Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,403)

Search Parameters:
Keywords = RNA polymerase I transcription

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
29 pages, 3654 KB  
Article
Direct Cytoplasmic Transcription and Trimeric RBD Design Synergize to Enhance DNA Vaccine Potency Against SARS-CoV-2
by Yunju Nam, Sang Chul Shin, Sang Won Cho and Hyung Jun Ahn
Pharmaceutics 2026, 18(2), 164; https://doi.org/10.3390/pharmaceutics18020164 (registering DOI) - 26 Jan 2026
Abstract
Background/Objectives: The emergence of immune-evasive SARS-CoV-2 variants highlights the need for adaptable vaccine strategies. Trimeric receptor-binding domain (tRBD) antigens offer structural and immunological advantages over monomeric RBDs, but DNA vaccine efficacy has been limited by inefficient antigen expression, particularly in non-dividing antigen-presenting cells. [...] Read more.
Background/Objectives: The emergence of immune-evasive SARS-CoV-2 variants highlights the need for adaptable vaccine strategies. Trimeric receptor-binding domain (tRBD) antigens offer structural and immunological advantages over monomeric RBDs, but DNA vaccine efficacy has been limited by inefficient antigen expression, particularly in non-dividing antigen-presenting cells. Although cytoplasmic transcription–based DNA platforms have been developed to overcome nuclear entry barriers, their utility for antigen structure–function optimization remains underexplored. This study evaluated whether integrating a rationally designed trimeric RBD with a T7-driven cytoplasmic transcription system could enhance immunogenic performance. Methods: A DNA vaccine encoding a tandem trimeric SARS-CoV-2 RBD was delivered using a T7 RNA polymerase-driven cytoplasmic transcription system. In vitro antigen expression was assessed following Lipofectamine 3000-mediated transfection. In vivo, mice were immunized with the SM-102-based Rpol/tRBD/LNP formulation, and immunogenicity was assessed by antigen-specific antibody titers, serum neutralizing activity, and T-cell response profiling, together with basic safety/tolerability evaluations. Results: The T7-driven cytoplasmic transcription system markedly increased antigen mRNA and protein expression compared with conventional plasmid delivery. Rpol/tRBD vaccination induced higher anti-RBD IgG titers, enhanced neutralizing antibody activity, and robust CD8⁺ T cell responses relative to monomeric RBD and plasmid-based trimeric RBD vaccines. Immune responses were Th1-skewed and accompanied by germinal center activation without excessive inflammatory cytokine induction, body-weight loss, or hepatic and renal toxicity. Conclusions: This study demonstrates that integrating rational trimeric antigen engineering with direct cytoplasmic transcription enables balanced and well-tolerated immune activation in a DNA vaccine context. The T7 autogene-based platform provides a flexible framework for antigen structure–function optimization and supports the development of next-generation DNA vaccines targeting rapidly evolving viral pathogens. Full article
Show Figures

Graphical abstract

25 pages, 3112 KB  
Review
The Emerging Promise of Pentacyclic Triterpenoid Derivatives as Novel Antiviral Agents Against SARS-CoV-2 Variants
by Xin Wan, Xiaoxuan Cui, Ke Liang, Junran Huang, Kangan Chen, Wen Chen and Gaopeng Song
Molecules 2026, 31(2), 325; https://doi.org/10.3390/molecules31020325 - 17 Jan 2026
Viewed by 280
Abstract
The continuous emergence of SARS-CoV-2 variants, especially the Omicron strain with its heightened transmissibility, has posed ongoing challenges to the efficacy of existing vaccine and drug regimens. This situation highlights the pressing demand for antiviral drugs employing novel mechanisms of action. Pentacyclic triterpenoids [...] Read more.
The continuous emergence of SARS-CoV-2 variants, especially the Omicron strain with its heightened transmissibility, has posed ongoing challenges to the efficacy of existing vaccine and drug regimens. This situation highlights the pressing demand for antiviral drugs employing novel mechanisms of action. Pentacyclic triterpenoids (PTs), a structurally varied group of compounds derived from plants, exhibit both antiviral and anti-inflammatory activities, making them attractive candidates for further therapeutic development. These natural products, along with their saponin derivatives, show broad-spectrum inhibitory effects against multiple SARS-CoV-2 variants (from Alpha to Omicron) via interactions with multiple targets, such as the spike protein, main protease (Mpro), RNA-dependent RNA polymerase (RdRp), and inflammatory signaling pathways. This review consolidates recent findings on PTs and their saponins, emphasizing their influence on the key structural features required for inhibiting viral attachment, membrane fusion, reverse transcription, and protease function. We systematically summarized the structure–activity relationships and their antiviral results of PTs based on different target proteins in existing studies. Furthermore, this work points toward new strategies for designing multi-target PT-based inhibitors with improved efficacy against Omicron and future variants. Full article
(This article belongs to the Special Issue New Strategies for Drug Development)
Show Figures

