Mapping QTLs for Stripe Rust Resistance and Agronomic Traits in Chinese Winter Wheat Lantian 31 Using 15K SNP Array
Abstract
1. Introduction
2. Materials and Methods
2.1. Plant Materials
2.2. Greenhouse Resistance Phenotyping
2.3. Field Resistance and Agronomic Trait Evaluation
2.4. Genetic and Statistical Analysis
2.5. Genotyping and Linkage Map Construction
2.6. QTL Analysis
3. Results
3.1. Phenotypic Evaluation of Parents and RILs
3.2. Linkage Map Construction
3.3. QTL Analysis of Stripe Rust Resistance
3.4. Combinational Effects of QTLs on Stripe Rust Resistance
3.5. QTL Analysis of Agronomic Traits
3.6. Analysis of Correlation Among Traits
4. Discussion
4.1. QYrlt.swust-1BL Likely Corresponds to Yr29, Conferring APR
4.2. QYrlt.swust-1D Is a Novel ASR Gene
4.3. QYrlt.swust-2D Is a Novel ASR Gene
4.4. QYrlt.swust-6B Is an APR Gene
4.5. Four QTLs Provide a High Level of Stripe Rust Resistance in Lantian 31
4.6. QTLs for Agronomic Traits
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Wellings, C.R. Global status of stripe rust: A review of historical and current threats. Euphytica 2011, 179, 129–141. [Google Scholar] [CrossRef]
- Chen, X. Epidemiology and control of stripe rust [Puccinia striiformis f. sp. tritici] on wheat. Can. J. Plant Pathol. 2005, 27, 314–337. [Google Scholar] [CrossRef]
- Boshoff, W.; Visser, B.; Lewis, C.; Adams, T.; Saunders, D.; Terefe, T.; Soko, T.; Chiuraise, N.; Pretorius, Z. First report of Puccinia striiformis f. sp. tritici, causing stripe rust of wheat, in Zimbabwe. Plant Dis. 2020, 104, 290. [Google Scholar] [CrossRef]
- Chen, X.; Kang, Z. Integrated control of stripe rust. In Stripe Rust; Springer: Berlin/Heidelberg, Germany, 2017. [Google Scholar]
- Zhou, X.; Fang, T.; Li, K.; Huang, K.; Ma, C.; Zhang, M.; Li, X.; Yang, S.; Ren, R.; Zhang, P. Yield losses associated with different levels of stripe rust resistance of commercial wheat cultivars in China. Phytopathology 2022, 112, 1244–1254. [Google Scholar] [CrossRef]
- Chen, X. Pathogens which threaten food security: Puccinia striiformis, the wheat stripe rust pathogen. Food Secur. 2020, 12, 239–251. [Google Scholar] [CrossRef]
- Zeng, Q.-D.; Han, D.-J.; Wang, Q.-L.; Yuan, F.-P.; Wu, J.-H.; Zhang, L.; Wang, X.-J.; Huang, L.-L.; Chen, X.-M.; Kang, Z.-S. Stripe rust resistance and genes in Chinese wheat cultivars and breeding lines. Euphytica 2014, 196, 271–284. [Google Scholar] [CrossRef]
- Chen, X.; Kang, Z. Introduction: History of research, symptoms, taxonomy of the pathogen, host range, distribution, and impact of stripe rust. In Stripe Rust; Springer: Berlin/Heidelberg, Germany, 2017; pp. 1–33. [Google Scholar]
- Carmona, M.; Sautua, F.; Pérez-Hérnandez, O.; Reis, E.M. Role of fungicide applications on the integrated management of wheat stripe rust. Front. Plant Sci. 2020, 11, 733. [Google Scholar] [CrossRef]
- Deising, H.B.; Reimann, S.; Pascholati, S.F. Mechanisms and significance of fungicide resistance. Braz. J. Microbiol. 2008, 39, 286–295. [Google Scholar] [CrossRef]
- He, Z.; Lan, C.; Chen, X.; Zou, Y.; Zhuang, Q.; Xia, X. Progress and perspective in research of adult-plant resistance to stripe rust and powdery mildew in wheat. Sci. Agric. Sin. 2011, 44, 2193–2215. [Google Scholar]
- GrainGenes. Available online: https://wheat.pw.usda.gov/GG3/sites/default/files/data_downloads/%20Catalogue%20of%20Gene%20Symbols%20for%20Wheat%20-%202024%20edition%20%28covering%20all%20WGC%20curations%29.pdf (accessed on 14 May 2025).
