error_outline You can access the new MDPI.com website here. Explore and share your feedback with us.
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (123)

Search Parameters:
Keywords = Puccinia striiformis

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 5482 KB  
Article
Genome-Wide Identification of the AMT Gene Family in Wheat: Expression Profiles Under Ammonium Nutrition and Pathogen Effects
by Yanzhen Wang, Jialu Li, Xia Liu, Rui Huang, Menglin Lei, Yaoyuan Zhang and Guoqing Cui
Genes 2025, 16(12), 1451; https://doi.org/10.3390/genes16121451 - 4 Dec 2025
Viewed by 412
Abstract
Background: Ammonium nitrogen (NH4+) serves as a vital nitrogen source, playing pivotal regulatory roles in plant growth, development, and high-yield formation. Ammonium transporters (AMTs), encoded by the AMT gene family, are central to NH4+ transport. However, the [...] Read more.
Background: Ammonium nitrogen (NH4+) serves as a vital nitrogen source, playing pivotal regulatory roles in plant growth, development, and high-yield formation. Ammonium transporters (AMTs), encoded by the AMT gene family, are central to NH4+ transport. However, the functional roles of AMT genes in wheat remain poorly understood. Methods: A comprehensive genome-wide analysis of the TaAMT gene family numbers was conducted, encompassing investigations into gene structure, protein motif composition, gene duplication events, collinearity relationships, and cis-acting regulatory elements. Furthermore, the expression patterns of distinct TaAMT members were examined under varying ammonium supply conditions and pathogen stress. Results: In this study, a total of 21 TaAMT members were identified. Additionally, all TaAMT proteins were localized to the plasma membrane. Phylogenetic analysis clustered these genes into four distinct subgroups. Comparative analyses of gene structure and conserved motifs revealed conserved domain composition and motif organization within each subgroup. Interspecific synteny analysis highlighted evolutionary conservation across species. Promoter region analysis identified multiple cis-regulatory elements associated with hormone signaling, light responsiveness, and abiotic stress adaptation. Expression profiling demonstrated that TaAMT members exhibit both tissue-specific and constitutive expression patterns across developmental stages. RT-qPCR further revealed that the expression of TaAMT members responds to varying concentrations of ammonium nitrogen supply, as well as infection stresses caused by stripe rust and powdery mildew. Conclusions: Collectively, this study uncovered the functional diversity of TaAMT members, offering novel molecular targets and theoretical foundations for breeding wheat varieties with enhanced nitrogen use efficiency and disease resistance. Full article
(This article belongs to the Section Bioinformatics)
Show Figures

Figure 1

13 pages, 2318 KB  
Article
Mapping of a Major Locus for Resistance to Yellow Rust in Wheat
by Huijuan Guo, Liujie Wang, Xin Bai, Lijuan Wu, Xiaojun Zhang, Shuwei Zhang, Zujun Yang, Ennian Yang, Zhijian Chang, Xin Li and Linyi Qiao
Agronomy 2025, 15(11), 2511; https://doi.org/10.3390/agronomy15112511 - 29 Oct 2025
Viewed by 578
Abstract
Yellow rust (YR), caused by Puccinia striiformis f. sp. tritici (Pst), is a global disease infecting wheat that seriously affects the yield and the quality of grains. Wheat breeding line C855 is immune to the mixed Pst isolates CYR32 + CYR33 [...] Read more.
Yellow rust (YR), caused by Puccinia striiformis f. sp. tritici (Pst), is a global disease infecting wheat that seriously affects the yield and the quality of grains. Wheat breeding line C855 is immune to the mixed Pst isolates CYR32 + CYR33 + CYR34 under field conditions. To identify the Yr-loci carried by C855, in this study, an F2 population derived from the crossing of C855 with Yannong 999, a YR-sensitive cultivar, was established, and the infection type (IT) of each F2 individual was estimated. The correlation analysis results show that YR resistance was significantly positively correlated with grain weight and grain size. Using a 120K single-nucleotide polymorphism (SNP) array, the F2 population was genotyped, and a high-density genetic map covering 21 wheat chromosomes and consisting of 5362 SNP markers was built. Then, five Yr-QTLs on chromosomes 1B, 2A, 2B, and 2D were identified. Of these, the QTL on chromosome 2A, temporarily named QYr.sxau-2A.1, is a major-effect QTL explaining 15.62% of the phenotypic variance. One PCR-based marker SSR2A-14 for QYr.sxau-2A.1 was developed, and the C855 allele of SSR2A-14 corresponded to the stronger Yr resistance. QYr.sxau-2A.1, located in the 228.02~241.58 Mbp physical interval, is different from all the known Yr loci on chromosomes 2A. Within the interval, there are 30 annotated genes, including a nucleotide-binding site and a leucine-rich repeat (NBS-LRR)-encoding gene with the linkage marker NRM2A-16 of QYr.sxau-2A.1. Our results reveal a novel major-effect QYr.sxau-2A.1, which provided resistance to YR and is a molecular marker for wheat breeding. Full article
(This article belongs to the Section Pest and Disease Management)
Show Figures