Figure 1

13 pages, 6834 KB  
Article
ColorDetect RT-LAMP Assay for the Rapid, Sensitive, and Specific Detection of Porcine Abortion-Associated Pestivirus (PAAPeV)
by Xu Yang, Ying Li, Wenqi Yin, Wenjie Tang, Hui Diao, Mengjia Zhou, Hao Yang, Wenyi Fu, Lu Yong, Xu Luo, Guo Liao and Yuancheng Zhou
Vet. Sci. 2026, 13(1), 74; https://doi.org/10.3390/vetsci13010074 - 12 Jan 2026
Viewed by 206
Abstract
The primary objective of this study was to develop and optimize a colorimetric reverse transcription loop-mediated isothermal amplification (RT-LAMP) assay for porcine abortion-associated pestivirus (PAAPeV)—an emerging pathogen that causes severe reproductive disorders in swine, for which no effective treatments or vaccines are currently [...] Read more.
The primary objective of this study was to develop and optimize a colorimetric reverse transcription loop-mediated isothermal amplification (RT-LAMP) assay for porcine abortion-associated pestivirus (PAAPeV)—an emerging pathogen that causes severe reproductive disorders in swine, for which no effective treatments or vaccines are currently available. In this study, four sets of LAMP primers were designed and screened for the colorimetric RT-LAMP assay, targeting the highly conserved 5′ untranslated region (5′UTR) of PAAPeV. Three reaction parameters, including reaction temperature, reaction duration, and inner-to-outer primer ratio, were then optimized based on cycle threshold (Ct) values, fluorescence intensity, and color changes of the endpoint products. Subsequently, the specificity and sensitivity of the optimized colordetect RT-LAMP assay were systematically validated, and its diagnostic performance was compared with that of the gold-standard reverse transcription quantitative polymerase chain reaction (RT-qPCR). The results demonstrated that the optimized assay achieved a detection limit of 2 copies/μL under the conditions of 65 °C incubation for 25 min and an inner-to-outer primer ratio of 8:1, with results amenable to naked-eye interpretation. Furthermore, this assay exhibited high specificity, showing no cross-reactivity with other known pestiviruses or prevalent swine pathogens. Clinical sample testing results showed 100% concordance between colordetect RT-LAMP and RT-qPCR. Collectively, this colordetect RT-LAMP assay represents a rapid, sensitive, and specific tool for PAAPeV RNA detection in both clinical laboratories and field settings. Full article
Show Figures