- Bariana, H.; Brown, G.; Bansal, U.; Miah, H.; Standen, G.; Lu, M. Breeding triple rust resistant wheat cultivars for Australia using conventional and marker-assisted selection technologies. Aust. J. Agric. Res. 2007, 58, 576–587. [Google Scholar] [CrossRef]
- Johnson, R. Past, present and future opportunities in breeding for disease resistance, with examples from wheat. Euphytica 1992, 63, 3–22. [Google Scholar] [CrossRef]
- Singh, R.; Huerta-Espino, J.; Rajaram, S. Achieving near-immunity to leaf and stripe rusts in wheat by combining slow rusting resistance genes. Acta Phytopathol. Entomol. Hung. 2000, 35, 133–139. [Google Scholar]
- Qayoum, A.; Line, R. High-temperature, adult-plant resistance to stripe rust of wheat. Phytopathology 1985, 75, 1121–1125. [Google Scholar] [CrossRef]
- Uauy, C.; Brevis, J.C.; Chen, X.; Khan, I.; Jackson, L.; Chicaiza, O.; Distelfeld, A.; Fahima, T.; Dubcovsky, J. High-temperature adult-plant (HTAP) stripe rust resistance gene Yr36 from Triticum turgidum ssp. dicoccoides is closely linked to the grain protein content locus Gpc-B1. Theor. Appl. Genet. 2005, 112, 97–105. [Google Scholar] [CrossRef]
- Holland, J.B. Genetic architecture of complex traits in plants. Curr. Opin. Plant Biol. 2007, 10, 156–161. [Google Scholar] [CrossRef]
- Taghouti, M.; Gaboun, F.; Nsarellah, N.; Rhrib, R.; El-Haila, M.; Kamar, M.; Abbad-Andaloussi, F.; Udupa, S.M. Genotype x Environment interaction for quality traits in durum wheat cultivars adapted to different environments. Afr. J. Biotechnol. 2010, 9, 3054–3062. [Google Scholar]
- Sun, C.; Dong, Z.; Zhao, L.; Ren, Y.; Zhang, N.; Chen, F. The Wheat 660K SNP array demonstrates great potential for marker-assisted selection in polyploid wheat. Plant Biotechnol. J. 2020, 18, 1354–1360. [Google Scholar] [CrossRef]
- Wang, S.; Wong, D.; Forrest, K.; Allen, A.; Chao, S.; Huang, B.E.; Maccaferri, M.; Salvi, S.; Milner, S.G.; Cattivelli, L. Characterization of polyploid wheat genomic diversity using a high-density 90,000 single nucleotide polymorphism array. Plant Biotechnol. J. 2014, 12, 787–796. [Google Scholar] [CrossRef]
- The International Wheat Genome Sequencing Consortium (IWGSC); Appels, R.; Eversole, K.; Stein, N.; Feuillet, C.; Keller, B.; Rogers, J.; Pozniak, C.J.; Choulet, F.; Distelfeld, A.; et al. Shifting the limits in wheat research and breeding using a fully annotated reference genome. Science 2018, 361, eaar7191. [Google Scholar] [CrossRef]
- Cavanagh, C.R.; Chao, S.; Wang, S.; Huang, B.E.; Stephen, S.; Kiani, S.; Forrest, K.; Saintenac, C.; Brown-Guedira, G.L.; Akhunova, A. Genome-wide comparative diversity uncovers multiple targets of selection for improvement in hexaploid wheat landraces and cultivars. Proc. Natl. Acad. Sci. USA 2013, 110, 8057–8062. [Google Scholar] [CrossRef]
- Dong, Z.; Hegarty, J.M.; Zhang, J.; Zhang, W.; Chao, S.; Chen, X.; Zhou, Y.; Dubcovsky, J. Validation and characterization of a QTL for adult plant resistance to stripe rust on wheat chromosome arm 6BS (Yr78). Theor. Appl. Genet. 2017, 130, 2127–2137. [Google Scholar] [CrossRef]
- Feng, J.; Wang, M.; See, D.R.; Chao, S.; Zheng, Y.; Chen, X. Characterization of novel gene Yr79 and four additional quantitative trait loci for all-stage and high-temperature adult-plant resistance to stripe rust in spring wheat PI 182103. Phytopathology 2018, 108, 737–747. [Google Scholar] [CrossRef]
- Qureshi, N.; Bariana, H.; Forrest, K.; Hayden, M.; Keller, B.; Wicker, T.; Faris, J.; Salina, E.; Bansal, U. Fine mapping of the chromosome 5B region carrying closely linked rust resistance genes Yr47 and Lr52 in wheat. Theor. Appl. Genet. 2017, 130, 495–504. [Google Scholar] [CrossRef]
- Nsabiyera, V.; Bariana, H.S.; Qureshi, N.; Wong, D.; Hayden, M.J.; Bansal, U.K. Characterisation and mapping of adult plant stripe rust resistance in wheat accession Aus27284. Theor. Appl. Genet. 2018, 131, 1459–1467. [Google Scholar] [CrossRef]
- Zhou, X.; Li, X.; Han, D.; Yang, S.; Kang, Z.; Ren, R. Genome-wide QTL mapping for stripe rust resistance in winter wheat pindong 34 using a 90K SNP array. Front. Plant Sci. 2022, 13, 932762. [Google Scholar] [CrossRef]
- GrainGenes. Available online: http://wheat.pw.usda.gov/ggpages/topics/Wheat660_SNP_array_developed_by_CAAS.pdf (accessed on 22 June 2025).
