Molecular Genotyping by 20K Gene Arrays (Genobait) to Unravel the Genetic Structure and Genetic Diversity of the Puccinia striiformis f. sp. tritici Population in the Eastern Xizang Autonomous Region
Abstract
:1. Introduction
2. Results
2.1. Variant Calling and Data Filtration
2.2. Genetic Diversity of Pst in the Eastern Xizang Epidemic Regions
2.3. Genetic Structure and Population Subdivision Within the Eastern Xizang
2.4. Genetic Divergence
2.5. Migration Pattern
3. Discussion
4. Methods
4.1. Fungal and Plant Materials
4.2. Pure Isolate
4.3. DNA Extraction and Genotyping
4.4. Variant Calling and Filtration at the Genome Level
4.5. Data Analysis
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zadoks, J.C. Yellow rust on wheat: Studies in epidemiology and physiologic specialization. Tijdschr. Over Plantenziekten 1961, 67, 69–256. [Google Scholar] [CrossRef]
- Doling, D.A.; Doodson, J.K. The effect of yellow rust on the yield of spring and winter wheat. Trans. Br. Mycol. Soc. 1968, 51, 427–434. [Google Scholar] [CrossRef]
- Chen, X.M. Epidemiology and control of stripe rust [Puccinia striiformis f. sp. tritici] on wheat. Can. J. Plant Pathol. 2005, 27, 314–337. [Google Scholar] [CrossRef]
- Li, Z.Q.; Liu, H.W. Primarily studies on the occurrence of wheat stripe rust in Shaanxi, Gansu, and Qinghai. J. Northwest AF Univ. (Nat. Sci. Ed.) 1956, 4, 1–18. (In Chinese) [Google Scholar]
- Wellings, C.R. Global status of stripe rust: A review of historical and current threats. Euphytica 2011, 179, 129–141. [Google Scholar] [CrossRef]
- Zhao, J.; Kang, Z.S. Fighting wheat rusts in China: A look back and into the future. Phytopathol. Res. 2023, 5, 6. [Google Scholar] [CrossRef]
- Awais, M.; Ali, S.; Ju, M.; Liu, W.; Zhang, G.S.; Zhang, Z.D.; Li, Z.J.; Ma, X.Y.; Wang, L.; Du, Z.M.; et al. Countrywide inter-epidemic region migration pattern suggests the role of southwestern population to wheat stripe rust epidemics in China. Environ. Microbiol. 2022, 24, 4684–4701. [Google Scholar] [CrossRef]
- Awais, M.; Ma, J.B.; Chen, W.B.; Zhang, B.B.; Turakulov, K.S.; Li, L.; Egmberdieva, D.; Karimjonovich, M.S.; Kang, Z.S.; Zhao, J. Molecular genotyping revealed the gene flow of Puccinia striiformis f. sp. tritici clonal lineage from Uzbekistan of Central Asia to Xinjiang of China. Phytopathol. Res. 2025, 7, 2. [Google Scholar] [CrossRef]
- Kuang, W.J.; Zhang, Z.Y.; Ji, H.L.; Xiang, Y.J.; Zhang, M.; Peng, Y.L. Population diversity of Puccinia striiformis in Linzhi of Tibet. Southwest China J. Agric. Sci. 2012, 25, 1668–1673. (In Chinese) [Google Scholar]
- Hu, X.P.; Ma, L.J.; Liu, T.G.; Wang, C.H.; Peng, Y.L.; Pu, Q.; Xu, X.M. Population genetic analysis of Puccinia striiformis f. sp. tritici suggests two distinct populations in Tibet and the other regions of China. Plant Dis. 2017, 101, 288–296. [Google Scholar] [CrossRef]
- Zheng, S.B.; Guo, Y.; Chen, L.; Zhao, J.; Kang, Z.S.; Zhan, G.M. Population structure and genetic diversity of wheat stripe rust pathogen Puccinia striiformis f. sp. tritici collected in Tibet. J. Plant Prot. 2022, 49, 1583–1592. (In Chinese) [Google Scholar]
