flames; (ii) the analytical results, computational modeling, and experimental measurements of swirling flame dynamics; (iii) the influence of flow features on flame response of swirling flames for combustion instabilities studies; and (iv) the identification and description of the combustion dynamics mechanisms responsible for swirl-stabilized combustion instabilities. Relevant elements from the literature in this context for hydrogen fuel are included. Full article
(This article belongs to the Special Issue Scientific and Technological Advances in Hydrogen Combustion Aircraft)
Show Figures

Figure 1

13 pages, 6065 KB  
Article
Design, Analysis, and Manufacturing of Diffractive Achromatic Optical Systems
by Yidi Zheng, Junfeng Du, Boping Lei, Jiang Bian, Lihua Wang and Bin Fan
Micromachines 2025, 16(3), 322; https://doi.org/10.3390/mi16030322 - 11 Mar 2025
Cited by 2 | Viewed by 1860
Abstract
The increasing resolution requirements of imaging optical systems must be satisfied by expanding the aperture of the optical system according to Rayleigh’s criterion, and larger apertures of conventional refractive/reflective optics place a greater demand on manufacturing and transportation. Diffractive optics are applied to [...] Read more.
The increasing resolution requirements of imaging optical systems must be satisfied by expanding the aperture of the optical system according to Rayleigh’s criterion, and larger apertures of conventional refractive/reflective optics place a greater demand on manufacturing and transportation. Diffractive optics are applied to imaging optics to achieve lightweight design, but the image quality suffers due to their strong negative properties. Therefore, a wide-band imaging system based on the Schupmann achromatic model is proposed in this paper to solve the above problem, and the achromatic performance of the system is guaranteed by the Schupmann achromatic model. The aperture of the relay lens is reduced, since using harmonic diffractive optics as the primary lens results in a much more compact focus compared to the diffractive optics in the same wavelength band. This allows for the lightweight design of the optical system. An 80 mm aperture diffractive optical system covering the 400–900 nm band was designed and fabricated to verify the above theory. The actual resolution of the optical system was 76.196 lp/mm, and the achromatic task was accomplished. The design and experimentation of the wide-band achromatic imaging optical system confirms that the proposed theory is correct, and lays the foundation for the further application of large aperture diffractive telescopes. Full article
(This article belongs to the Section A:Physics)
Show Figures

Figure 1

25 pages, 934 KB  
Article
Tampered Random Variable Analysis in Step-Stress Testing: Modeling, Inference, and Applications
by Hanan Haj Ahmad, Dina A. Ramadan and Ehab M. Almetwally
Mathematics 2024, 12(8), 1248; https://doi.org/10.3390/math12081248 - 20 Apr 2024
Cited by 10 | Viewed by 2080
Abstract
This study explores a new dimension of accelerated life testing by analyzing competing risk data through Tampered Random Variable (TRV) modeling, a method that has not been extensively studied. This method is applied to simple step-stress life testing (SSLT), and it considers multiple [...] Read more.
This study explores a new dimension of accelerated life testing by analyzing competing risk data through Tampered Random Variable (TRV) modeling, a method that has not been extensively studied. This method is applied to simple step-stress life testing (SSLT), and it considers multiple causes of failure. The lifetime of test units under changeable stress levels is modeled using Power Rayleigh distribution with distinct scale parameters and a constant shape parameter. The research introduces unique tampering coefficients for different failure causes in step-stress data modeling through TRV. Using SSLT data, we calculate maximum likelihood estimates for the parameters of our model along with the tampering coefficients and establish three types of confidence intervals under the Type-II censoring scheme. Additionally, we delve into Bayesian inference for these parameters, supported by suitable prior distributions. Our method’s validity is demonstrated through extensive simulations and real data application in the medical and electrical engineering fields. We also propose an optimal stress change time criterion and conduct a thorough sensitivity analysis. Full article
(This article belongs to the Special Issue Application of the Bayesian Method in Statistical Modeling)
Show Figures