Graphical abstract

16 pages, 13998 KB  
Article
Surfactin Inhibits Osteoclast Differentiation by Negatively Regulating the Elk1-AP-1-NFATc1 Axis
by Kazuki Maruyama, Ayaka Koga, Yuki Kodama, Ryota Yamasaki, Yoshie Nagai-Yoshioka, Jun J. Miyamoto, Kayoko Kuroishi, Kaori Gunjigake, Tatsuo Kawamoto and Wataru Ariyoshi
Biomedicines 2026, 14(1), 155; https://doi.org/10.3390/biomedicines14010155 - 11 Jan 2026
Cited by 1 | Viewed by 246
Abstract
Background/Objectives: Surfactin is a biosurfactant with various biological activities, including antibacterial and anti-inflammatory properties; however, its effects on bone metabolism remain poorly understood. This study aimed to investigate the effects of surfactin on osteoclast differentiation and elucidate its underlying molecular mechanisms. Methods [...] Read more.
Background/Objectives: Surfactin is a biosurfactant with various biological activities, including antibacterial and anti-inflammatory properties; however, its effects on bone metabolism remain poorly understood. This study aimed to investigate the effects of surfactin on osteoclast differentiation and elucidate its underlying molecular mechanisms. Methods: RAW264.7 cells were treated with receptor activator of nuclear factor-kappa B ligand (RANKL) and surfactin, and osteoclast differentiation and maturation were evaluated by tartrate-resistant acid phosphatase and F-actin staining, respectively. Gene expression of differentiation markers was assessed using real-time reverse transcription-quantitative polymerase chain reaction, while the kinetics of intracellular signaling molecules and transcription factors were analyzed using Western blot analysis. Results: Surfactin treatment significantly inhibited osteoclast differentiation and maturation, as well as the mRNA expression of Nfatc1, Acp5, and Cathepsin K. Although surfactin did not markedly affect RANKL-induced activation of the NF-κB or MAPK-mediated signaling, it significantly suppressed the expression of c-Fos at both the mRNA and protein levels. Furthermore, surfactin attenuated the phosphorylation of Elk1, a transcription factor involved in c-Fos induction. Conclusions: Surfactin inhibits RANKL-induced osteoclast differentiation by negatively regulating the Elk1-AP-1-NFATc1 axis. Surfactin may thus be a promising therapeutic candidate for the treatment of metabolic bone disorders and inflammatory bone destruction. Full article
(This article belongs to the Section Molecular and Translational Medicine)
Show Figures

Figure 1

12 pages, 645 KB  
Article
CPP-PNA Conjugate-Mediated Inhibition of pdxA Gene Impairs Vitamin B6 Biosynthesis and Growth in Acinetobacter baumannii
by Wook-Jong Jeon, Ju Hui Seo, Yoo Jeong Kim, Song-mee Bae and Dong Chan Moon
Int. J. Mol. Sci. 2026, 27(2), 584; https://doi.org/10.3390/ijms27020584 - 6 Jan 2026
Viewed by 185
Abstract
Acinetobacter baumannii represents a critical-priority organism due to its multidrug resistance. The emergence of carbapenem-resistant strains poses a major clinical challenge, underscoring the urgent need for novel antibacterial agents with alternative mechanisms. As peptide nucleic acids (PNAs) have recently gained attention as antisense [...] Read more.
Acinetobacter baumannii represents a critical-priority organism due to its multidrug resistance. The emergence of carbapenem-resistant strains poses a major clinical challenge, underscoring the urgent need for novel antibacterial agents with alternative mechanisms. As peptide nucleic acids (PNAs) have recently gained attention as antisense therapeutics, we aimed to validate their potential as novel antimicrobial strategies against multidrug-resistant A. baumannii. We synthesized a cell-penetrating peptide (CPP)–PNA conjugate targeting pdxA, an essential gene involved in vitamin B6 biosynthesis. Among several candidate genes tested, the pdxA-targeting PNA exhibited the strongest inhibitory activity, achieving complete growth suppression of A. baumannii at 1.56 μM. Although quantitative real-time polymerase chain reaction did not reveal significant reductions in pdxA transcript levels, ELISA quantification revealed an approximately 80% reduction in intracellular vitamin B6, indicating translational inhibition rather than mRNA degradation. The pdxA-targeting CPP–PNA showed negligible activity against other Gram-negative or Gram-positive species, indicating high target specificity; no detectable cytotoxicity in human cells was observed even at relatively high concentrations. CPP–PNA conjugates targeting pdxA interfere with vitamin B6 biosynthesis, leading to growth inhibition of A. baumannii. These findings support PNA as a promising antisense antimicrobial platform that inhibits multidrug-resistant A. baumannii by blocking vitamin B6 biosynthesis. Full article
(This article belongs to the Special Issue Drug Treatment for Bacterial Infections: 2nd Edition)
Show Figures