- Cui, F.; Zhang, N.; Fan, X.-L.; Zhang, W.; Zhao, C.-H.; Yang, L.-J.; Pan, R.-Q.; Chen, M.; Han, J.; Zhao, X.-Q. Utilization of a Wheat660K SNP array-derived high-density genetic map for high-resolution mapping of a major QTL for kernel number. Sci. Rep. 2017, 7, 3788. [Google Scholar] [CrossRef]
- Yang, X.; Pan, Y.; Singh, P.K.; He, X.; Ren, Y.; Zhao, L.; Zhang, N.; Cheng, S.; Chen, F. Investigation and genome-wide association study for Fusarium crown rot resistance in Chinese common wheat. BMC Plant Biol. 2019, 19, 153. [Google Scholar] [CrossRef]
- Li, L.; Zhang, Y.; Zhang, Y.; Li, M.; Xu, D.; Tian, X.; Song, J.; Luo, X.; Xie, L.; Wang, D. Genome-wide linkage mapping for preharvest sprouting resistance in wheat using 15K single-nucleotide polymorphism arrays. Front. Plant Sci. 2021, 12, 749206. [Google Scholar] [CrossRef]
- Huang, S.; Wu, J.; Wang, X.; Mu, J.; Xu, Z.; Zeng, Q.; Liu, S.; Wang, Q.; Kang, Z.; Han, D. Utilization of the genomewide wheat 55K SNP array for genetic analysis of stripe rust resistance in common wheat line P9936. Phytopathology 2019, 109, 819–827. [Google Scholar] [CrossRef]
- Huang, S.; Liu, S.; Zhang, Y.; Xie, Y.; Wang, X.; Jiao, H.; Wu, S.; Zeng, Q.; Wang, Q.; Singh, R.P. Genome-wide wheat 55K SNP-based mapping of stripe rust resistance loci in wheat cultivar Shaannong 33 and their alleles frequencies in current Chinese wheat cultivars and breeding lines. Plant Dis. 2021, 105, 1048–1056. [Google Scholar] [CrossRef]
- Zhang, P.; Li, X.; Gebrewahid, T.-W.; Liu, H.; Xia, X.; He, Z.; Li, Z.; Liu, D. QTL mapping of adult-plant resistance to leaf and stripe rust in wheat cross SW 8588/Thatcher using the wheat 55K SNP array. Plant Dis. 2019, 103, 3041–3049. [Google Scholar] [CrossRef]
- Xiong, H.; Li, Y.; Guo, H.; Xie, Y.; Zhao, L.; Gu, J.; Zhao, S.; Ding, Y.; Liu, L. Genetic mapping by integration of 55K SNP array and KASP markers reveals candidate genes for important agronomic traits in hexaploid wheat. Front. Plant Sci. 2021, 12, 628478. [Google Scholar] [CrossRef]
- Semagn, K.; Babu, R.; Hearne, S.; Olsen, M. Single nucleotide polymorphism genotyping using Kompetitive Allele Specific PCR (KASP): Overview of the technology and its application in crop improvement. Mol. Breed. 2014, 33, 1–14. [Google Scholar] [CrossRef]
- Bai, B.; Du, J.; Lu, Q.; He, C.; Zhang, L.; Zhou, G.; Xia, X.; He, Z.; Wang, C. Effective resistance to wheat stripe rust in a region with high disease pressure. Plant Dis. 2014, 98, 891–897. [Google Scholar] [CrossRef]
- Cao, S.; Wang, X.; Jia, Q.; Sun, Z.; Luo, H.; Zhang, B.; Zhang, J.; Jin, M.; Wang, W.; Jin, S. Evaluation of Resistance to Stripe Rust in Wheat Varieties (Lines) during 2003~2013. J. Plant Genet. Resour. 2017, 18, 253–260. [Google Scholar]
- Knott, D.; Kumar, J. Comparison of early generation yield testing and a single seed descent procedure in wheat breeding. Crop Sci. 1975, 15, 295–299. [Google Scholar] [CrossRef]
- Line, R.; Qayoum, A. Virulence, Aggressiveness, Evolution, and Distribution of Races of Puccinia striiformis (The Cause of Stripe Rust of Wheat) in North Americ-87. 44; United States Department of Agriculture, Agricultural Research Service: Washington, DC, USA, 1992. [Google Scholar]
- Peterson, R.F.; Campbell, A.; Hannah, A. A diagrammatic scale for estimating rust intensity on leaves and stems of cereals. Can. J. Res. 1948, 26, 496–500. [Google Scholar] [CrossRef]
- Meng, L.; Li, H.; Zhang, L.; Wang, J. QTL IciMapping: Integrated software for genetic linkage map construction and quantitative trait locus mapping in biparental populations. Crop J. 2015, 3, 269–283. [Google Scholar] [CrossRef]
- Bansal, U.K.; Kazi, A.G.; Singh, B.; Hare, R.A.; Bariana, H.S. Mapping of durable stripe rust resistance in a durum wheat cultivar Wollaroi. Mol. Breed. 2014, 33, 51–59. [Google Scholar] [CrossRef]
- Kosambi, D.D. The estimation of map distances from recombination values. In DD Kosambi: Selected Works in Mathematics and Statistics; Springer: Berlin/Heidelberg, Germany, 2016; pp. 125–130. [Google Scholar]