Figure 1

15 pages, 1138 KB  
Article
A Novel Analysis of Super-Resolution for Born-Iterative-Type Algorithms in Microwave Medical Sensing and Imaging
by Yahui Ding, Zheng Gong, Hui Zhang, Yifan Chen, Jun Hu and Yongpin Chen
Sensors 2024, 24(1), 194; https://doi.org/10.3390/s24010194 - 28 Dec 2023
Cited by 1 | Viewed by 1955
Abstract
Microwave medical sensing and imaging (MMSI) is a highly active research field. In MMSI, electromagnetic inverse scattering (EIS) is a commonly used technique that infers the internal characteristics of the diseased area by measuring the scattered field. It is worth noting that the [...] Read more.
Microwave medical sensing and imaging (MMSI) is a highly active research field. In MMSI, electromagnetic inverse scattering (EIS) is a commonly used technique that infers the internal characteristics of the diseased area by measuring the scattered field. It is worth noting that the image formed by EIS often exhibits the super-resolution phenomenon, which has attracted much research interest over the past decade. A classical perspective is that multiple scattering leads to super-resolution, but this is subject to debate. This paper aims to analyze the super-resolution behavior for Born-iterative-type algorithms for the following three aspects. Firstly, the resolution defined by the traditional Rayleigh criterion can only be applied to point scatterers. It does not suit general scatterers. By using the Sparrow criterion and the generalized spread function, the super-resolution condition can be derived for general scatterers even under the Born approximation (BA) condition. Secondly, an iterative algorithm results in larger coefficients in the high-frequency regime of the optical transfer function compared to non-iterative BA. Due to the anti-apodization effect, the spread function of the iterative method becomes steeper, which leads to a better resolution following the definition of the Sparrow criterion mentioned above. Thirdly, the solution from the previous iteration, as the prior knowledge for the next iteration, will cause changes in the total field, which provides additional information outside the Ewald sphere and thereby gives rise to super-resolution. Comprehensive numerical examples are used to verify these viewpoints. Full article
(This article belongs to the Special Issue Recent Progress in Electromagnetic Medical Imaging and Sensing)
Show Figures

Figure 1

18 pages, 2242 KB  
Article
Role of Phase Information Propagation in the Realisation of Super-Resolution Based on Speckle Interferometry
by Yasuhiko Arai
Photonics 2023, 10(12), 1306; https://doi.org/10.3390/photonics10121306 - 26 Nov 2023
Cited by 3 | Viewed by 1483
Abstract
Super-resolution technology is important not only in bio-related fields but also in nanotechnology, particularly in the semiconductor industry, where fine patterning is required and super-resolution is essential. However, observing microstructures beyond the diffraction limit proposed by Abbe and Rayleigh is considered impossible because [...] Read more.
Super-resolution technology is important not only in bio-related fields but also in nanotechnology, particularly in the semiconductor industry, where fine patterning is required and super-resolution is essential. However, observing microstructures beyond the diffraction limit proposed by Abbe and Rayleigh is considered impossible because of diffraction in traditional optical microscopy observation techniques. However, in recent years, it has been possible to observe microstructures beyond the Rayleigh criterion by analysing the phase distribution of light. This study investigated the physical reasons why phase analysis makes this new analysis technique possible using simulations. The results confirmed that the phase component of the zero-order diffracted light reflected from the microstructure and able to pass through the lens system contained phase information related to the shape of the measured object. Analysis of this information demonstrates the possibility of realising super-resolution based on speckle interferometry. Full article
(This article belongs to the Special Issue Advanced Optical Microscopy and Imaging Technology)
Show Figures