Graphical abstract

16 pages, 3732 KB  
Article
Development of a Sensitive and Specific RPA-CRISPR/Cas12a Assay for Intrahepatic Quantification of HBV cccDNA
by Pattida Kongsomboonchoke, Chaiyaboot Ariyachet, Pornchai Kaewsapsak, Pongserath Sirichindakul and Pisit Tangkijvanich
Int. J. Mol. Sci. 2026, 27(1), 551; https://doi.org/10.3390/ijms27010551 - 5 Jan 2026
Viewed by 326
Abstract
Hepatitis B virus (HBV) persists in infected hepatocytes through covalently closed circular DNA (cccDNA), a stable episomal form that serves as the transcriptional template for viral replication. Accurate and sensitive quantification of intrahepatic cccDNA is crucial for evaluating antiviral therapies, particularly those targeting [...] Read more.
Hepatitis B virus (HBV) persists in infected hepatocytes through covalently closed circular DNA (cccDNA), a stable episomal form that serves as the transcriptional template for viral replication. Accurate and sensitive quantification of intrahepatic cccDNA is crucial for evaluating antiviral therapies, particularly those targeting a functional cure. Here, we report the development of a novel, cccDNA-specific detection system combining recombinase polymerase amplification (RPA) with CRISPR/Cas12a-based fluorescence detection. We designed and validated CRISPR RNAs (crRNAs) targeting HBV cccDNA-specific regions conserved across genotypes A–D. Reaction conditions for both RPA and Cas12a detection were optimized to enhance sensitivity, specificity, and accuracy. The system reliably detected as few as 10 copies of cccDNA-containing plasmid per reaction and showed no cross-reactivity with non-cccDNA forms in serum or plasma, indicating assay specificity. When applied to liver tissue samples from 10 HBV-infected and 6 non-HBV patients, the RPA-CRISPR/Cas12a assay exhibited a high sensitivity (90%) and a strong correlation with qPCR results (R2 = 0.9155), confirming its accuracy. In the conclusion, the RPA-CRISPR/Cas12a system provides a robust, cost-effective, and scalable platform for sensitive and specific quantification of intrahepatic HBV cccDNA. This method holds promises for research and high-throughput therapeutic screening applications targeting cccDNA clearance. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Graphical abstract

17 pages, 555 KB  
Article
New Candidate Genes for a Chicken Pectoralis Muscle Weight QTL Identified by a Hypothesis-Free Integrative Genetic Approach
by Akihiro Furuta and Akira Ishikawa
Genes 2026, 17(1), 62; https://doi.org/10.3390/genes17010062 - 5 Jan 2026
Cited by 1 | Viewed by 340
Abstract
Background/Objectives: Identifying candidate genes underlying quantitative trait loci (QTL) in poultry has traditionally required labor-intensive positional cloning. Previous studies using an F2 population derived from native Japanese Nagoya (NAG) and White Plymouth Rock (WPR) breeds revealed a major QTL on chromosome [...] Read more.
Background/Objectives: Identifying candidate genes underlying quantitative trait loci (QTL) in poultry has traditionally required labor-intensive positional cloning. Previous studies using an F2 population derived from native Japanese Nagoya (NAG) and White Plymouth Rock (WPR) breeds revealed a major QTL on chromosome 2 affecting 3-week body weight and 4-week pectoralis muscle weight. This study aimed to identify candidate genes for this QTL using a hypothesis-free integrative genetic approach. Methods: We employed a multi-step analytical framework combining QTL remapping, transcriptome analysis, gene enrichment analysis, haplotype frequency comparison, and correlation analysis. QTL remapping was performed using individual traits and their first principal component (PC1) in 239 F2 chickens. RNA-sequencing (RNA-seq) of liver tissue was conducted for F2 individuals with extreme PC1 scores, followed by reverse transcription quantitative polymerase chain reaction (RT-qPCR) validation. Results: QTL remapping refined the 95% confidence interval to a chromosome 2 region containing 329 genes. RNA-seq analysis identified 23 differentially expressed genes (DEGs) within this interval. Although gene enrichment analysis initially highlighted GATA binding protein 6 (GATA6) as a potential candidate, RT-qPCR in NAG, WPR, and F1 chickens showed no significant expression differences, excluding GATA6. Haplotype frequency and correlation analyses prioritized cadherin-17 (CDH17) as the strongest candidate gene and ring finger protein 151 (RNF151) as a secondary candidate. Conclusions: Our hypothesis-free integrative approach effectively refined candidate genes for a chromosome 2 QTL influencing early growth and pectoralis muscle weight. CDH17 and RNF151 represent promising targets for functional validation and may support marker-assisted selection to improve muscle-related traits in chickens. Full article
(This article belongs to the Section Animal Genetics and Genomics)
Show Figures