- Wu, J.; Liu, S.; Wang, Q.; Zeng, Q.; Mu, J.; Huang, S.; Yu, S.; Han, D.; Kang, Z. Rapid identification of an adult plant stripe rust resistance gene in hexaploid wheat by high-throughput SNP array genotyping of pooled extremes. Theor. Appl. Genet. 2018, 131, 43–58. [Google Scholar] [CrossRef]
- Li, H.; Ye, G.; Wang, J. A modified algorithm for the improvement of composite interval mapping. Genetics 2007, 175, 361–374. [Google Scholar] [CrossRef]
- Devi, R.; Ram, S.; Rana, V.; Malik, V.K.; Pande, V.; Singh, G.P. QTL mapping for salt tolerance associated traits in wheat (Triticum aestivum L.). Euphytica 2019, 215, 210. [Google Scholar] [CrossRef]
- Srinivasa, J.; Arun, B.; Mishra, V.K.; Singh, G.P.; Velu, G.; Babu, R.; Vasistha, N.K.; Joshi, A.K. Zinc and iron concentration QTL mapped in a Triticum spelta× T. aestivum cross. Theor. Appl. Genet. 2014, 127, 1643–1651. [Google Scholar] [CrossRef]
- Prasad, M.; Kumar, N.; Kulwal, P.; Röder, M.; Balyan, H.; Dhaliwal, H.; Gupta, P. QTL analysis for grain protein content using SSR markers and validation studies using NILs in bread wheat. Theor. Appl. Genet. 2003, 106, 659–667. [Google Scholar] [CrossRef]
- Krattinger, S.G.; Kang, J.; Bräunlich, S.; Boni, R.; Chauhan, H.; Selter, L.L.; Robinson, M.D.; Schmid, M.W.; Wiederhold, E.; Hensel, G. Abscisic acid is a substrate of the ABC transporter encoded by the durable wheat disease resistance gene Lr34. New Phytol. 2019, 223, 853–866. [Google Scholar] [CrossRef]
- Singh, R.; Mujeeb-Kazi, A.; Huerta-Espino, J. Lr46: A gene conferring slow-rusting resistance to leaf rust in wheat. Phytopathology 1998, 88, 890–894. [Google Scholar] [CrossRef]
- William, M.; Singh, R.; Huerta-Espino, J.; Islas, S.O.; Hoisington, D. Molecular marker mapping of leaf rust resistance gene Lr46 and its association with stripe rust resistance gene Yr29 in wheat. Phytopathology 2003, 93, 153–159. [Google Scholar] [CrossRef]
- Rosewarne, G.; Singh, R.; Huerta-Espino, J.; William, H.; Bouchet, S.; Cloutier, S.; McFadden, H.; Lagudah, E. Leaf tip necrosis, molecular markers and β1-proteasome subunits associated with the slow rusting resistance genes Lr46/Yr29. Theor. Appl. Genet. 2006, 112, 500–508. [Google Scholar] [CrossRef]
- Zwart, R.; Thompson, J.; Milgate, A.; Bansal, U.; Williamson, P.; Raman, H.; Bariana, H. QTL mapping of multiple foliar disease and root-lesion nematode resistances in wheat. Mol. Breed. 2010, 26, 107–124. [Google Scholar] [CrossRef]
- Ren, Y.; He, Z.; Li, J.; Lillemo, M.; Wu, L.; Bai, B.; Lu, Q.; Zhu, H.; Zhou, G.; Du, J. QTL mapping of adult-plant resistance to stripe rust in a population derived from common wheat cultivars Naxos and Shanghai 3/Catbird. Theor. Appl. Genet. 2012, 125, 1211–1221. [Google Scholar] [CrossRef]
- Dolores Vazquez, M.; James Peterson, C.; Riera-Lizarazu, O.; Chen, X.; Heesacker, A.; Ammar, K.; Crossa, J.; Mundt, C.C. Genetic analysis of adult plant, quantitative resistance to stripe rust in wheat cultivar ‘Stephens’ in multi-environment trials. Theor. Appl. Genet. 2012, 124, 1–11. [Google Scholar] [CrossRef]
- Hou, L.; Chen, X.; Wang, M.; See, D.R.; Chao, S.; Bulli, P.; Jing, J. Mapping a large number of QTL for durable resistance to stripe rust in winter wheat Druchamp using SSR and SNP markers. PLoS ONE 2015, 10, e0126794. [Google Scholar] [CrossRef]
- Naruoka, Y.; Garland-Campbell, K.; Carter, A. Genome-wide association mapping for stripe rust (Puccinia striiformis f. sp. tritici) in US Pacific Northwest winter wheat (Triticum aestivum L.). Theor. Appl. Genet. 2015, 128, 1083–1101. [Google Scholar] [CrossRef]
- Maccaferri, M.; Zhang, J.; Bulli, P.; Abate, Z.; Chao, S.; Cantu, D.; Bossolini, E.; Chen, X.; Pumphrey, M.; Dubcovsky, J. A genome-wide association study of resistance to stripe rust (Puccinia striiformis f. sp. tritici) in a worldwide collection of hexaploid spring wheat (Triticum aestivum L.). G3 Genes Genomes Genet. 2015, 5, 449–465. [Google Scholar] [CrossRef]
