Design, Analysis, and Manufacturing of Diffractive Achromatic Optical Systems
Abstract
:1. Introduction
2. Principles and Design Methods
2.1. Principle of Schupmann Achromatic Model
2.2. Principles of DOE and HDOE
2.3. Methodology for the Design of Broad-Band Diffractive Imaging Optical Systems
3. Optical Design and Experimentation
3.1. Optical Design
3.2. Experiment of Optical Imaging
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Lord Rayleigh, F.R.S. XXXI. Investigations in optics, with special reference to the spectroscope. Lond. Edinb. Dublin Philos. Mag. J. Sci. 1879, 8, 261–274. [Google Scholar] [CrossRef]
- Born, M.; Wolf, E. Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light; Elsevier: Amsterdam, The Netherlands, 2013. [Google Scholar]
- Zhou, S.; Jiang, L. Modern description of Rayleigh’s criterion. Phys. Rev. A 2019, 99, 013808. [Google Scholar] [CrossRef]
- Zhang, Q.; He, Z.; Xie, Z.; Tan, Q.; Sheng, Y.; Jin, G.; Cao, L.; Yuan, X. Diffractive optical elements 75 years on: From micro-optics to metasurfaces. Photonics Insights 2023, 2, R09. [Google Scholar] [CrossRef]
- Wang, Y.; Li, J.; Hou, X.; Chen, L.; Liu, X.; Yang, J.; Zheng, Y. Hybrid diffractive-refractive lens for chromatic confocal measurement system. Opt. Express 2024, 32, 20128–20135. [Google Scholar] [CrossRef] [PubMed]
- Liu, K.; Liu, T.; Wang, Z.; Hu, C.; Shi, J.; Chen, M.; Ye, M.; Wang, H.; Xie, C.; Zhang, X. Thz beam shaping based on diffractive transformation for forming patterned simulation lightfields and wavefronts. Infrared Phys. Technol. 2022, 124, 104225. [Google Scholar] [CrossRef]
- Mínguez-Vega, G.; Mendoza-Yero, O.; Lancis, J.; Gisbert, R.; Andrés, P. Diffractive optics for quasi-direct space-to-time pulse shaping. Opt. Express 2008, 16, 16993–16998. [Google Scholar] [CrossRef] [PubMed]
- Bouzid, O.; Haddadi, S.; Fromager, M.; Cagniot, E.; Ferria, K.; Forbes, A.; Ait-Ameur, K. Focusing anomalies with binary diffractive optical elements. Appl. Opt. 2017, 56, 9735–9741. [Google Scholar] [CrossRef] [PubMed]
- Sweeney, D.W.; Sommargren, G.E. Harmonic diffractive lenses. Appl. Opt. 1995, 34, 2469–2475. [Google Scholar] [CrossRef] [PubMed]
- Faklis, D.; Morris, G.M. Spectral properties of multiorder diffractive lenses. Appl. Opt. 1995, 34, 2462–2468. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Twardowski, P.; Gérard, P.; Yu, W.; Fontaine, J. Chromatic analysis of harmonic Fresnel lenses by FDTD and angular spectrum methods. Appl. Opt. 2018, 57, 5281–5287. [Google Scholar] [CrossRef] [PubMed]
- Swanson, G.J. Binary Optics Technology: The Theory and Design of Multi-Level Diffractive Optical Elements; Lincoln Laboratory Cambridge, Massachusetts Institute of Technology: Cambridge, MA, USA, 1989; Volume 854. [Google Scholar]
- Arieli, Y.; Ozeri, S.; Eisenberg, N.; Noach, S. Design of a diffractive optical element for wide spectral bandwidth. Opt. Lett. 1998, 23, 823–824. [Google Scholar] [CrossRef] [PubMed]
- Xie, H.; Ren, D.; Wang, C.; Mao, C.; Yang, L. Design of high-efficiency diffractive optical elements towards ultrafast mid-infrared time-stretched imaging and spectroscopy. J. Mod. Opt. 2018, 65, 255–261. [Google Scholar] [CrossRef]
- Hyde, R.A.; Dixit, S.N.; Weisberg, A.H.; Rushford, M.C. Eyeglass: A very large aperture diffractive space telescope. In Highly Innovative Space Telescope Concepts; SPIE: Bellingham, WA, USA, 2002; pp. 28–39. [Google Scholar]
