Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (457)

Search Parameters:
Keywords = PtCu

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 2885 KB  
Article
Isopropanol Electro-Oxidation on PtCu Alloys for Aqueous Organic Redox Chemistry Toward Energy Storage
by Jinyao Tang, Xiaochen Shen, Laura Newsom, Rongxuan Xie, Parsa Pishva, Yanlin Zhu, Bin Liu and Zhenmeng Peng
Molecules 2025, 30(19), 4027; https://doi.org/10.3390/molecules30194027 - 9 Oct 2025
Viewed by 135
Abstract
Integration of renewable energy into modern power grids remains limited by intermittency and the need for reliable energy storage. Redox flow batteries (RFBs) are promising for large-scale energy storage, yet their widespread adoption is hindered by the high cost. In this study, we [...] Read more.
Integration of renewable energy into modern power grids remains limited by intermittency and the need for reliable energy storage. Redox flow batteries (RFBs) are promising for large-scale energy storage, yet their widespread adoption is hindered by the high cost. In this study, we investigate isopropanol as a redox-active species with Pt-Cu alloy electrocatalysts for aqueous-organic RFBs. A series of PtxCu catalysts with varying Pt:Cu ratios were synthesized and studied for isopropanol electro-oxidation reaction (IPAOR) performance. Among them, PtCu demonstrated the best performance, achieving a low activation energy of 14.4 kJ/mol at 0.45 V vs. RHE and excellent stability at 1 M isopropanol (IPA) concentration. Kinetic analysis and in situ attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy revealed significantly reduced acetone accumulation on PtCu compared to pure Pt, indicating enhanced resistance to catalyst poisoning. Density functional theory (DFT) calculations further identified the first proton-coupled electron transfer (PCET) as the rate-determining step (RDS) with C-H bond scission as the preferred pathway on PtCu. A proof-of-concept PtCu-catalyzed H-cell demonstrated stable cycling over 200 cycles, validating the feasibility of IPA as a low-cost, regenerable redox couple. These findings highlight PtCu-catalyzed IPA/acetone(ACE) chemistry as a promising platform for next-generation aqueous-organic RFBs. Full article
(This article belongs to the Section Electrochemistry)
Show Figures

Graphical abstract

17 pages, 5203 KB  
Article
Influence of Selected Transition Metals on Hard Magnetic Properties of Dy-Fe-Nb-B Vacuum Suction Rods
by Grzegorz Ziółkowski, Artur Chrobak, Ondrej Zivotsky and Joanna Klimontko
Materials 2025, 18(19), 4508; https://doi.org/10.3390/ma18194508 - 28 Sep 2025
Viewed by 207
Abstract
This study investigates the structural and magnetic properties of ultra-high coercivity (Fe80B14Nb6)0.88Dy0.12 alloys, doped with 0.5–5 at.% of selected metallic additions: magnetic (Ni, Co) and non-magnetic (Pt, Cu) elements. Material characterization involved both structural [...] Read more.
This study investigates the structural and magnetic properties of ultra-high coercivity (Fe80B14Nb6)0.88Dy0.12 alloys, doped with 0.5–5 at.% of selected metallic additions: magnetic (Ni, Co) and non-magnetic (Pt, Cu) elements. Material characterization involved both structural and magnetic measurements. Alloys containing dopant concentrations up to 2 at.% exhibited similar phase compositions, with the Dy2Fe14B compound being dominant. Magnetic hysteresis loops revealed a superposition of two components: magnetically soft and hard phases. A significant change in magnetic properties was observed within the 0.5 to 1 at.% dopant concentration range. Notably, the addition of 0.5 at.% Ni increased the apparent anisotropy field from 5.2 T to 7.5 T. Furthermore, 0.5 at.% Pt led to an increase in the coercive field from 4.6 T to 5.5 T. These additions influenced crystallization, resulting in the formation of a more regular microstructure without submicrometric dendrite branches, when compared to the base alloy. Full article
Show Figures