- Mu, J.; Dai, M.; Wang, X.; Tang, X.; Huang, S.; Zeng, Q.; Wang, Q.; Liu, S.; Yu, S.; Kang, Z. Combining genome-wide linkage mapping with extreme pool genotyping for stripe rust resistance gene identification in bread wheat. Mol. Breed. 2019, 39, 82. [Google Scholar] [CrossRef]
- Wu, J.; Wang, X.; Chen, N.; Yu, R.; Yu, S.; Wang, Q.; Huang, S.; Wang, H.; Singh, R.P.; Bhavani, S. Association analysis identifies new loci for resistance to Chinese Yr26-virulent races of the stripe rust pathogen in a diverse panel of wheat germplasm. Plant Dis. 2020, 104, 1751–1762. [Google Scholar] [CrossRef]
- Tian, Y.E.; Huang, J.; Li, Q.; Hou, L.; Li, G.; Wang, B. Inheritance and SSR mapping of a stripe-rust resistance gene YrH122 derived from Psathyrostachys huashanica Keng. Acta Phytopathol. Sin. 2011, 41, 64–71. [Google Scholar]
- Calonnec, A.; Johnson, R. Chromosomal location of genes for resistance to Puccinia striiformis in the wheat line TP1295 selected from the cross of Soissonais-Desprez with Lemhi. Eur. J. Plant Pathol. 1998, 104, 835–847. [Google Scholar] [CrossRef]
- Zhao, J.; Xie, Y.; Kong, C.; Lu, Z.; Jia, H.; Ma, Z.; Zhang, Y.; Cui, D.; Ru, Z.; Wang, Y.; et al. Centromere repositioning and shifts in wheat evolution. Plant Commun. 2023, 4, 100556. [Google Scholar] [CrossRef]
- Wang, L.; Zheng, D.; Zuo, S.; Chen, X.; Zhuang, H.; Huang, L.; Kang, Z.; Zhao, J. Inheritance and linkage of virulence genes in Chinese predominant race CYR32 of the wheat stripe rust pathogen Puccinia striiformis f. sp. tritici. Front. Plant Sci. 2018, 9, 120. [Google Scholar] [CrossRef]
- Suenaga, K.; Singh, R.; Huerta-Espino, J.; William, H. Microsatellite markers for genes Lr34/Yr18 and other quantitative trait loci for leaf rust and stripe rust resistance in bread wheat. Phytopathology 2003, 93, 881–890. [Google Scholar] [CrossRef]
- Melichar, J.; Berry, S.; Newell, C.; MacCormack, R.; Boyd, L. QTL identification and microphenotype characterisation of the developmentally regulated yellow rust resistance in the UK wheat cultivar Guardian. Theor. Appl. Genet. 2008, 117, 391–399. [Google Scholar] [CrossRef]
- Powell, N.; Lewis, C.; Berry, S.; MacCormack, R.; Boyd, L. Stripe rust resistance genes in the UK winter wheat cultivar Claire. Theor. Appl. Genet. 2013, 126, 1599–1612. [Google Scholar] [CrossRef]
- Jagger, L.; Newell, C.; Berry, S.; MacCormack, R.; Boyd, L. The genetic characterisation of stripe rust resistance in the German wheat cultivar Alcedo. Theor. Appl. Genet. 2011, 122, 723–733. [Google Scholar] [CrossRef]
- Juliana, P.; Singh, R.P.; Huerta-Espino, J.; Bhavani, S.; Randhawa, M.S.; Kumar, U.; Joshi, A.K.; Bhati, P.K.; Mir, H.E.V.; Mishra, C.N. Genome-wide mapping and allelic fingerprinting provide insights into the genetics of resistance to wheat stripe rust in India, Kenya and Mexico. Sci. Rep. 2020, 10, 10908. [Google Scholar] [CrossRef]
- Dadkhodaie, N.; Karaoglou, H.; Wellings, C.; Park, R. Mapping genes Lr53 and Yr35 on the short arm of chromosome 6B of common wheat with microsatellite markers and studies of their association with Lr36. Theor. Appl. Genet. 2011, 122, 479–487. [Google Scholar] [CrossRef]
- Chen, X.; Jones, S.; Line, R. Chromosomal location of genes for resistance to Puccinia striiformis in seven wheat cultivars with resistance genes at the Yr3 and Yr4 loci. Phytopathol. 1996, 86, 1228–1233. [Google Scholar] [CrossRef]
- Marais, G.; Pretorius, Z.; Wellings, C.; McCallum, B.; Marais, A. Leaf rust and stripe rust resistance genes transferred to common wheat from Triticum dicoccoides. Euphytica 2005, 143, 115–123. [Google Scholar] [CrossRef]
- Feng, J.; Chen, G.; Wei, Y.; Liu, Y.; Jiang, Q.; Li, W.; Pu, Z.; Lan, X.; Dai, S.; Zhang, M. Identification and mapping stripe rust resistance gene YrLM168a using extreme individuals and recessive phenotype class in a complicate genetic background. Mol. Genet. Genom. 2015, 290, 2271–2278. [Google Scholar] [CrossRef]