Figure 1

10 pages, 1080 KB  
Article
Circulating miR-1246 as a Diagnostic and Prognostic Biomarker in Dengue Infection: A Case–Control Study
by Vishesh Rajbhandari, Frienson Pradhan, Kriti Rajbhandari, Rasika Ghulu, Ashna Dhakal and Amol Dahal
J. Mol. Pathol. 2026, 7(1), 1; https://doi.org/10.3390/jmp7010001 - 1 Jan 2026
Viewed by 453
Abstract
Background: Dengue is a growing mosquito-borne viral infection of global concern. It remains a major public health challenge in Nepal, where reliable biomarkers for disease staging and prognosis are lacking. In this study, we investigated circulating microRNA-1246 (miR-1246) as a potential diagnostic and [...] Read more.
Background: Dengue is a growing mosquito-borne viral infection of global concern. It remains a major public health challenge in Nepal, where reliable biomarkers for disease staging and prognosis are lacking. In this study, we investigated circulating microRNA-1246 (miR-1246) as a potential diagnostic and prognostic marker in dengue infection. Methods: Serum samples from 21 dengue-positive patients and 20 healthy controls were analyzed by quantitative Reverse Transcription Polymerase Chain Reaction (RT-qPCR), with RNU6 as an internal control. Results: Dengue patients showed markedly elevated miR-1246 levels, with a mean 47-fold increase compared to controls (p = 0.001). Expression varied by disease stage, peaking in IgM positive cases, declining in weakly positive IgM patients, and reaching the lowest levels in IgG positive convalescent cases, a pattern consistent with clinical parameters such as platelet recovery. Receiver Operating Characteristic (ROC) analysis further highlighted diagnostic potential, yielding an Area Under the Curve (AUC) of 0.79, sensitivity of 95.24%, and specificity of 60.00%. Conclusions: These findings imply that miR-1246 is drastically dysregulated during dengue infection and could be a useful biomarker for tracking the intensity and course of the illness. Full article
Show Figures

Figure 1

14 pages, 1192 KB  
Article
Tissue Inhibitor of Metalloproteinases-2 (TIMP2) Affects Allograft Function in Incident Kidney Transplant Recipients
by Tobias M. Mattesen, Subagini Nagarajah and Martin Tepel
Kidney Dial. 2026, 6(1), 3; https://doi.org/10.3390/kidneydial6010003 - 29 Dec 2025
Viewed by 210
Abstract
Background: Matrix metalloproteinases (MMPs) and their inhibitors, tissue inhibitors of metalloproteinases (TIMPs), regulate the extracellular matrix. This study examined messenger RNA transcripts of TIMP2 before and after kidney transplantation. Methods: Transcripts were measured in peripheral blood mononuclear cells from 105 kidney transplant recipients, [...] Read more.
Background: Matrix metalloproteinases (MMPs) and their inhibitors, tissue inhibitors of metalloproteinases (TIMPs), regulate the extracellular matrix. This study examined messenger RNA transcripts of TIMP2 before and after kidney transplantation. Methods: Transcripts were measured in peripheral blood mononuclear cells from 105 kidney transplant recipients, including AB0-incompatible, AB0-compatible, and deceased donor transplantation patients. Quantitative real-time polymerase chain reaction was utilized. Results: Kidney transplant recipients (72 male; 33 female) were a median of 55 (44–63) years old. The median (interquartile range) of pretransplant TIMP2 transcripts was 0.68 (0.50–0.87) in kidney transplant recipients. In total, 9 out of 72 patients (13%) showed delayed graft function, i.e., need for dialysis within 1 week after transplantation. Preoperative TIMP2 transcripts were significantly lower in kidney transplant recipients who experienced delayed graft function compared to patients with immediate graft function (0.40 (0.32–0.62) vs. 0.68 (0.56–0.87); p = 0.01). There was no association between TIMP2 transcripts and age or gender. TIMP2 median transcripts were 0.73 (0.58–0.88) on the first postoperative day. TIMP2 transcripts were similar on the first postoperative day in patients with delayed graft function and immediate graft function. Conclusions: Preoperative TIMP2 transcripts were lower in patients with delayed allograft function. Future investigations are needed to establish the role of TIMP2 transcripts in transplant pathophysiology. Full article
Show Figures