Figure 1

14 pages, 7994 KB  
Article
Evaluation of the Potential Risk Posed by Emerging Yr5-Virulent and Predominant Races of Puccinia striiformis f. sp. tritici on Bread Wheat (Triticum aestivum L.) Varieties Grown in Türkiye
by Kadir Akan, Ahmet Cat, Medine Yurduseven, Yesim Sila Tekin, Mehmet Zahit Yeken and Mehmet Tekin
J. Fungi 2025, 11(9), 635; https://doi.org/10.3390/jof11090635 - 29 Aug 2025
Viewed by 1106
Abstract
In this study, the reactions of 70 bread wheat varieties released in Türkiye to five prevalent Pst races, including the Yr5-virulent PSTr-27, were evaluated. Reaction tests of wheat varieties to all races revealed PSTr-27 as the most aggressive race, followed by PSTr-31, [...] Read more.
In this study, the reactions of 70 bread wheat varieties released in Türkiye to five prevalent Pst races, including the Yr5-virulent PSTr-27, were evaluated. Reaction tests of wheat varieties to all races revealed PSTr-27 as the most aggressive race, followed by PSTr-31, PSTr-28, PSTr-29, and PSTr-30. Notably, only seven varieties (Kıraç 66, İkizce 96, Dinç, Altındane, Ziyabey 98, Bayraktar 2000, and Shiro) exhibited moderately resistant reactions to PSTr-27, while the remaining varieties were susceptible. The presence of nine important resistance (Yr) genes in these varieties was also screened at the molecular level. Yr5, Yr15, and Yr26 genes were not detected in any of the varieties and Yr10 and YrSP genes were each detected in only one variety, while the other genes were detected in different ratios. Molecular screening showed that 19 varieties with no resistance genes used in this study displayed susceptible reactions; however, ten varieties that did not carry any resistance genes showed resistant reactions to one or more races, suggesting the presence of unknown or novel resistance sources. Furthermore, gene combinations, particularly Yr10 + Yr18, significantly provided resistance to all Pst races studied. These findings highlight that continual monitoring of PSTr-27, and other Pst races is needed, since it can be a serious threat to wheat production in Türkiye and neighboring countries. Full article
(This article belongs to the Special Issue Crop Fungal Diseases Management)
Show Figures

Figure 1

18 pages, 2596 KB  
Article
Integrating RGB Image Processing and Random Forest Algorithm to Estimate Stripe Rust Disease Severity in Wheat
by Andrzej Wójtowicz, Jan Piekarczyk, Marek Wójtowicz, Sławomir Królewicz, Ilona Świerczyńska, Katarzyna Pieczul, Jarosław Jasiewicz and Jakub Ceglarek
Remote Sens. 2025, 17(17), 2981; https://doi.org/10.3390/rs17172981 - 27 Aug 2025
Cited by 2 | Viewed by 1057
Abstract
Accurate and timely assessment of crop disease severity is crucial for effective management strategies and ensuring sustainable agricultural production. Traditional visual disease scoring methods are subjective and labor-intensive, highlighting the need for automated, objective alternatives. This study evaluates the effectiveness of a model [...] Read more.
Accurate and timely assessment of crop disease severity is crucial for effective management strategies and ensuring sustainable agricultural production. Traditional visual disease scoring methods are subjective and labor-intensive, highlighting the need for automated, objective alternatives. This study evaluates the effectiveness of a model for field-based identification and quantification of stripe rust severity in wheat using red, green, blue RGB imaging. Based on crop reflectance hyperspectra (CRHS) acquired using a FieldSpec ASD spectroradiometer, two complementary approaches were developed. In the first approach, we estimate single leaf disease severity (LDS) under laboratory conditions, while in the second approach, we assess crop disease severity (CDS) from field-based RGB images. The high accuracy of both methods enabled the development of a predictive model for estimating LDS from CDS, offering a scalable solution for precision disease monitoring in wheat cultivation. The experiment was conducted on four winter wheat plots subjected to varying fungicide treatments to induce different levels of stripe rust severity for model calibration, with treatment regimes ranging from no application to three applications during the growing season. RGB images were acquired in both laboratory conditions (individual leaves) and field conditions (nadir and oblique perspectives), complemented by hyperspectral measurements in the 350–2500 nm range. To achieve automated and objective assessment of disease severity, we developed custom image-processing scripts and applied Random Forest classification and regression models. The models demonstrated high predictive performance, with the combined use of nadir and oblique RGB imagery achieving the highest classification accuracy (97.87%), sensitivity (100%), and specificity (95.83%). Oblique images were more sensitive to early-stage infection, while nadir images offered greater specificity. Spectral feature selection revealed that wavelengths in the visible (e.g., 508–563 nm and 621–703 nm) and red-edge/SWIR regions (around 1556–1767 nm) were particularly informative for disease detection. In classification models, shorter wavelengths from the visible range proved to be more useful, while in regression models, longer wavelengths were more effective. The integration of RGB-based image analysis with the Random Forest algorithm provides a robust, scalable, and cost-effective solution for monitoring stripe rust severity under field conditions. This approach holds significant potential for enhancing precision agriculture strategies by enabling early intervention and optimized fungicide application. Full article
(This article belongs to the Section Remote Sensing in Agriculture and Vegetation)
Show Figures