- Hyde, R.A. Eyeglass. 1. Very large aperture diffractive telescopes. Appl. Opt. 1999, 38, 4198–4212. [Google Scholar] [CrossRef] [PubMed]
- Atcheson, P.D.; Stewart, C.; Domber, J.; Whiteaker, K.; Cole, J.; Spuhler, P.; Seltzer, A.; Britten, J.A.; Dixit, S.N.; Farmer, B. MOIRE: Initial demonstration of a transmissive diffractive membrane optic for large lightweight optical telescopes. In Proceedings of the Space Telescopes and Instrumentation 2012: Optical, Infrared, and Millimeter Wave, Amsterdam, The Netherlands, 1–6 July 2012; pp. 729–742. [Google Scholar]
- Early, J.T.; Hyde, R.; Baron, R.L. Twenty-meter space telescope based on diffractive Fresnel lens. In UV/Optical/IR Space Telescopes: Innovative Technologies and Concepts; SPIE: Bellingham, WA, USA, 2004; pp. 148–156. [Google Scholar]
- Tandy, W.; Atcheson, P.; Domber, J.; Seltzer, A. MOIRE gossamer space telescope-structural challenges and solutions. In 53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference 2012: Honolulu, Hawaii, USA, 23–26 April 2012; [and Co-Located Conferences: 20th AIAA/ASME/AHS Adaptive Structures Conference, 14th AIAA Non-Deterministic Approaches Conference, 13th AIAA Gossamer Systems Forum, and 8th AIAA Multidisciplinary Design Optimization Specialist Conference (MDO)]; AIAA: Reston, VA, USA, 2012; p. 1670. [Google Scholar]
- Koechlin, L.; Serre, D.; Deba, P.; Pelló, R.; Peillon, C.; Duchon, P.; Gomez de Castro, A.I.; Karovska, M.; Désert, J.-M.; Ehrenreich, D. The Fresnel interferometric imager. Exp. Astron. 2009, 23, 379–402. [Google Scholar] [CrossRef]
- Andersen, G.; Tullson, D. Broadband antihole photon sieve telescope. Appl. Opt. 2007, 46, 3706–3708. [Google Scholar] [CrossRef] [PubMed]
- Yan, S.; Zhang, J.; Zhou, C.; Xu, Y. Research on dispersion performance of harmonic diffractive lenses. J. Phys. Conf. Ser. 2006, 48, 897. [Google Scholar] [CrossRef]
Wavelength | Field of View | Aperture | Focal Length | F/# |
---|---|---|---|---|
400–900 nm | 0.16° | 80 mm | 656.2 mm | 8.18 |
Thickness | Aperture | A2 | A4 | A6 | A8 | A10 |
---|---|---|---|---|---|---|
5 mm | 80 mm | −2.071 | 8.11 × 10−7 | −6.35 × 10−13 | 6.56 × 10−19 | −9.36 × 10−24 |
Number | Center Wavelength | Diffraction Order | Spectral Range | Bandwidth |
---|---|---|---|---|
1 | 946.4 nm | 2 | 750–900 nm | 150 nm |
2 | 632.8 nm | 3 | 550–750 nm | 200 nm |
3 | 476.4 nm | 4 | 420–550 nm | 130 nm |
4 | 379.7 nm | 5 | 400–420 nm | 20 nm |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zheng, Y.; Du, J.; Lei, B.; Bian, J.; Wang, L.; Fan, B. Design, Analysis, and Manufacturing of Diffractive Achromatic Optical Systems. Micromachines 2025, 16, 322. https://doi.org/10.3390/mi16030322
Zheng Y, Du J, Lei B, Bian J, Wang L, Fan B. Design, Analysis, and Manufacturing of Diffractive Achromatic Optical Systems. Micromachines. 2025; 16(3):322. https://doi.org/10.3390/mi16030322
Chicago/Turabian StyleZheng, Yidi, Junfeng Du, Boping Lei, Jiang Bian, Lihua Wang, and Bin Fan. 2025. "Design, Analysis, and Manufacturing of Diffractive Achromatic Optical Systems" Micromachines 16, no. 3: 322. https://doi.org/10.3390/mi16030322
APA StyleZheng, Y., Du, J., Lei, B., Bian, J., Wang, L., & Fan, B. (2025). Design, Analysis, and Manufacturing of Diffractive Achromatic Optical Systems. Micromachines, 16(3), 322. https://doi.org/10.3390/mi16030322