Figure 1

13 pages, 5459 KB  
Article
A Portable One-Tube Assay Integrating RT-RPA and CRISPR/Cas12a for Rapid Visual Detection of Eurasian Avian-like H1N1 Swine Influenza Virus in the Field
by Changhai Tian, Lulu Feng, Xu Zhou, Kailun Huang, Feifei Wang, Ru Luo, Fei Meng, Huanliang Yang, Chuanling Qiao, Xiurong Wang, Jianzhong Shi and Yan Chen
Viruses 2026, 18(1), 47; https://doi.org/10.3390/v18010047 - 28 Dec 2025
Viewed by 425
Abstract
The widespread circulation of Eurasian avian-like H1N1 (EA H1N1) swine influenza virus poses significant zoonotic and pandemic risks worldwide. However, current diagnostic methods are difficult to deploy in the field, as they generally require specialized laboratory infrastructure and trained personnel. Here, we present [...] Read more.
The widespread circulation of Eurasian avian-like H1N1 (EA H1N1) swine influenza virus poses significant zoonotic and pandemic risks worldwide. However, current diagnostic methods are difficult to deploy in the field, as they generally require specialized laboratory infrastructure and trained personnel. Here, we present a novel dual-signal detection platform that combines reverse transcription recombinase polymerase amplification (RT-RPA) with CRISPR/Cas12a technology for rapid, on-site EA H1N1 detection. We established an integrated one-tube assay by designing and optimizing RT-RPA primers targeting a conserved region of the hemagglutinin (HA) gene, together with engineered CRISPR/Cas12a guide RNAs exhibiting high specificity. The platform incorporates two complementary readout modes: real-time fluorescence monitoring and visual colorimetric detection using a smartphone. The assay shows excellent analytical specificity, with no cross-reactivity observed against other swine influenza virus subtypes or common swine pathogens, (including CSFV, PRRSV, PEDV, PCV, TGEV, and RV). The detection limit is 2 copies/μL, and the entire procedure can be completed within 30 mins using simple portable equipment. When evaluated on 86 clinical samples, the assay demonstrated 94.18% concordance with RT-qPCR. Compared with conventional diagnostic methods, this RT-RPA–CRISPR/Cas12a assay offers greater convenience and cost-effectiveness. Its strong potential for field-based rapid testing underscores promising application prospects in swine influenza surveillance and control programs. Full article
(This article belongs to the Special Issue Surveillance, Prevention, and Treatment of Avian Influenza)
Show Figures

Figure 1

27 pages, 4192 KB  
Article
Calcium and Cadmium Activate ESRRB to Mediate Cell Stemness and Pluripotency
by Xu Shi, Gai Yan, Nicole C. Zhao, Qiaochu Wang, Dajun Lu, Destiny Lawler, Reem M. Gahtani, Celia Byrne, Bassem R. Haddad, Robert L. Copeland and Mary Beth Martin
Int. J. Mol. Sci. 2026, 27(1), 231; https://doi.org/10.3390/ijms27010231 - 25 Dec 2025
Viewed by 343
Abstract
Estrogen-related receptor beta (ESRRB) is thought to be an orphan receptor that functions as a transcription factor, pioneer factor, and mitotic bookmarker to regulate cell stemness, pluripotency, and differentiation. This study (1) investigates whether calcium and cadmium activation of ESRRB regulates signaling pathways [...] Read more.
Estrogen-related receptor beta (ESRRB) is thought to be an orphan receptor that functions as a transcription factor, pioneer factor, and mitotic bookmarker to regulate cell stemness, pluripotency, and differentiation. This study (1) investigates whether calcium and cadmium activation of ESRRB regulates signaling pathways of stemness and pluripotency, (2) explores the transcriptomic and biological alterations of metal activation of ESRRB, and (3) reveals the underlying mechanisms by which metals activate ESRRB. In HEK293T cells, treatment with calcium and cadmium increased the expression of ESRRB-regulated genes that was blocked by an ESRRB antagonist. In the breast cancer cell line MDA-MB-453, treatment with calcium, cadmium, or a synthetic agonist also increased the expression of ESRRB-regulated genes that was blocked by the antagonist, enhanced ESRRB nuclear localization, increased the recruitment of RNA polymerase 2 to estrogen-related receptor response elements (ERRE), enhanced cell stemness and proliferation pathways, and induced the expression of estrogen receptor alpha (ESR1 or Erα). Mutational analysis and molecular docking identified potential metal interaction sites within ESRRB’s ligand-binding domain. Together, these results suggest calcium acts as a natural ligand for ESRRB and cadmium, which mimics calcium, activate ESRRB to mediate cell stemness and pluripotency. Full article
(This article belongs to the Special Issue Molecular Mechanism and Therapeutic Approach of Metal Toxicity)
Show Figures