- Ren, Y.; Li, Z.; He, Z.; Wu, L.; Bai, B.; Lan, C.; Wang, C.; Zhou, G.; Zhu, H.; Xia, X. QTL mapping of adult-plant resistances to stripe rust and leaf rust in Chinese wheat cultivar Bainong 64. Theor. Appl. Genet. 2012, 125, 1253–1262. [Google Scholar] [CrossRef]
- Dedryver, F.; Paillard, S.; Mallard, S.; Robert, O.; Trottet, M.; Negre, S.; Verplancke, G.; Jahier, J. Characterization of genetic components involved in durable resistance to stripe rust in the bread wheat ‘Renan’. Phytopathology 2009, 99, 968–973. [Google Scholar] [CrossRef]
- Santra, D.; Chen, X.; Santra, M.; Campbell, K.; Kidwell, K. Identification and mapping QTL for high-temperature adult-plant resistance to stripe rust in winter wheat (Triticum aestivum L.) cultivar ‘Stephens’. Theor. Appl. Genet. 2008, 117, 793–802. [Google Scholar] [CrossRef]
- Bai, B.; Ren, Y.; Xia, X.-C.; Du, J.-Y.; Zhoum, G.; Wu, L.; Zhu, H.-Z.; He, Z.-H.; Wang, C.-S. Mapping of quantitative trait loci for adult plant resistance to stripe rust in German wheat cultivar Ibis. J. Integr. Agric. 2012, 11, 528–536. [Google Scholar] [CrossRef]
- Basnet, B.R.; Ibrahim, A.M.; Chen, X.; Singh, R.P.; Mason, E.R.; Bowden, R.L.; Liu, S.; Hays, D.B.; Devkota, R.N.; Subramanian, N.K. Molecular mapping of stripe rust resistance in hard red winter wheat TAM 111 adapted to the US high plains. Crop Sci. 2014, 54, 1361–1373. [Google Scholar] [CrossRef]
- Prins, R.; Pretorius, Z.; Bender, C.; Lehmensiek, A. QTL mapping of stripe, leaf and stem rust resistance genes in a Kariega× Avocet S doubled haploid wheat population. Mol. Breed. 2011, 27, 259–270. [Google Scholar] [CrossRef]
- Zhang, X.; Huang, L.; Tang, W.; Qiu, A.; Li, X.; Zhou, X.; Yang, S.; Wang, M.; Chen, X.; Chen, W. Virulence characterization of wheat stripe rust population in China in 2023. Plant Pathol. 2025, 74, 363–377. [Google Scholar] [CrossRef]
- Zhai, H.; Feng, Z.; Li, J.; Liu, X.; Xiao, S.; Ni, Z.; Sun, Q. QTL analysis of spike morphological traits and plant height in winter wheat (Triticum aestivum L.) using a high-density SNP and SSR-based linkage map. Front. Plant Sci. 2016, 7, 1617. [Google Scholar] [CrossRef]
- Tian, X.; Wen, W.; Xie, L.; Fu, L.; Xu, D.; Fu, C.; Wang, D.; Chen, X.; Xia, X.; Chen, Q. Molecular mapping of reduced plant height gene Rht24 in bread wheat. Front. Plant Sci. 2017, 8, 1379. [Google Scholar] [CrossRef]
- Liao, S.-M.; Feng, B.; Xu, Z.-B.; Fan, X.-L.; Zhou, Q.; Ji, G.-S.; Liu, X.-F.; Yu, Q.; Wang, T. Detection of QTLs for plant height in wheat based on the 55K SNP array. Chin. J. Appl. Environ Biol. 2022, 28, 576–581. [Google Scholar]
- Gao, S.; Mo, H.; Shi, H.; Wang, Z.; Lin, Y.; Wu, F.; Deng, M.; Liu, Y.; Wei, Y.; Zheng, Y. Construction of wheat genetic map and QTL analysis of main agronomic traits using SNP genotyping chips technology. Chin. J. Appl. Environ. Biol. 2016, 22, 85–94. [Google Scholar]
- Li, C.; Ma, J.; Liu, H.; Ding, P.; Yang, C.; Zhang, H. Detection of QTLs for spike length and plant height in wheat based on 55K SNP array. J. Triticeae Crops 2019, 39, 1284–1292. [Google Scholar]
- Yao, J.; Zhang, C.; Song, X.; Xu, X.; Xing, Y.; Lu, D.; Song, P.; Yang, M.; Sun, D. QTL analysis of wheat spike length and flag leaf length based on 90K SNP assay. J. Triticeae Crops 2020, 40, 1283–1289. [Google Scholar]
- Sun, Z.; Liu, T.; Zuo, X.; Zhao, J.; Wang, Z.; Li, C. QTL mapping of spike related traits in common wheat. J. Triticeae Crops 2017, 37, 452–457. [Google Scholar]
- Shui, Z.-J.; An, P.-P.; Liu, T.-X.; Wu, H.-Q.; Liu, L.; Shi, X.; Wang, Z.-H. QTL analysis of spike length and width using RIL population of synthetic wheat. J. Triticeae Crops 2020, 40, 656–664. [Google Scholar]