Figure 1

14 pages, 1544 KB  
Article
Kinetics of Sulfide Dissolution Controlled by Sulfur Radical Diffusion: Implications for Sulfur Transport and Triggering of Volcanic Eruptions
by Anastassia Borisova
Minerals 2025, 15(9), 989; https://doi.org/10.3390/min15090989 - 17 Sep 2025
Viewed by 305
Abstract
Chemical mixing of different types of magma, such as basaltic magma and silica-rich, hydrous magma, often triggers volcanic eruptions. However, the kinetics, mechanisms, and rates of sulfide dissolution reactions in hydrous melts are currently unknown, despite the fact that these reactions can influence [...] Read more.
Chemical mixing of different types of magma, such as basaltic magma and silica-rich, hydrous magma, often triggers volcanic eruptions. However, the kinetics, mechanisms, and rates of sulfide dissolution reactions in hydrous melts are currently unknown, despite the fact that these reactions can influence the sulfur budget in the crust and mantle. I experimentally model dissolution of pyrrhotite minerals in hydrous rhyolite melt at conditions corresponding to the sulfate–sulfide transition field at 1 GPa pressure. The reaction results in the production of FeO, SO42−, H2, H2S and di- and tri-sulfur radical ions, (S2 or S3) in fluid/melt. The calculated sulfur diffusion coefficient implies extremely fast sulfur diffusion in the hydrous hybrid melt. The production of S-rich magma is controlled by the fastest-ever-recorded chemical diffusion of sulfur in the form of S2 or S3 in hybrid magma under sulfate-sulfide transition conditions. I demonstrate that such dissolution reactions can be responsible for triggering explosive volcanic eruptions (e.g., the 1991 Mount Pinatubo eruption) in volcanic arc settings. The sulfide dissolution reaction can also promote the production of chalcophile metal (sulfur-loving Au, Cu and Pt) ore deposits associated with the formation of volcanic arcs. Full article
Show Figures

Graphical abstract

19 pages, 5383 KB  
Article
Construction of Pt-Cu-Vinylamine Complex on Hazelnut Shell Biochar as a Catalyst Used for Hydrosilylation of Alkenes by Tertiary Silanes
by Jing Zhou, Qiqi Zhang, Mengying Wang, Zongmu Xiao and Yixin Zhang
Molecules 2025, 30(18), 3704; https://doi.org/10.3390/molecules30183704 - 11 Sep 2025
Viewed by 457
Abstract
The design and development of low-cost and efficient nonhomogeneous catalysts for silicon hydrogen addition is a hot research topic. This study reports the synthesis of a novel solid catalyst, PtCu-NVF-HBNC, derived from hazelnut shell biomass waste. The catalyst was prepared through carbonisation, nitrogen-doped [...] Read more.
The design and development of low-cost and efficient nonhomogeneous catalysts for silicon hydrogen addition is a hot research topic. This study reports the synthesis of a novel solid catalyst, PtCu-NVF-HBNC, derived from hazelnut shell biomass waste. The catalyst was prepared through carbonisation, nitrogen-doped activation, functionalisation with N-vinylformamide (NVF), and subsequent bimetallic Pt–Cu loading. It features a divalent platinum–vinylamine complex as the active centre. The introduction of Cu as a promoter induces competitive coordination with the Pt(II)–vinylamine complex, leading to electron density redistribution on the vinylamine ligand and a significant enhancement in Pt(II) coordination bond strength. This electronic modulation results in markedly improved activity and regioselectivity in the hydrosilylation of alkenes with tertiary silanes. The optimised catalyst, Pt1.6Cu-NVF-HBNC, demonstrated high performance in the hydrosilylation of linear alkenes, including 1-hexene, 1-octene, and 1-octadecene with triethoxysilane, indicating broad substrate adaptability. Full article
(This article belongs to the Section Materials Chemistry)
Show Figures

Figure 1

13 pages, 3145 KB  
Article
Noble Metal-Decorated In2O3 for NO2 Gas Sensor: An Experimental and DFT Study
by Parameswari Raju, Jafetra Rambeloson, Dimitris E. Ioannou, Abhishek Motayed and Qiliang Li
Chemosensors 2025, 13(9), 350; https://doi.org/10.3390/chemosensors13090350 - 11 Sep 2025
Viewed by 661
Abstract
Indium oxide-based gas sensors have been proven to be a promising material for detecting nitrogen dioxide (NO2) gas because of its wide bandgap and stability. In this paper, the enhancement mechanism for the sensitivity of indium oxide NO2 gas sensors [...] Read more.
Indium oxide-based gas sensors have been proven to be a promising material for detecting nitrogen dioxide (NO2) gas because of its wide bandgap and stability. In this paper, the enhancement mechanism for the sensitivity of indium oxide NO2 gas sensors was systematically investigated using density functional theory (DFT) calculations and experimental validation with noble metals like Au, Ag, Pt, Pd, and Cu. We have fabricated a GaN nanowire-based NO2 gas sensor functionalized with In2O3 and decorated with noble metals using a standard fabrication technique. Experimental tests showed that Au/In2O3 sensors exhibited the highest response of 38.9% followed by bare In2O3 with 10% for 10 ppm NO2 at room temperature. The sensing properties were mainly attributed to a spillover effect or catalytic performance of Au with In2O3. The adsorption energies, charge transfers, and band gap confirm the enhanced sensing capability of Au-decorated Indium oxide for a NO2 gas sensor. Full article
(This article belongs to the Special Issue Nanomaterial-Based Sensors: Design, Development and Applications)
Show Figures