Figure 1

15 pages, 3721 KB  
Article
Comparative Analysis of the Oviducts in Wanyue Black Pigs with Different Parities Based on RNA-Seq
by Hanyu Zhou, Huibin Zhang, Ping Wu, Fang Tian, Jinyu Guan, Yifan Sun, Xiaodong Zhang and Zongjun Yin
Vet. Sci. 2026, 13(1), 24; https://doi.org/10.3390/vetsci13010024 - 25 Dec 2025
Viewed by 258
Abstract
This study investigates the molecular mechanisms underlying parity’s impact on sow reproductive function by comparing the transcriptome profiles of high-parity (9 parities) and low-parity (1 parity) Wanyue Black pigs. Oviduct tissues were collected and subjected to RNA-seq analysis. Differentially expressed genes (DEGs) were [...] Read more.
This study investigates the molecular mechanisms underlying parity’s impact on sow reproductive function by comparing the transcriptome profiles of high-parity (9 parities) and low-parity (1 parity) Wanyue Black pigs. Oviduct tissues were collected and subjected to RNA-seq analysis. Differentially expressed genes (DEGs) were identified using the DESeq2 algorithm. A total of 4218 DEGs were detected, with 2421 up-regulated and 1797 down-regulated genes. Functional enrichment analysis using GO and KEGG revealed that these DEGs were significantly associated with reproductive pathways, including cilium movement, oocyte maturation, and steroid hormone biosynthesis. Protein–protein interaction (PPI) network analysis highlighted key genes such as HSD3B1 and DNAI1, which play central roles in the parity differences. The expression patterns of selected candidate genes were further validated by real-time quantitative reverse transcription polymerase chain reaction (RT-qPCR), and the results were consistent with the RNA-seq data, confirming the reliability of our findings. This study provides valuable insights into the molecular regulation of parity in sows and offers a theoretical basis for optimizing reproductive management and breeding strategies in pig production. Full article
Show Figures

Figure 1

31 pages, 4963 KB  
Review
Next—Generation Diagnostic Technologies for Dengue Virus Detection: Microfluidics, Biosensing, CRISPR, and AI Approaches
by Salim El Kabbani and Gameel Saleh
Sensors 2026, 26(1), 145; https://doi.org/10.3390/s26010145 - 25 Dec 2025
Viewed by 1082
Abstract
Dengue fever remains a major mosquito–borne disease worldwide, with over 400 million infections annually and a high risk of severe complications such as dengue hemorrhagic fever. The disease is prevalent in tropical and subtropical regions, where population density and limited vector control accelerate [...] Read more.
Dengue fever remains a major mosquito–borne disease worldwide, with over 400 million infections annually and a high risk of severe complications such as dengue hemorrhagic fever. The disease is prevalent in tropical and subtropical regions, where population density and limited vector control accelerate transmission, making early and reliable diagnosis essential for outbreak prevention and disease management. Conventional diagnostic methods, including virus isolation, reverse transcription polymerase chain reaction (RT–PCR), enzyme–linked immunosorbent assays (ELISA), and serological testing, are accurate but often constrained by high cost, labor–intensive procedures, centralized laboratory requirements, and delayed turnaround times. This review examines current dengue diagnostic technologies by outlining their working principles, performance characteristics, and practical limitations, with emphasis on key target analytes such as viral RNA; nonstructural protein 1 (NS1), including DENV–2 NS1; and host antibodies. Diagnostic approaches across commonly used biofluids, including whole blood, serum, plasma, and urine, are discussed. Recent advances in biosensing technologies are reviewed, including optical, electrochemical, microwave, microfluidic, and CRISPR–based platforms, along with the integration of artificial intelligence for data analysis and diagnostic enhancement. Overall, this review highlights the need for accurate, scalable, and field–deployable diagnostic solutions to support early dengue detection and reduce the global disease burden. Full article
Show Figures