Figure 1

17 pages, 4732 KB  
Article
A Numerical Study of the Dynamic Crack Behavior of Brittle Material Induced by Blast Waves
by Haijun Yu, Ming Zou, Jinshan Sun, Yuntao Wang and Meng Wang
Materials 2023, 16(22), 7142; https://doi.org/10.3390/ma16227142 - 13 Nov 2023
Cited by 1 | Viewed by 2029
Abstract
Blast stress waves profoundly impact engineering structures, exciting and affecting the rupture process in brittle construction materials. A novel numerical model was introduced to investigate the initiation and propagation of cracks subjected to blast stress waves within the borehole-crack configuration. Twelve models were [...] Read more.
Blast stress waves profoundly impact engineering structures, exciting and affecting the rupture process in brittle construction materials. A novel numerical model was introduced to investigate the initiation and propagation of cracks subjected to blast stress waves within the borehole-crack configuration. Twelve models were established with different crack lengths to simulate sandstone samples. The influence of crack length on crack initiation and propagation was investigated using those models. The linear equation of state was used to express the relationship between the pressure and density of the material. The major principal stress failure criterion was used to evaluate the failure of elements. A triangular pressure curve was adopted to produce the blast stress wave. The results indicated that the pre-crack length critically influenced the crack initiation and propagation mechanism by analyzing the stress history at the crack tip, crack propagation velocity, and distance. The inducement of a P-wave and S-wave is paramount in models with a short pre-crack. For long pre-crack models, Rayleigh waves significantly contribute to crack propagation. Full article
Show Figures

Figure 1

24 pages, 3851 KB  
Article
Assessing Flood Risk: LH-Moments Method and Univariate Probability Distributions in Flood Frequency Analysis
by Cornel Ilinca, Stefan Ciprian Stanca and Cristian Gabriel Anghel
Water 2023, 15(19), 3510; https://doi.org/10.3390/w15193510 - 8 Oct 2023
Cited by 11 | Viewed by 2668
Abstract
This study examines all of the equations necessary to derive the parameters for seven probability distributions of three parameters typically used in flood frequency research, namely the Pearson III (PE3), the generalized extreme value (GEV), the Weibull (W3), the log-normal (LN3), the generalized [...] Read more.
This study examines all of the equations necessary to derive the parameters for seven probability distributions of three parameters typically used in flood frequency research, namely the Pearson III (PE3), the generalized extreme value (GEV), the Weibull (W3), the log-normal (LN3), the generalized Pareto Type II (PG), the Rayleigh (RY) and the log-logistic (LL3) distributions, using the higher-order linear moments method (LH-moments). The analysis represents the expansion of previous research whose results were presented in previous materials, and is part of hydrological research aimed at developing a standard for calculating maximum flows based on L-moments and LH-moments. The given methods for calculating the parameters of the examined distributions are used to calculate the maximum flows on Romania’s Prigor River. For both methods, the criterion for selecting the most suitable distribution is represented by the diagram of the L-skewness–L-kurtosis and LH-skewness–LH-kurtosis. The results for Prigor River show that the PG distribution is the best model for the L-moments method, the theoretical values of the statistical indicators being 0.399 and 0.221. The RY distribution is the best model for the LH-moments technique, with values of 0.398 and 0.192 for the two statistical indicators. Full article
(This article belongs to the Section Hydrology)
Show Figures