Figure 1

16 pages, 1317 KB  
Article
Genome-Wide Linkage Mapping of QTL for Adult-Plant Resistance to Stripe Rust in a Chinese Wheat Population Lantian 25 × Huixianhong
by Fangping Yang, Yamei Wang, Ling Wu, Ying Guo, Xiuyan Liu, Hongmei Wang, Xueting Zhang, Kaili Ren, Bin Bai, Zongbing Zhan and Jindong Liu
Plants 2025, 14(16), 2571; https://doi.org/10.3390/plants14162571 - 18 Aug 2025
Viewed by 971
Abstract
Stripe rust, caused by Puccinia striiformis f. sp. tritici (Pst), represents a major global threat to wheat (Triticum aestivum. L). Planting varieties with adult-plant resistance (APR) is an effective approach for long-term management of this disease. The Chinese winter wheat variety [...] Read more.
Stripe rust, caused by Puccinia striiformis f. sp. tritici (Pst), represents a major global threat to wheat (Triticum aestivum. L). Planting varieties with adult-plant resistance (APR) is an effective approach for long-term management of this disease. The Chinese winter wheat variety Lantian 25 exhibits moderate-to-high APR against stripe rust under field conditions. To investigate the genetic basis of APR in Lantian 25, a set of 219 F6 recombinant inbred lines (RILs) was created from a cross between Lantian 25 (resistant parent) and Huixianhong (susceptible parent). These RILs were assessed for maximum disease severity (MDS) in Pixian of Sichuan and Qingshui of Gansu over the 2020–2021 and 2021–2022 growing seasons, resulting in data from four different environments. Genotyping was performed on these lines and their parents using the wheat Illumina 50K single-nucleotide polymorphism (SNP) arrays. Composite interval mapping (CIM) identified six quantitative trait loci (QTL), named QYr.gaas-2BS, QYr.gaas-2BL, QYr.gaas-2DS, QYr.gaas-2DL, QYr.gaas-3BS and QYr.gaas-4BL, which were consistently found across two or more environments and explained 4.8–12.0% of the phenotypic variation. Of these, QYr.gaas-2BL, QYr.gaas-2DS, and QYr.gaas-3BS overlapped with previous studies, whereas QYr.gaas-2BS, QYr.gaas-2DS, and QYr.gaas-4BL might be novel. All the resistance alleles for these QTL originated from Lantian 25. Furthermore, four kompetitive allele-specific PCR (KASP) markers, Kasp_2BS_YR (QYr.gaas-2BS), Kasp_2BL_YR (QYr.gaas-2BL), Kasp_2DS_YR (QYr.gaas-2DS) and Kasp_2DL_YR (QYr.gaas-2DL), were developed and validated in 110 wheat diverse accessions. Additionally, we identified seven candidate genes linked to stripe rust resistance, including disease resistance protein RGA2, serine/threonine-protein kinase, F-box family proteins, leucine-rich repeat family proteins, and E3 ubiquitin-protein ligases. These QTL, along with their associated KASP markers, hold promise for enhancing stripe rust resistance in wheat breeding programs. Full article
(This article belongs to the Special Issue Cereals Genetics and Breeding)
Show Figures