Graphical abstract

20 pages, 3029 KB  
Article
Identification of miR171a-GRAS50 Regulatory Module Associated with Wood Properties in Populus tomentosa
by Guhang Shi, Rui Huang, Shitong Qin, Mingyang Quan and Deqiang Zhang
Int. J. Mol. Sci. 2026, 27(1), 228; https://doi.org/10.3390/ijms27010228 - 25 Dec 2025
Viewed by 226
Abstract
Enhancing wood properties, particularly fiber length (FL), represents a critical objective in Populus tomentosa breeding programs. However, the molecular mechanisms regulating these traits remain largely elusive. Here, an integrative analysis of the PtomiR171 family, uncovering substantial functional divergence among PtomiR171 family members and [...] Read more.
Enhancing wood properties, particularly fiber length (FL), represents a critical objective in Populus tomentosa breeding programs. However, the molecular mechanisms regulating these traits remain largely elusive. Here, an integrative analysis of the PtomiR171 family, uncovering substantial functional divergence among PtomiR171 family members and identified a PtomiR171a-PtoGRAS50 regulatory axis that may control cellulose-related gene expression and influence fiber development in P. tomentosa. Single-nucleotide polymorphism (SNP)-based association studies implicated the role of the PtomiR171a-PtoGRAS50 module in modulating FL. Combined with dual-luciferase reporter gene assay, real-time reverse transcription polymerase chain reaction (RT-qPCR), transcriptome and degradome analysis, PtomiR171a exerts a negative regulatory effect on PtoGRAS50, which is a key regulator of early xylem development. DNA affinity purification sequencing (DAP-seq) identified two downstream putative target genes of PtoGRAS50, both of which are involved in cellulose biosynthesis and metabolism. Unlike previous studies about miRNAs in P. tomentosa, this work narrows its scope to miR171 and elucidates the downstream regulatory module. Collectively, these findings elucidate a critical PtomiR171a-PtoGRAS50 regulatory axis, advancing our understanding of the genetic networks that orchestrate wood properties, deepening insights into FL modulation, and laying a foundation for the development of targeted genetic strategies to enhance wood quality in P. tomentosa. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

17 pages, 2276 KB  
Article
Mining Minor Cold Resistance Genes in V. vinifera Based on Transcriptomics
by Junli Liu, Yihan Li, Zhilei Wang, Hua Li and Hua Wang
Horticulturae 2025, 11(12), 1538; https://doi.org/10.3390/horticulturae11121538 - 18 Dec 2025
Viewed by 414
Abstract
Cold resistance is an important characteristic of sustainable development in the grape industry. The intraspecific recurrent selection in the Vitis vinifera (V. vinifera) method uses high-quality varieties as breeding materials and the substitution and accumulation of minor resistance genes, breeding high-quality [...] Read more.
Cold resistance is an important characteristic of sustainable development in the grape industry. The intraspecific recurrent selection in the Vitis vinifera (V. vinifera) method uses high-quality varieties as breeding materials and the substitution and accumulation of minor resistance genes, breeding high-quality grapes with cold resistance. This study was conducted to identify and genetically analyse the cold resistance of a V. vinifera hybrid population (Ecolly × Dunkelfelder), screen for highly resistant and sensitive plant samples, and use high-throughput sequencing to perform transcriptome sequencing and related differential gene expression analysis on each sample. The results revealed that the cold resistance of the hybrid offspring population was characterised by continuous quantitative trait inheritance, with 38 differentially expressed genes (7 upregulated genes and 31 downregulated genes) between the high resistance and high-sensitivity types. Analysis of genes related to various pathways, related to cold resistance, revealed that CYP76F10, Dxs, GERD, NMT, GDE1, glgC, and DHQ-SDH, as well as transcription factor MYB, HB, and MADS family genes, are key candidate genes for V. vinifera cold resistance research. Real-time fluorescence quantitative polymerase chain reaction (RT-qPCR) was used to investigate the expression characteristics of the six genes that were differentially expressed genes, the results of which were essentially consistent with the results of RNA-seq. Specifically, NMT may enhance cold resistance by enhancing membrane lipid stability. The synergistic expression pattern of CYP76F14 and Dxs suggests its key role in terpene synthesis. By exploring potential genes related to micro effects, a theoretical foundation for further exploration of new high-quality cold-resistant grape varieties has been provided. Full article
(This article belongs to the Special Issue Research on Grape Stress Resistance Cultivation and Genetic Breeding)
Show Figures

Figure 1

Back to TopTop