Figure 1

18 pages, 6073 KB  
Article
Harnessing Polyaminal Porous Networks for Sustainable Environmental Applications Using Ultrafine Silver Nanoparticles
by Bedour Almalki, Maymounah A. Alrayyani, Effat A. Bahaidarah, Maha M. Alotaibi, Shaista Taimur, Dalal Alezi, Fatmah M. Alshareef and Nazeeha S. Alkayal
Polymers 2025, 17(18), 2443; https://doi.org/10.3390/polym17182443 - 9 Sep 2025
Viewed by 479
Abstract
Environmental contamination is a critical global concern, primarily due to detrimental greenhouse gas (GHG) emissions, especially carbon dioxide (CO2), which significantly contribute to climate change. Moreover, the presence of harmful heavy metals like Ni, Cd, Cu, Hg, and Pb in soil [...] Read more.
Environmental contamination is a critical global concern, primarily due to detrimental greenhouse gas (GHG) emissions, especially carbon dioxide (CO2), which significantly contribute to climate change. Moreover, the presence of harmful heavy metals like Ni, Cd, Cu, Hg, and Pb in soil and water ecosystems has led to poor water quality. Noble metal nanoparticles (MNPs), for instance, Pd, Ag, Pt, and Au, have emerged as promising solutions for addressing environmental pollution. However, the practical utilization of MNPs faces challenges as they tend to aggregate and lose stability. To overcome this issue, the reverse double-solvent method (RDSM) was utilized to synthesis melamine-based porous polyaminals (POPs) as a supportive material for the in situ growing of silver nanoparticles (Ag NPs). The porous structure of melamine-based porous polyaminals, featuring aminal-linked (-HN-C-NH-) and triazine groups, provides excellent binding sites for capturing Ag+ ions, thereby improving the dispersion and stability of the nanoparticles. The resulting material exhibited ultrafine particle sizes for Ag NPs, and the incorporation of Ag NPs within the porous polyaminals demonstrated a high surface area (~279 m2/g) and total pore volume (1.21 cm3/g), encompassing micropores and mesopores. Additionally, the Ag NPs@POPs showcased significant capacity for CO2 capture (2.99 mmol/g at 273 K and 1 bar) and effectively removed Cu (II), with a remarkable removal efficiency of 99.04%. The nitrogen-rich porous polyaminals offer promising prospects for immobilizing and encapsulating Ag nanoparticles, making them outstanding adsorbents for selectively capturing carbon dioxide and removing metal ions. Pursuing this approach holds immense potential for various environmental applications. Full article
(This article belongs to the Collection Progress in Polymer Composites and Nanocomposites)
Show Figures

Figure 1

16 pages, 10602 KB  
Article
Effect of Ultra-Small Platinum Single-Atom Additives on Photocatalytic Activity of the CuOx-Dark TiO2 System in HER
by Elena D. Fakhrutdinova, Olesia A. Gorbina, Olga V. Vodyankina, Sergei A. Kulinich and Valery A. Svetlichnyi
Nanomaterials 2025, 15(17), 1378; https://doi.org/10.3390/nano15171378 - 6 Sep 2025
Viewed by 702
Abstract
Improving the efficiency of photocatalysts for hydrogen production while minimizing the amount of noble metals used is a pressing issue in modern green energy. This study examines the effect of ultra-small Pt additives on increasing the efficiency of the CuOx-dark TiO [...] Read more.
Improving the efficiency of photocatalysts for hydrogen production while minimizing the amount of noble metals used is a pressing issue in modern green energy. This study examines the effect of ultra-small Pt additives on increasing the efficiency of the CuOx-dark TiO2 photocatalyst used in the hydrogen evolution reaction (HER). Initially, Pt was photoreduced from the hydroxonitrate complex (Me4N)2[Pt2(OH)2(NO3)8] onto the surface of nanodispersed CuOx powder obtained by pulsed laser ablation. Then, the obtained Pt-CuOx particles were dispersed on the surface of highly defective dark TiO2, so that the mass content of Pt in the samples varied in the range from 1.25 × 10−5 to 10−4. The prepared samples were examined using HRTEM, XRD, XPS, and UV-Vis DRS methods. It has been established that in the Pt-CuOx particles, platinum is mainly present in the form of single atoms (SAs), both as Pt2+ (predominantly) and Pt4+ species, which should facilitate electron transfer and contribute to the manifestation of the strong metal–support interaction (SMSI) effect between SA Ptn+ and CuOx. In turn, in the Pt-CuOx-dark TiO2 samples, surface defects (Ov) and surface OH groups on dark TiO2 particles act as “anchors”, promoting the spontaneous dispersion of CuOx in the form of sub-nanometer clusters with the reduction of Cu2+ to Cu1+ when localized near such Ov defects. During photocatalytic HER in aqueous glycerol solutions, irradiation was found to initiate a large number of catalytically active Pt0-CuOx-Ov-dark TiO2 centers, where the SMSI effect causes electron transfer from titania to SA Pt, thus promoting better separation of photogenerated charges. As a result, ultra-small additives of Pt led to up to a 1.34-fold increase in the amount of released hydrogen, while the maximum apparent quantum yield (AQY) reached 65%. Full article
Show Figures