Figure 1

12 pages, 2136 KB  
Article
Development of Yellow Rust-Resistant and High-Yielding Bread Wheat (Triticum aestivum L.) Lines Using Marker-Assisted Backcrossing Strategies
by Bekhruz O. Ochilov, Khurshid S. Turakulov, Sodir K. Meliev, Fazliddin A. Melikuziev, Ilkham S. Aytenov, Sojida M. Murodova, Gavkhar O. Khalillaeva, Bakhodir Kh. Chinikulov, Laylo A. Azimova, Alisher M. Urinov, Ozod S. Turaev, Fakhriddin N. Kushanov, Ilkhom B. Salakhutdinov, Jinbiao Ma, Muhammad Awais and Tohir A. Bozorov
Int. J. Mol. Sci. 2025, 26(15), 7603; https://doi.org/10.3390/ijms26157603 - 6 Aug 2025
Cited by 1 | Viewed by 2020
Abstract
The fungal pathogen Puccinia striiformis f. sp. tritici, which causes yellow rust disease, poses a significant economic threat to wheat production not only in Uzbekistan but also globally, leading to substantial reductions in grain yield. This study aimed to develop yellow rust-resistance [...] Read more.
The fungal pathogen Puccinia striiformis f. sp. tritici, which causes yellow rust disease, poses a significant economic threat to wheat production not only in Uzbekistan but also globally, leading to substantial reductions in grain yield. This study aimed to develop yellow rust-resistance wheat lines by introgressing Yr10 and Yr15 genes into high-yielding cultivar Grom using the marker-assisted backcrossing (MABC) method. Grom was crossed with donor genotypes Yr10/6*Avocet S and Yr15/6*Avocet S, resulting in the development of F1 generations. In the following years, the F1 hybrids were advanced to the BC2F1 and BC2F2 generations using the MABC approach. Foreground and background selection using microsatellite markers (Xpsp3000 and Barc008) were employed to identify homozygous Yr10- and Yr15-containing genotypes. The resulting BC2F2 lines, designated as Grom-Yr10 and Grom-Yr15, retained key agronomic traits of the recurrent parent cv. Grom, such as spike length (13.0–11.9 cm) and spike weight (3.23–2.92 g). Under artificial infection conditions, the selected lines showed complete resistance to yellow rust (infection type 0). The most promising BC2F2 plants were subsequently advanced to homozygous BC2F3 lines harboring the introgressed resistance genes through marker-assisted selection. This study demonstrates the effectiveness of integrating molecular marker-assisted selection with conventional breeding methods to enhance disease resistance while preserving high-yielding traits. The newly developed lines offer valuable material for future wheat improvement and contribute to sustainable agriculture and food security. Full article
(This article belongs to the Special Issue Molecular Advances in Understanding Plant-Microbe Interactions)
Show Figures

Figure 1

21 pages, 28885 KB  
Article
Assessment of Yellow Rust (Puccinia striiformis) Infestations in Wheat Using UAV-Based RGB Imaging and Deep Learning
by Atanas Z. Atanasov, Boris I. Evstatiev, Asparuh I. Atanasov and Plamena D. Nikolova
Appl. Sci. 2025, 15(15), 8512; https://doi.org/10.3390/app15158512 - 31 Jul 2025
Cited by 2 | Viewed by 1197
Abstract
Yellow rust (Puccinia striiformis) is a common wheat disease that significantly reduces yields, particularly in seasons with cooler temperatures and frequent rainfall. Early detection is essential for effective control, especially in key wheat-producing regions such as Southern Dobrudja, Bulgaria. This study [...] Read more.
Yellow rust (Puccinia striiformis) is a common wheat disease that significantly reduces yields, particularly in seasons with cooler temperatures and frequent rainfall. Early detection is essential for effective control, especially in key wheat-producing regions such as Southern Dobrudja, Bulgaria. This study presents a UAV-based approach for detecting yellow rust using only RGB imagery and deep learning for pixel-based classification. The methodology involves data acquisition, preprocessing through histogram equalization, model training, and evaluation. Among the tested models, a UnetClassifier with ResNet34 backbone achieved the highest accuracy and reliability, enabling clear differentiation between healthy and infected wheat zones. Field experiments confirmed the approach’s potential for identifying infection patterns suitable for precision fungicide application. The model also showed signs of detecting early-stage infections, although further validation is needed due to limited ground-truth data. The proposed solution offers a low-cost, accessible tool for small and medium-sized farms, reducing pesticide use while improving disease monitoring. Future work will aim to refine detection accuracy in low-infection areas and extend the model’s application to other cereal diseases. Full article
(This article belongs to the Special Issue Advanced Computational Techniques for Plant Disease Detection)
Show Figures