- Dixon, L.E.; Greenwood, J.R.; Bencivenga, S.; Zhang, P.; Cockram, J.; Mellers, G.; Ramm, K.; Cavanagh, C.; Swain, S.M.; Boden, S.A. TEOSINTE BRANCHED1 regulates inflorescence architecture and development in bread wheat (Triticum aestivum). Plant Cell 2018, 30, 563–581. [Google Scholar] [CrossRef]
- Dholakia, B.; Ammiraju, J.; Singh, H.; Lagu, M.; Röder, M.; Rao, V.; Dhaliwal, H.; Ranjekar, P.; Gupta, V.; Weber, W. Molecular marker analysis of kernel size and shape in bread wheat. Plant Breed. 2003, 122, 392–395. [Google Scholar] [CrossRef]
- Ramya, P.; Chaubal, A.; Kulkarni, K.; Gupta, L.; Kadoo, N.; Dhaliwal, H.; Chhuneja, P.; Lagu, M.; Gupt, V. QTL mapping of 1000-kernel weight, kernel length, and kernel width in bread wheat (Triticum aestivum L.). J. Appl. Genet. 2010, 51, 421–429. [Google Scholar] [CrossRef]
- Gao, L.; Yang, J.; Song, S.-J.; Xu, K.; Liu, H.-D.; Zhang, S.-H.; Yang, X.-J.; Zhao, Y. Genome–wide association study of grain morphology in wheat. Euphytica 2021, 217, 170. [Google Scholar] [CrossRef]
- Hu, W.; Liao, S.; Zhao, D.; Jia, J.; Xu, W.; Cheng, S. Identification and validation of quantitative trait loci for grain size in bread wheat (Triticum aestivum L.). Agriculture 2022, 12, 822. [Google Scholar] [CrossRef]
- Hao, Y.; Velu, G.; Peña, R.J.; Singh, S.; Singh, R.P. Genetic loci associated with high grain zinc concentration and pleiotropic effect on kernel weight in wheat (Triticum aestivum L.). Mol. Breed. 2014, 34, 1893–1902. [Google Scholar] [CrossRef]
- Wang, J.; Liu, W.; Wang, H.; Li, L.; Wu, J.; Yang, X.; Li, X.; Gao, A. QTL mapping of yield-related traits in the wheat germplasm 3228. Euphytica 2011, 177, 277–292. [Google Scholar] [CrossRef]
- Yu, H.-X.; Duan, X.-X.; Sun, A.-Q.; Sun, X.-X.; Zhang, J.-J.; Sun, H.-Q.; Sun, Y.-Y.; Ning, T.-Y.; Tian, J.-C.; Wang, D.-X. Genetic dissection of the grain-filling rate and related traits through linkage analysis and genome-wide association study in bread wheat. J. Integr. Agric. 2022, 21, 2805–2817. [Google Scholar] [CrossRef]
- Huang, Y.; Kong, Z.; Wu, X.; Cheng, R.; Yu, D.; Ma, Z. Characterization of three wheat grain weight QTLs that differentially affect kernel dimensions. Theor. Appl. Genet. 2015, 128, 2437–2445. [Google Scholar] [CrossRef]
- Patil, R.; Tamhankar, S.; Oak, M.; Raut, A.; Honrao, B.; Rao, V.; Misra, S. Mapping of QTL for agronomic traits and kernel characters in durum wheat (Triticum durum Desf.). Euphytica 2013, 190, 117–129. [Google Scholar] [CrossRef]
Source of Variation | IT 1 | DS 2 | ||||||
---|---|---|---|---|---|---|---|---|
df 3 | Mean Square | F Value | p Value | df | Mean Square | F Value | p Value | |
Lines | 233 | 12.75 | 15.30 | <0.001 | 233 | 1855.65 | 18 | <0.001 |
Replicates | 5 | 24.74 | 29.69 | <0.001 | 5 | 2917.64 | 28.31 | <0.001 |
Environments | 4 | 914.42 | 1097.25 | <0.001 | 4 | 211,444 | 2051.61 | <0.001 |
Lines × Environments | 932 | 1.80 | 2.16 | <0.001 | 932 | 349 | 3.39 | <0.001 |
Error | 1119 | 0.83 | 1119 | 103.06 | ||||
σg2 | 90.04 | 93.35 | ||||||
h2 | 0.87 | 0.84 |
Source of Variance | df | Sum of Squares | |||||
---|---|---|---|---|---|---|---|
PH | SL | TKW | KL | KW | KA | ||
Lines | 233 | 229,532.61 *** | 1246.26 *** | 48,926.96 *** | 205.44 *** | 89.45 *** | 7338.29 *** |
Replicates | 4 | 4429.96 *** | 23.15 *** | 5148.67 *** | 1254.22 *** | 21.71 *** | 1861.02 *** |
Environments | 3 | 13,799.23 *** | 68.06 *** | 9762.49 *** | 326.15 *** | 24.96 *** | 2267.98 *** |
Lines× Environments | 699 | 27,285.99 *** | 343.18 *** | 10,146.26 *** | 35.35 *** | 22.64 *** | 1559.23 *** |
Error | 1838 | 25,244.54 | 342.84 | 14,569.95 | 46.16 | 28.89 | 2164.61 |
h2 | 0.96 | 0.91 | 0.92 | 0.94 | 0.92 | 0.92 |
QTL | Environment | Marker Interval | IT 1 | DS 2 | ||||
---|---|---|---|---|---|---|---|---|
LOD 3 | PVE 4 | Add 5 | LOD | PVE | Add | |||
QYrlt.swust-1B | 2022MY | KASP.AX-111488534 KASP.AX-109350463 | 18.25 | 29.93 | −1.08 | 13.45 | 23.33 | −9.02 |
2023MY | 2.67 | 5.17 | −0.35 | - | - | - | ||
2023YL | 6.36 | 11.91 | −0.61 | 10.07 | 18.24 | −7.64 | ||
2024MY | 6.95 | 12.9 | −0.44 | 7.52 | 14.59 | −4.41 | ||