Figure 1

14 pages, 773 KB  
Article
Quantitative Analysis of Super Resolution in Electromagnetic Inverse Scattering for Microwave Medical Sensing and Imaging
by Yahui Ding, Zheng Gong, Yifan Chen, Jun Hu and Yongpin Chen
Sensors 2023, 23(17), 7404; https://doi.org/10.3390/s23177404 - 25 Aug 2023
Cited by 3 | Viewed by 2473
Abstract
Microwave medical sensing and imaging (MMSI) has been a research hotspot in the past years. Imaging algorithms based on electromagnetic inverse scattering (EIS) play a key role in MMSI due to the super-resolution phenomenon. EIS problems generally employ far-field scattered data to reconstruct [...] Read more.
Microwave medical sensing and imaging (MMSI) has been a research hotspot in the past years. Imaging algorithms based on electromagnetic inverse scattering (EIS) play a key role in MMSI due to the super-resolution phenomenon. EIS problems generally employ far-field scattered data to reconstruct images. However, the far-field data do not include information outside the Ewald’s sphere, so theoretically it is impossible to achieve super resolution. The reason for super resolution has not been clarified. The majority of the current research focuses on how nonlinearity affects the super-resolution phenomena in EIS. However, the mechanism of super-resolution in the absence of nonlinearity is routinely ignored. In this research, we address a prevalent yet overlooked problem where the image resolution due to scatterers of extended structures is incorrectly analyzed using the model of point scatterers. Specifically, the classical resolution of EIS is defined by the Rayleigh criterion which is only suitable for point-like scatterers. However, the super-resolution in EIS is often observed for general scatterers like cylinders, squares or Austria shapes. Subsequently, we provide theoretical results for the Born approximation framework in EIS, and employ the Sparrow criteria to quantify the resolution for symmetric objects of extended structures. Furthermore, the modified Sparrow criterion is proposed to calculate the resolution of asymmetric scatterers. Numerical examples show that the proposed approach can better explain the super-resolution phenomenon in EIS. Full article
(This article belongs to the Special Issue Recent Progress in Electromagnetic Medical Imaging and Sensing)
Show Figures

Figure 1

15 pages, 8771 KB  
Article
Studies of Angular Resolution for Acoustic Arc Arrays
by Dmitry A. Sednev, Alexey I. Soldatov, Andrey A. Soldatov, Maria A. Kostina, Dmitry O. Dolmatov and Daria A. Koneva
Sensors 2023, 23(13), 6007; https://doi.org/10.3390/s23136007 - 28 Jun 2023
Cited by 3 | Viewed by 2143
Abstract
Currently, phased arrays are increasingly used in ultrasonic nondestructive testing. One of the most important parameters of ultrasonic nondestructive testing with the application of phased arrays is the angular resolution. This paper presents the results of studies of the angular resolution of concave [...] Read more.
Currently, phased arrays are increasingly used in ultrasonic nondestructive testing. One of the most important parameters of ultrasonic nondestructive testing with the application of phased arrays is the angular resolution. This paper presents the results of studies of the angular resolution of concave and convex acoustic arrays in ultrasonic testing with the application of the total focusing method. Computer modeling of concave and convex acoustic arrays consisting of 16, 32 and 64 elements with distances between elements of 0.5 and 1 mm and arc radii of 30 and 60 mm have been performed. The results obtained by computer modeling were confirmed via in situ experiments. Full article
Show Figures

Figure 1

15 pages, 4219 KB  
Article
Simulation-Based Considerations on the Rayleigh Criterion in Super-Resolution Techniques Based on Speckle Interferometry
by Yasuhiko Arai and Tong Chen
Photonics 2023, 10(4), 374; https://doi.org/10.3390/photonics10040374 - 28 Mar 2023
Cited by 1 | Viewed by 3168
Abstract
This study sought to explain the physical phenomenon that eludes the constraints of the Rayleigh criterion in the microstructure observation method using speckle interferometry, for which super-resolution has been experimentally proven; the study was conducted using computer simulations. Separating the light from two [...] Read more.
This study sought to explain the physical phenomenon that eludes the constraints of the Rayleigh criterion in the microstructure observation method using speckle interferometry, for which super-resolution has been experimentally proven; the study was conducted using computer simulations. Separating the light from two light sources in close proximity, which exceeded the Rayleigh criterion under incoherent light, was believed to be impossible. The simulation results, however, showed that when coherent light is used, the separation of two close points is not necessarily impossible if the light phases between the two points are different. Furthermore, the resolution of microstructure observation techniques based on speckle interferometry was discussed. A new interpretation of the Rayleigh criterion in super-resolution techniques based on speckle interferometry was reported. Full article
Show Figures

Figure 1

Back to TopTop