Figure 1

21 pages, 5727 KB  
Article
Mapping QTLs for Stripe Rust Resistance and Agronomic Traits in Chinese Winter Wheat Lantian 31 Using 15K SNP Array
by Xin Li, Wenjing Tan, Junming Feng, Qiong Yan, Ran Tian, Qilin Chen, Qin Li, Shengfu Zhong, Suizhuang Yang, Chongjing Xia and Xinli Zhou
Agriculture 2025, 15(13), 1444; https://doi.org/10.3390/agriculture15131444 - 4 Jul 2025
Cited by 1 | Viewed by 750
Abstract
Wheat stripe rust (Puccinia striiformis f. sp. tritici, Pst) resistance and agronomic traits are crucial determinants of wheat yield. Elucidating the quantitative trait loci (QTLs) associated with these essential traits can furnish valuable genetic resources for improving both the yield [...] Read more.
Wheat stripe rust (Puccinia striiformis f. sp. tritici, Pst) resistance and agronomic traits are crucial determinants of wheat yield. Elucidating the quantitative trait loci (QTLs) associated with these essential traits can furnish valuable genetic resources for improving both the yield potential and disease resistance in wheat. Lantian 31 is an excellent Chinese winter wheat cultivar; multi-environment phenotyping across three ecological regions (2022–2024) confirmed stable adult-plant resistance (IT 1–2; DS < 30%) against predominant Chinese Pst races (CYR31–CYR34), alongside superior thousand-kernel weight (TKW) and kernel morphology. Here, we dissected the genetic architecture of these traits using a total of 234 recombinant inbred lines (RILs) derived from a cross between Lantian 31 and the susceptible cultivar Avocet S (AvS). Genotyping with a 15K SNP array, complemented by 660K SNP-derived KASP and SSR markers, identified four stable QTLs for stripe rust resistance (QYrlt.swust-1B, -1D, -2D, -6B) and eight QTLs governing plant height (PH), spike length (SL), and kernel traits. Notably, QYrlt.swust-1B (1BL; 29.9% phenotypic variance) likely represents the pleiotropic Yr29/Lr46 locus, while QYrlt.swust-1D (1DL; 22.9% variance) is the first reported APR locus on chromosome 1DL. A pleiotropic cluster on 1B (670.4–689.9 Mb) concurrently enhanced the TKW and the kernel width and area, demonstrating Lantian 31’s dual utility as a resistance and yield donor. The integrated genotyping pipeline—combining 15K SNP discovery, 660K SNP fine-mapping, and KASP validation—precisely delimited QYrlt.swust-1B to a 1.5 Mb interval, offering a cost-effective model for QTL resolution in common wheat. This work provides breeder-friendly markers and a genetic roadmap for pyramiding durable resistance and yield traits in wheat breeding programs. Full article
(This article belongs to the Section Crop Genetics, Genomics and Breeding)
Show Figures

Figure 1

16 pages, 1983 KB  
Article
Genome-Wide Identification of Wheat Gene Resources Conferring Resistance to Stripe Rust
by Qiaoyun Ma, Dong Yan, Binshuang Pang, Jianfang Bai, Weibing Yang, Jiangang Gao, Xianchao Chen, Qiling Hou, Honghong Zhang, Li Tian, Yahui Li, Jizeng Jia, Lei Zhang, Zhaobo Chen, Lifeng Gao and Xiangzheng Liao
Plants 2025, 14(12), 1883; https://doi.org/10.3390/plants14121883 - 19 Jun 2025
Cited by 1 | Viewed by 1396
Abstract
Stripe rust, caused by Puccinia striiformis f. sp. tritici (Pst), threatens global wheat production. Breeding resistant varieties is a key to disease control. In this study, 198 modern wheat varieties were phenotyped with the prevalent Pst races CYR33 and CYR34 at [...] Read more.
Stripe rust, caused by Puccinia striiformis f. sp. tritici (Pst), threatens global wheat production. Breeding resistant varieties is a key to disease control. In this study, 198 modern wheat varieties were phenotyped with the prevalent Pst races CYR33 and CYR34 at the seedling stage and with mixed Pst races at the adult-plant stage. Seven stable resistance varieties with infection type (IT) ≤ 2 and disease severity (DS) ≤ 20% were found, including five Chinese accessions (Zhengpinmai8, Zhengmai1860, Zhoumai36, Lantian36, and Chuanmai32), one USA accession (GA081628-13E16), and one Pakistani accession (Pa12). The genotyping applied a 55K wheat single-nucleotide polymorphism (SNP) array. A genome-wide association study (GWAS) identified 14 QTL using a significance threshold of p ≤ 0.001, which distributed on chromosomes 1B (4), 1D (2), 2B (4), 6B, 6D, 7B, and 7D (4 for CYR33, 7 for CYR34, 3 for mixed Pst races), explaining 6.04% to 18.32% of the phenotypic variance. Nine of these QTL were potentially novel, as they did not overlap with the previously reported Yr or QTL loci within a ±5.0 Mb interval (consistent with genome-wide LD decay). The haplotypes and resistance effects were evaluated to identify the favorable haplotype for each QTL. Candidate genes within the QTL regions were inferred based on their transcription levels following the stripe rust inoculation. These resistant varieties, QTL haplotypes, and favorable alleles will aid in wheat breeding for stripe rust resistance. Full article
(This article belongs to the Special Issue Improvement of Agronomic Traits and Nutritional Quality of Wheat)
Show Figures