- Du, Z.M.; Li, Z.J.; Liu, M.X.Z.; Sun, M.D.; Ma, X.Y.; Wang, L.; Kang, Z.S.; Zhao, J. Virulence and molecular characterization reveal signs of sexual genetic recombination of Puccinia striiformis f. sp. tritici and Puccinia striiformis f. sp. hordei in Tibet. Plant Dis. 2024, 108, 2341–2353. [Google Scholar] [CrossRef]
- Zhao, X.Y.; Yao, F.J.; Long, L.; Wang, X.Q.; Kang, H.Y.; Jiang, Y.F.; Li, W.; Deng, M.; Li, H.; Chen, G.Y. Evaluation of resistance to stripe rust and molecular detection of resistance genes of 93 wheat landraces from the Qinghai-Tibet spring and winter wheat zones. Acta Agron. Sin. 2021, 47, 2053–2063. (In Chinese) [Google Scholar]
- Peng, Y.L.; Yang, M.N.; Dan, B.; Zhuoga, D.C. Identification and evaluation of stripe rust resistance of wheat varieties (lines) in Tibet. Guizhou Agric. Sci. 2015, 43, 111–114. (In Chinese) [Google Scholar]
- Wang, Y.T.; Yang, M.N.; Lu, C.Q.; Kang, Z.S.; Wang, B.T.; Hu, X.P. Molecular population genetic structure of Puccinia striiformis f. sp. tritici in Nyingchi of Tibet. J. Triticeae Crops 2012, 32, 880–884. (In Chinese) [Google Scholar]
- Zhao, J.; Zhao, S.L.; Peng, Y.L.; Qin, J.F.; Huang, L.L.; Kang, Z.S. Investigation on geographic distribution and identification of six Berberis spp. serving as alternate host for Puccinia striiformis f. sp. tritici in Linzhi, Tibet. Acta Phytopathol. Sin. 2016, 46, 103–111. (In Chinese) [Google Scholar]
- Wang, Z.Y.; Zhao, J.; Chen, X.M.; Peng, Y.L.; Ji, J.J.; Zhao, S.L.; Lv, Y.J.; Huang, L.L.; Kang, Z.S. Virulence variation of Puccinia striiformis f. sp. tritici isolates collected from Berberis spp. in China. Plant Dis. 2016, 100, 131–138. [Google Scholar] [CrossRef]
- Du, Z.M.; Peng, Y.L.; Zhang, G.S.; Chen, L.; Jiang, S.C.; Kang, Z.S.; Zhao, J. Direct evidence demonstrates that Puccinia striiformis f. sp. tritici infects susceptible barberry to complete sexual cycle in Autumn. Plant Dis. 2023, 107, 771–783. [Google Scholar] [CrossRef]
- Ali, S.; Leconte, M.; Walker, A.S.; Enjalbert, J.; de Vallavieille-Pope, C. Reduction in the sex ability of worldwide clonal populations of Puccinia striiformis f. sp. tritici. Fungal Genet. Biol. 2010, 47, 828–838. [Google Scholar] [CrossRef]
- Peng, Y.L.; Yang, M.N.; Hu, X.P.; Li, Q.; Wang, B.T.; Kang, Z.S. Field surveys of wheat stripe rust and race identification of Puccinia striiformis f. sp. tritici in Tibet. China Plant Prot. 2013, 33, 45–48+24. (In Chinese) [Google Scholar]
- Ma, L.J.; Wang, Y.T.; Lu, C.Q.; Wang, J.F.; Zhan, G.M.; Wang, B.T.; Kang, Z.S.; Yang, M.N.; Peng, Y.L.; Liu, T.G. Molecular population genetic structure and migration relation of Puccinia striiformis f. sp. tritici between Linzhi in Tibet and inland. Acta Phytopathol. Sin. 2015, 45, 188–197. (In Chinese) [Google Scholar]
- Awais, M.; Zhao, J.; Cheng, X.R.; Khoso, A.G.; Ju, M.; Rehman, Z.U.; Iqbal, A.; Khan, M.R.; Chen, W.; Liu, M.X.Z.; et al. Himalayan mountains imposing a barrier on geneflow of wheat yellow rust pathogen in the bordering regions of Pakistan and China. Fungal Genet. Biol. 2023, 164, 103753. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.G.; Cai, Z.F. Crop diseases in Xizang. Tibet J. Agric. Sci. 1979, 3, 29–49. (In Chinese) [Google Scholar]