Figure 1

14 pages, 1527 KB  
Article
The Effect of the Metal Impurities on the Stability, Chemical, and Sensing Properties of MoSe2 Surfaces
by Danil W. Boukhvalov, Murat K. Rakhimzhanov, Aigul Shongalova, Abay S. Serikkanov, Nikolay A. Chuchvaga and Vladimir Yu. Osipov
Surfaces 2025, 8(3), 56; https://doi.org/10.3390/surfaces8030056 - 5 Aug 2025
Cited by 3 | Viewed by 630
Abstract
In this study, we present a comprehensive theoretical analysis of modifications in the physical and chemical properties of MoSe2 upon the introduction of substitutional transition metal impurities, specifically, Ti, V, Cr, Fe, Co, Ni, Cu, W, Pd, and Pt. Wet systematically calculated [...] Read more.
In this study, we present a comprehensive theoretical analysis of modifications in the physical and chemical properties of MoSe2 upon the introduction of substitutional transition metal impurities, specifically, Ti, V, Cr, Fe, Co, Ni, Cu, W, Pd, and Pt. Wet systematically calculated the adsorption enthalpies for various representative analytes, including O2, H2, CO, CO2, H2O, NO2, formaldehyde, and ethanol, and further evaluated their free energies across a range of temperatures. By employing the formula for probabilities, we accounted for the competition among molecules for active adsorption sites during simultaneous adsorption events. Our findings underscore the importance of integrating temperature effects and competitive adsorption dynamics to predict the performance of highly selective sensors accurately. Additionally, we investigated the influence of temperature and analyte concentration on sensor performance by analyzing the saturation of active sites for specific scenarios using Langmuir sorption theory. Building on our calculated adsorption energies, we screened the catalytic potential of doped MoSe2 for CO2-to-methanol conversion reactions. This paper also examines the correlations between the electronic structure of active sites and their associated sensing and catalytic capabilities, offering insights that can inform the design of advanced materials for sensors and catalytic applications. Full article
Show Figures

Graphical abstract

22 pages, 5009 KB  
Review
Single-Atom Catalysts for Hydrogen Evolution Reaction: The Role of Supports, Coordination Environments, and Synergistic Effects
by Zhuoying Liang, Yu Zhang, Linli Liu, Miaolun Jiao and Chenliang Ye
Nanomaterials 2025, 15(15), 1175; https://doi.org/10.3390/nano15151175 - 30 Jul 2025
Viewed by 1602
Abstract
Single-atom catalysts (SACs) have emerged as highly promising catalytic materials for the hydrogen evolution reaction (HER), attributed to their maximal atomic utilization efficiency and unique electronic configurations. Many structure parameters can influence the catalytic performance of SACs for HER, and the intrinsic advantages [...] Read more.
Single-atom catalysts (SACs) have emerged as highly promising catalytic materials for the hydrogen evolution reaction (HER), attributed to their maximal atomic utilization efficiency and unique electronic configurations. Many structure parameters can influence the catalytic performance of SACs for HER, and the intrinsic advantages of SACs for HER still need to be summarized. This review systematically summarizes recent advances in SACs for HER. It discusses various types of SACs (including those based on Pt, Co, Ru, Ni, Cu, and other metals) applied in HER, and elaborates the critical factors influencing catalytic performance—specifically, the supports, coordination environments, and synergistic effects of these SACs. Furthermore, current research challenges and future perspectives in this rapidly developing field are also outlined. Full article
Show Figures