Figure 1

15 pages, 1793 KB  
Article
Virulence Characterization of Puccinia striiformis f. sp. tritici in China in 2020 Using Wheat Yr Single-Gene Lines
by Jie Huang, Xingzong Zhang, Wenjing Tan, Yi Wu, Hai Xu, Shuwaner Wang, Sajid Mehmood, Xinli Zhou, Suizhuang Yang, Meinan Wang, Xianming Chen, Wanquan Chen, Taiguo Liu, Xin Li and Chongjing Xia
J. Fungi 2025, 11(6), 447; https://doi.org/10.3390/jof11060447 - 12 Jun 2025
Viewed by 1290
Abstract
Wheat stripe (yellow) rust, caused by the fungus Puccinia striiformis f. sp. tritici (Pst), is one of the most threatening wheat diseases worldwide. Monitoring the virulence of Pst population is essential for managing wheat stripe rust. In this study, 18 wheat [...] Read more.
Wheat stripe (yellow) rust, caused by the fungus Puccinia striiformis f. sp. tritici (Pst), is one of the most threatening wheat diseases worldwide. Monitoring the virulence of Pst population is essential for managing wheat stripe rust. In this study, 18 wheat Yr single-gene lines were used to identify the virulence patterns of 67 isolates collected from 13 provinces in China in 2020, from which 33 Pst races were identified. The frequency of virulence to different Yr genes varied from 1.49% to 97.01%, with 4.48% to Yr1, 26.87% to Yr6, 11.94% to Yr7, 95.52% to Yr8, 19.40% to Yr9, 11.94% to Yr17, 2.99% to Yr24, 35.82% to Yr27, 38.81% to Yr43, 97.01% to Yr44, 8.96% to YrSP, 1.49% to Yr85, 95.52% to YrExp2, and 7.46% to Yr76. None of the isolates were virulent to Yr5, Yr10, Yr15, and Yr32. Among the 33 races, PstCN-062 (with virulence to Yr8, Yr44, and YrExp2) and PstCN-001 (with virulence to Yr8, Yr43, Yr44, and YrExp2) were the prevalent races, with frequencies of 28.36% and 11.94%, respectively. These results provide valuable information for breeding resistant wheat cultivars for controlling stripe rust. Full article
(This article belongs to the Special Issue Rust Fungi)
Show Figures

Figure 1

18 pages, 8355 KB  
Article
Transcriptome Analysis Reveals Mechanisms of Stripe Rust Response in Wheat Cultivar Anmai1350
by Feng Gao, Jingyi Zhu, Xin Xue, Hongqi Chen, Xiaojin Nong, Chunling Yang, Weimin Shen and Pengfei Gan
Int. J. Mol. Sci. 2025, 26(12), 5538; https://doi.org/10.3390/ijms26125538 - 10 Jun 2025
Cited by 2 | Viewed by 1108
Abstract
Wheat (Triticum aestivum L.) is the world’s most indispensable staple crop and a vital source of food for human diet. Wheat stripe rust, caused by Puccinia striiformis f. sp. tritici (Pst), constitutes a severe threat to wheat production and in [...] Read more.
Wheat (Triticum aestivum L.) is the world’s most indispensable staple crop and a vital source of food for human diet. Wheat stripe rust, caused by Puccinia striiformis f. sp. tritici (Pst), constitutes a severe threat to wheat production and in severe cases, the crop fails completely. Anmai1350 (AM1350) is moderately resistant to leaf rust and powdery mildew, and highly susceptible to sheath blight and fusarium head blight. We found that the length and area of mycelium in AM1350 cells varied at different time points of Pst infection. To investigate the molecular mechanism of AM1350 resistance to Pst, we performed transcriptome sequencing (RNA-seq). In this study, we analyzed the transcriptomic changes of the seedling leaves of AM1350 at different stages of Pst infection at 0 h post-infection (hpi), 6 hpi, 24 hpi, 48 hpi, 72 hpi, and 120 hpi through RNA-seq. Quantitative Real-Time Polymerase Chain Reaction (qRT-PCR) was used to validate RNA-seq data. It was determined that there were differences in the differentially expressed genes (DEGs) of AM1350, and the upregulation and downregulation of the DEGs changed with the time of infection. At different time points, there were varying degrees of enrichment in the response pathways of AM1350, such as the ”MAPK signaling pathway–plant”, the “plant–pathogen interaction” pathway and other pathways. After Pst infected AM1350, the reactive oxygen species (ROS) content gradually increases. The ROS is toxic to Pst, promotes the synthesis of phytoalexins, and inhibits the spread of Pst. As a result, AM1350 shows resistance to Pst race CYR34. The main objective of this study is to provide a better understanding for resistance mechanisms of wheat in response to Pst infections and to avoid production loss. Full article
(This article belongs to the Special Issue Plant–Microbe Interactions: 2nd Edition)
Show Figures