- Li, X.Z.; Wang, Z.H. Preliminary study on disease cycle of stripe rust on wheat and barley in Tibet. Tibet J. Agric. Sci. 1990, Z1, 61–64. (In Chinese) [Google Scholar]
- Li, X.Y.; Dai, J.C.; Zhang, T.X.; Wang, B.T.; Zhang, S.Y.; Wang, C.H.; Zhang, J.G.; Yao, Q.; Li, M.J.; Peng, Y.L.; et al. Genomic analysis, trajectory tracking, and field surveys reveal sources and long-distance dispersal routes of wheat stripe rust pathogen in China. Plant Commun. 2023, 4, 100563. [Google Scholar] [CrossRef]
- Saghai-Maroof, M.A.; Soliman, K.M.; Jorgensen, R.A.; Allard, R.W. Ribosomal DNA spacer-length polymorphisms in barley: Mendelian inheritance, chromosomal location, and population dynamics. Proc. Natl. Acad. Sci. USA 1984, 81, 8014–8018. [Google Scholar] [CrossRef] [PubMed]
- Van der Auwera, G.A.; O’Connor, B.D. Genomics in the Cloud: Using Docker, GATK, and WDL in Terra, 1st ed.; O’Reilly Media: Sebastopol, CA, USA, 2020. [Google Scholar]
- Danecek, P.; Auton, A.; Abecasis, G.; Albers, C.A.; Banks, E.; DePristo, M.A. The variant call format and VCFtools. Bioinformatics 2011, 27, 2156–2158. [Google Scholar] [CrossRef]
- Danecek, P.; Bonfield, J.K.; Liddle, J.; Marshall, J.; Ohan, V.; Pollard, M.O.; Whitwham, A.; Keane, T.; McCarthy, S.A.; Davies, R.M.; et al. Twelve years of SAMtools and BCFtools. Gigascience 2021, 10, giab008. [Google Scholar] [CrossRef]
- Yeh, F.C.; Yang, R.C.; Boyle, T.; Ye, Z.H.; Mao, J.X. POPGENE, Version 1.32: The User Friendly Software for Population Genetic Analysis; Molecular Biology and Biotechnology Centre, University of Alberta: Edmonton, AB, Canada, 1999. [Google Scholar]
- Stoddart, J.A.; Taylor, J.F. Genotypic diversity: Estimation and prediction is samples. Genetics 1988, 118, 705–711. [Google Scholar] [CrossRef]
- Grünwald, N.J.; Goodwin, S.B.; Milgroom, M.G.; Fry, W.E. Analysis of genotypic diversity data for populations of microorganisms. Phytopathology 2003, 93, 738–746. [Google Scholar] [CrossRef]
- Ludwig, J.A.; Reynolds, J.F. Statistical Ecology: A Primer on Methods and Computing. J. Appl. Ecol. 1988, 26, 1099. [Google Scholar]
- Pielou, E.C. Ecological Diversity. Limnology and Oceanography; John Wiley and Sons: New York, NY, USA, 1975; Viii+165pp. [Google Scholar]
- Nie, M. Estimation of average heterozygosity and genetic distance form a small number of individuals. Genetics 1978, 89, 583–590. [Google Scholar]
- Shannon, E.C.; Weaver, W. The Mathematical Theory of Communication; University of Illinois Press: Urbana, IL, USA, 1949. [Google Scholar]
- Simpson, E.H. Measurement of diversity. Nature 1949, 163, 688. [Google Scholar] [CrossRef]
- Pritchard, J.K.; Stephens, M.; Donnelly, P. Inference of population structure using multilocus genotype data. Genetics 2000, 155, 945–959. [Google Scholar] [CrossRef]
- Rosenberg, N.A. DISTRUCT: A program for the graphical display of population structure. Mol. Ecol. Notes 2004, 4, 137–138. [Google Scholar] [CrossRef]