2024GY | - | - | - | 2.93 | 6.11 | −4.04 | ||
QYrlt.swust-1D | 2022MY | AX-111092902 AX-94935157 | 23.85 | 17.44 | −1.71 | 12.59 | 22.90 | −9.73 |
2023MY | 3.69 | 6.76 | −0.45 | - | - | - | ||
2023YL | 6.58 | 11.37 | −1.02 | 6.66 | 11.87 | −7.04 | ||
2024MY | 5.78 | 10.94 | −0.42 | 4.52 | 8.58 | −3.44 | ||
2024GY | 3.43 | 6.50 | −0.33 | 3.72 | 6.98 | −4.26 | ||
QYrlt.swust-2D | 2022MY | AX-110876453 AX-108909887 | - | - | - | 2.69 | 5.25 | −4.72 |
2023MY | 6.51 | 12.35 | −0.53 | 5.63 | 10.69 | −7.22 | ||
2023YL | 6.20 | 11.66 | −0.53 | 5.87 | 10.88 | −6.08 | ||
2024GY | - | - | - | 2.57 | 5.03 | −3.49 | ||
QYrlt.swust-6B | 2022MY | AX-110442365 AX-111732191 | 9.74 | 17.39 | −0.49 | 5.89 | 11.00 | −6.77 |
2023MY | 6.68 | 12.29 | −0.52 | 4.98 | 9.34 | −6.71 | ||
2023YL | 2.61 | 5.92 | −0.34 | - | - | - | ||
2024MY | 11.54 | 20.27 | −0.54 | 5.77 | 11.03 | −4.47 | ||
2024GY | 3.05 | 5.89 | −0.26 | - | - | - |
QTL | Environment | Marker Interval | LOD 1 | PVE 2 | Add 3 |
---|---|---|---|---|---|
QKL.swust-2D | 2023MY | AX-110535834 AX-176645037 | 3.42 | 7.84 | 0.12 |
2023YL | 3.54 | 6.98 | 0.12 | ||
2024MY | 5.39 | 10.34 | 0.13 | ||
2024GY | 4.40 | 8.73 | 0.12 | ||
QKW.swust-1B | 2023MY | AX-109273019 AX-111481464 | 4.27 | 8.15 | 0.11 |
2024MY | 3.60 | 6.99 | 0.07 | ||
2024GY | 7.09 | 13.17 | 0.09 | ||
QKW.swust-5A | 2024MY | AX-108730664 AX-111215341 | 3.80 | 6.98 | 0.07 |
2024GY | 3.72 | 7.19 | 0.07 | ||
QKA.swust-1B | 2023MY | AX-109273019 AX-111481464 | 4.08 | 7.77 | 0.87 |
2024MY | 3.04 | 5.81 | 0.56 | ||
2024GY | 6.42 | 11.92 | 0.81 | ||
QPH.swust-4B | 2023MY | AX-94434500 AX-109286577 | 22.63 | 35.93 | 6.84 |
2023YL | 20.00 | 32.83 | 6.65 | ||
2024MY | 27.11 | 41.32 | 8.92 | ||
2024GY | 21.10 | 34.08 | 6.43 | ||
QSL.swust-2D | 2023MY | AX-109842248 AX-89728114 | 8.52 | 15.23 | −0.39 |
2023YL | 7.87 | 14.62 | −0.41 | ||
2024MY | 11.80 | 20.56 | −0.47 | ||
2024GY | 14.73 | 24.54 | −0.43 | ||
QTKW.swust-1B | 2023MY | AX-109273019 AX-111481464 | 3.12 | 6.01 | 1.82 |
2024MY | 3.56 | 6.85 | 1.66 | ||
2024GY | 8.46 | 15.35 | 2.38 | ||
QTKW.swust-4B | 2023MY | AX-108992488 AX-111585045 | 3.29 | 6.43 | 1.87 |
2024MY | 11.10 | 19.99 | 2.82 | ||
2024GY | 4.52 | 9.22 | 1.76 |
Trait | IT | DS | TKW | PH | SL | KL | KW |
---|---|---|---|---|---|---|---|
DS | 0.94 *** | ||||||
TKW | −0.48 *** | −0.51 *** | |||||
PH | 0.02 | −0.03 | 0.49 *** | ||||
SL | −0.18 ** | −0.18 ** | 0.21 ** | 0.36 *** | |||
KL | −0.37 *** | −0.44 *** | 0.63 *** | 0.37 *** | 0.34 *** | ||
KW | −0.41 *** | −0.42 *** | 0.88 *** | 0.42 *** | 0.08 | 0.40 *** | |
KA | −0.47 *** | −0.51 *** | 0.92 *** | 0.47 *** | 0.23 *** | 0.78 *** | 0.88 *** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, X.; Tan, W.; Feng, J.; Yan, Q.; Tian, R.; Chen, Q.; Li, Q.; Zhong, S.; Yang, S.; Xia, C.; et al. Mapping QTLs for Stripe Rust Resistance and Agronomic Traits in Chinese Winter Wheat Lantian 31 Using 15K SNP Array. Agriculture 2025, 15, 1444. https://doi.org/10.3390/agriculture15131444
Li X, Tan W, Feng J, Yan Q, Tian R, Chen Q, Li Q, Zhong S, Yang S, Xia C, et al. Mapping QTLs for Stripe Rust Resistance and Agronomic Traits in Chinese Winter Wheat Lantian 31 Using 15K SNP Array. Agriculture. 2025; 15(13):1444. https://doi.org/10.3390/agriculture15131444
Chicago/Turabian StyleLi, Xin, Wenjing Tan, Junming Feng, Qiong Yan, Ran Tian, Qilin Chen, Qin Li, Shengfu Zhong, Suizhuang Yang, Chongjing Xia, and et al. 2025. "Mapping QTLs for Stripe Rust Resistance and Agronomic Traits in Chinese Winter Wheat Lantian 31 Using 15K SNP Array" Agriculture 15, no. 13: 1444. https://doi.org/10.3390/agriculture15131444
APA StyleLi, X., Tan, W., Feng, J., Yan, Q., Tian, R., Chen, Q., Li, Q., Zhong, S., Yang, S., Xia, C., & Zhou, X. (2025). Mapping QTLs for Stripe Rust Resistance and Agronomic Traits in Chinese Winter Wheat Lantian 31 Using 15K SNP Array. Agriculture, 15(13), 1444. https://doi.org/10.3390/agriculture15131444