Figure 1

16 pages, 2634 KB  
Article
QTL Mapping and Developing KASP Markers for High-Temperature Adult-Plant Resistance to Stripe Rust in Argentinian Spring Wheat William Som (PI 184597)
by Arjun Upadhaya, Meinan Wang, Chao Xiang, Nosheen Fatima, Sheri Rynearson, Travis Ruff, Deven R. See, Michael Pumphrey and Xianming Chen
Int. J. Mol. Sci. 2025, 26(11), 5072; https://doi.org/10.3390/ijms26115072 - 24 May 2025
Cited by 1 | Viewed by 1242
Abstract
Stripe rust, caused by Puccinia striiformis f. sp. tritici (Pst), is a destructive disease of wheat worldwide. William Som (WS), an Argentinian spring wheat landrace, has consistently exhibited high-level resistance to stripe rust for over 20 years in our field evaluations [...] Read more.
Stripe rust, caused by Puccinia striiformis f. sp. tritici (Pst), is a destructive disease of wheat worldwide. William Som (WS), an Argentinian spring wheat landrace, has consistently exhibited high-level resistance to stripe rust for over 20 years in our field evaluations in Washington state, USA. A previous study showed high-temperature adult-plant (HTAP) resistance in WS. To map the HTAP resistance quantitative trait loci (QTL) in WS, 114 F5-8 recombinant inbred lines (RILs) from the cross AvS/WS were evaluated for their stripe rust response in seven field environments in Washington. The RILs and parents were genotyped with the Infinium 90K SNP chip. Four stable QTL, QYrWS.wgp-1BL on chromosome 1B (669–682 Mb), QyrWS.wgp-2AL on 2A (611–684 Mb), QyrWS.wgp-3AS on 3A (9–13 Mb), and QyrWS.wgp-3BL on 3B (476–535 Mb), were identified, and they explained 10.0–19.0%, 10.2–16.7%, 7.0–15.9%, and 12.0–27.8% of the phenotypic variation, respectively. The resistance in WS was found to be due to additive interactions of the four QTL. For each QTL, two Kompetitive allele-specific PCR (KASP) markers were developed, and these markers should facilitate the introgression of the HTAP resistance QTL into new wheat cultivars. Full article
(This article belongs to the Special Issue Advances in Plant Genomics and Genetics: 3rd Edition)
Show Figures

Figure 1

15 pages, 9259 KB  
Article
Characterization of a New Stripe Rust Resistance Gene on Chromosome 2StS from Thinopyrum intermedium in Wheat
by Chengzhi Jiang, Yujie Luo, Doudou Huang, Meiling Chen, Ennian Yang, Guangrong Li and Zujun Yang
Plants 2025, 14(10), 1538; https://doi.org/10.3390/plants14101538 - 20 May 2025
Cited by 1 | Viewed by 1190
Abstract
Stripe rust, caused by Puccinia striiformis f. sp. tritici, is a highly destructive disease prevalent across most wheat-growing regions globally. The most effective strategy for combating this disease is through the exploitation of durable and robust resistance genes from the relatives of wheat. [...] Read more.
Stripe rust, caused by Puccinia striiformis f. sp. tritici, is a highly destructive disease prevalent across most wheat-growing regions globally. The most effective strategy for combating this disease is through the exploitation of durable and robust resistance genes from the relatives of wheat. Thinopyrum intermedium (Host) Barkworth and D.R. Dewey has been widely hybridized with common wheat and has been shown to be a valuable source of genes, conferring resistance and tolerance against both the biotic and abiotic stresses affecting wheat. In this study, a novel wheat–Th. intermedium 2StS.2JSL addition line, named Th93-1-6, which originated from wheat–Th. intermedium partial amphidiploid line, Th24-19-5, was comprehensively characterized using nondenaturing-fluorescence in situ hybridization (ND-FISH) and Oligo-FISH painting techniques. To detect plants with the transfer of resistance genes from Th93-1-6 to wheat chromosomes, 2384 M1-M3 plants from the cross between Th93-1-6 and the susceptible wheat cultivar MY11 were studied by ND-FISH using multiple probes. A total of 37 types of 2StS.2JSL chromosomal aberrations were identified. Subsequently, 12 homozygous lines were developed to construct a cytological bin map. Ten chromosomal bins on the 2StS.2JSL chromosome were constructed based on 84 specific molecular markers. Among them, eight alien chromosome aberration lines, which all contained the bin 2StS-3, showed enhanced stripe rust resistance. Consequently, the gene(s) for stripe rust resistance was physically mapped to the 92.88-155.32 Mb region of 2StS in Thinopyrum intermedium reference genome sequences v2.1. Moreover, these newly developed wheat–Th. intermedium 2StS.2JSL translocation lines are expected to serve as valuable genetic resources in the breeding of rust-resistant wheat cultivars. Full article
(This article belongs to the Special Issue Molecular Approaches for Plant Resistance to Rust Diseases)
Show Figures