Stat. Type | Value |
---|---|
Number of taxa | 146 |
Number of sites | 2906 |
Sites × Taxa | 424,276 |
Number not missing | 417,591 |
Proportion not missing | 98.4% |
Number missing | 6685 |
Proportion missing | 1.6% |
Number gametes | 848,552 |
Gametes not missing | 835,182 |
Proportion gametes not missing | 98.4% |
Gametes missing | 13,370 |
Proportion gametes missing | 1.6% |
Number heterozygous | 138,299 |
Proportion heterozygous | 32.6% |
Average minor allele frequency | 24.1% |
Population | No. of Isolate | Genotypic Richness and Evenness a | Genotypic Diversity b | Index of Association c | ||||||
---|---|---|---|---|---|---|---|---|---|---|
MLG | E.5 | eMLG | H | G | lambda | He | Ia | rBarD | ||
Mangkang | 85 | 85 | 1 | 26 | 4.44 | 85 | 0.988 | 0.326 | 23.1 | 0.0144 |
Zuogong | 35 | 35 | 1 | 26 | 3.56 | 35 | 0.971 | 0.308 | 31.4 | 0.0187 |
Basu | 26 | 26 | 1 | 26 | 3.26 | 26 | 0.962 | 0.32 | 15.7 | 0.0126 |
Total | 146 | 146 | 1 | 26 | 4.98 | 146 | 0.993 | 0.323 | 23.2 | 0.0124 |
Population | FST Value a | ||
---|---|---|---|
Zuogong | Basu | Mangkang | |
Zuogong | 0.0000 | ||
Basu | 0.0424 | 0.0000 | |
Mangkang | 0.0701 | 0.1151 | 0.0000 |
Sampling Location | No. of Wheat Fields | No. of Sampling Sites | No. of Isolates | |
---|---|---|---|---|
Mangkang | Pula village, Zhatuo town | 7 | 21 | 20 |
Kajun village, Rumei town | 5 | 11 | 16 | |
Dangzuo village, Luoni town | 9 | 18 | 26 | |
Liemugang village, Cuowa town | 7 | 14 | 23 | |
Sub-total | 28 | 64 | 85 | |
Zuogong | Zeba village, Wangda town | 5 | 15 | 20 |
Deliebi village, Tiantuo town | 8 | 13 | 15 | |
Sub-total | 13 | 28 | 35 | |
Basu | Zhongba village, Ranwu town | 6 | 12 | 26 |
Sub-total | 6 | 12 | 26 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, M.; Chen, W.; Yong, Q.; Kong, X.; Qiu, X.; Zhao, J. Molecular Genotyping by 20K Gene Arrays (Genobait) to Unravel the Genetic Structure and Genetic Diversity of the Puccinia striiformis f. sp. tritici Population in the Eastern Xizang Autonomous Region. Plants 2025, 14, 1493. https://doi.org/10.3390/plants14101493
Sun M, Chen W, Yong Q, Kong X, Qiu X, Zhao J. Molecular Genotyping by 20K Gene Arrays (Genobait) to Unravel the Genetic Structure and Genetic Diversity of the Puccinia striiformis f. sp. tritici Population in the Eastern Xizang Autonomous Region. Plants. 2025; 14(10):1493. https://doi.org/10.3390/plants14101493
Chicago/Turabian StyleSun, Mudi, Wenbin Chen, Qianrong Yong, Xinyu Kong, Xue Qiu, and Jie Zhao. 2025. "Molecular Genotyping by 20K Gene Arrays (Genobait) to Unravel the Genetic Structure and Genetic Diversity of the Puccinia striiformis f. sp. tritici Population in the Eastern Xizang Autonomous Region" Plants 14, no. 10: 1493. https://doi.org/10.3390/plants14101493
APA StyleSun, M., Chen, W., Yong, Q., Kong, X., Qiu, X., & Zhao, J. (2025). Molecular Genotyping by 20K Gene Arrays (Genobait) to Unravel the Genetic Structure and Genetic Diversity of the Puccinia striiformis f. sp. tritici Population in the Eastern Xizang Autonomous Region. Plants, 14(10), 1493. https://doi.org/10.3390/plants14101493