Figure 1

18 pages, 11753 KB  
Article
Application of NDVI for Early Detection of Yellow Rust (Puccinia striiformis)
by Asparuh I. Atanasov, Atanas Z. Atanasov and Boris I. Evstatiev
AgriEngineering 2025, 7(5), 160; https://doi.org/10.3390/agriengineering7050160 - 19 May 2025
Cited by 2 | Viewed by 2006
Abstract
Yellow rust is one of the most destructive fungal diseases affecting wheat, significantly reducing yield and grain quality. Early detection is crucial for effective plant protection and disease management. This study aims to develop and validate a methodology for early diagnosis of yellow [...] Read more.
Yellow rust is one of the most destructive fungal diseases affecting wheat, significantly reducing yield and grain quality. Early detection is crucial for effective plant protection and disease management. This study aims to develop and validate a methodology for early diagnosis of yellow rust using the Normalized Difference Vegetation Index (NDVI) derived from UAV-acquired spectral data. This research was conducted in an experimental wheat field near General Toshevo, Bulgaria, which is owned by the Dobrudja Agricultural Institute (DAI). A widely cultivated winter wheat variety, Enola, was monitored using UAV-based imaging, and the NDVI values were analyzed to assess the correlation between spectral reflectance and infection severity. The NDVI showed a moderate correlation as an indicator of pathogen-induced stress, with moderate predictive capability (R2 = 51.4%) for assessing yellow rust infection severity. The results demonstrated that UAV-based NDVI analysis could effectively detect early-stage infections and monitor the spatial spread of the disease. The proposed methodology enables large-scale, non-invasive monitoring of wheat health, facilitating early disease detection. This approach can help optimize disease management strategies, although ground-based validation remains essential to distinguish between different stress factors affecting vegetation. Full article
Show Figures

Figure 1

13 pages, 3321 KB  
Article
Molecular Genotyping by 20K Gene Arrays (Genobait) to Unravel the Genetic Structure and Genetic Diversity of the Puccinia striiformis f. sp. tritici Population in the Eastern Xizang Autonomous Region
by Mudi Sun, Wenbin Chen, Qianrong Yong, Xinyu Kong, Xue Qiu and Jie Zhao
Plants 2025, 14(10), 1493; https://doi.org/10.3390/plants14101493 - 16 May 2025
Viewed by 786
Abstract
Wheat stripe rust, caused by Puccinia striiformis f. sp. tritici (Pst), poses a significant threat to wheat production in China. Previous epidemic studies have demonstrated the potential of high genetic diversity in the southwest regions of China. Among this epidemic region, [...] Read more.
Wheat stripe rust, caused by Puccinia striiformis f. sp. tritici (Pst), poses a significant threat to wheat production in China. Previous epidemic studies have demonstrated the potential of high genetic diversity in the southwest regions of China. Among this epidemic region, the eastern Xizang (Tibet) region holds particular significance, as both wheat and barley crops are susceptible to Pst. However, limited information exists regarding the level of population genetic diversity, reproduction model, and migration patterns of the rust in eastern Xizang. The present study seeks to address this gap by analyzing 146 Pst isolates collected from the Basu, Zuogong, and Mangkang regions, genotyping by the 20K target Gene Array (Genobait). Our results showed relatively low genotypic diversity in the Basu region, while the highest genetic diversity was observed in the Mangkang area. Structural analysis revealed the abundance of admixed groups in Mangkang, which exhibited this population occurred due to sexual recombination between two different ancestor groups. Gene flow was observed between Zuogong and Basu populations, but it almost did not occur between Mangkang and Zuogong/Basu populations. This region is the world’s highest-altitude epidemic area, thus facilitating the evolution of the rust and possessing the potential to transmit newly evolved Pst races to lower wheat-growing regions. Implementing disease management strategies in this area is of potential importance to prevent the transmission of Pst races to other parts of Xizang, even neighboring regions possibly. This study facilitates our understanding of epidemiological and population genetic knowledge and the evolution of Pst in Xizang. Full article
(This article belongs to the Section Plant Protection and Biotic Interactions)
Show Figures

Figure 1

Back to TopTop