Figure 1

20 pages, 7380 KB  
Article
Copper Pyrithione Induces Hepatopancreatic Apoptosis and Metabolic Disruption in Litopenaeus vannamei: Integrated Transcriptomic, Metabolomic, and Histopathological Analysis
by Jieyu Guo, Yang Yang, Siying Yu, Cairui Jiang, Xianbin Su, Yongfeng Zou and Hui Guo
Animals 2025, 15(14), 2134; https://doi.org/10.3390/ani15142134 - 18 Jul 2025
Viewed by 501
Abstract
Copper pyrithione (CuPT), an emerging biocide used in ship antifouling coatings, may accumulate in marine sediments and pose risks to non-target organisms. However, current research on CuPT toxicity remains limited. Litopenaeus vannamei, one of the world’s most important aquaculture shrimp species, relies [...] Read more.
Copper pyrithione (CuPT), an emerging biocide used in ship antifouling coatings, may accumulate in marine sediments and pose risks to non-target organisms. However, current research on CuPT toxicity remains limited. Litopenaeus vannamei, one of the world’s most important aquaculture shrimp species, relies heavily on its hepatopancreas for energy metabolism, detoxification, and immune responses. Due to their benthic habitat, these shrimps are highly vulnerable to contamination in sediment environments. This study investigated the toxicological response in the hepatopancreas of L. vannamei exposed to CuPT (128 μg/L) for 3 and 48 h. Terminal deoxynucleotidyl transferase dUTP Nick-End Labeling (TUNEL) fluorescence staining revealed increased apoptosis, deformation of hepatic tubule lumens, and the loss of stellate structures in the hepatopancreas after CuPT 48 h exposure. A large number of differentially expressed genes (DEGs) were identified by transcriptomics analysis at 3 and 48 h, respectively. Most of these DEGs were related to detoxification, glucose transport, and immunity. Metabolomic analysis identified numerous significantly different metabolites (SDMs) at both 3 and 48 h post-exposure, with most SDMs associated with energy metabolism, fatty acid metabolism, and related pathways. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis of metabolomics and transcriptome revealed that both DEGs and SDMs were enriched in arachidonic acid metabolism, fatty acid biosynthesis, and glycolysis/gluconeogenesis pathways at 3 h, while at 48 h they were enriched in the starch and sucrose metabolism, amino sugar and nucleotide sugar metabolism, and galactose metabolism pathways. These results suggested that CuPT disrupts the energy and lipid homeostasis of L. vannamei. This disruption compelled L. vannamei to allocate additional energy toward sustaining basal physiological functions and consequently caused the accumulation of large amounts of reactive oxygen species (ROS) in the body, leading to apoptosis and subsequent tissue damage, and ultimately suppressed the immune system and impaired the health of L. vannamei. Our study elucidates the molecular mechanisms of CuPT-induced metabolic disruption and immunotoxicity in L. vannamei through integrated multi-omics analyses, providing new insights for ecological risk assessment of this emerging antifoulant. Full article
(This article belongs to the Special Issue Ecology of Aquatic Crustaceans: Crabs, Shrimps and Lobsters)
Show Figures

Figure 1

15 pages, 3241 KB  
Article
Cu@Pt Core–Shell Nanostructures for Ammonia Oxidation: Bridging Electrocatalysis and Electrochemical Sensing
by Bommireddy Naveen and Sang-Wha Lee
Inorganics 2025, 13(7), 241; https://doi.org/10.3390/inorganics13070241 - 11 Jul 2025
Viewed by 895
Abstract
Electro-oxidation of ammonia has emerged as a promising route for sustainable energy conversion and pollutant mitigation. In this study, we report the facile fabrication of dendritic Cu@Pt core–shell nanostructures electrodeposited on pencil graphite, forming an efficient electrocatalyst for the ammonia oxidation reaction (AOR). [...] Read more.
Electro-oxidation of ammonia has emerged as a promising route for sustainable energy conversion and pollutant mitigation. In this study, we report the facile fabrication of dendritic Cu@Pt core–shell nanostructures electrodeposited on pencil graphite, forming an efficient electrocatalyst for the ammonia oxidation reaction (AOR). The designed electrocatalyst exhibited high catalytic activity towards AOR, achieving high current density at very low potentials (−0.3 V vs. Ag/AgCl), with a lower Tafel slope of 16.4 mV/dec. The catalyst also demonstrated high electrochemical stability over 1000 potential cycles with a regeneration efficiency of 78%. In addition to catalysis, Cu@Pt/PGE facilitated very sensitive and selective electrochemical detection of ammonia nitrogen by differential pulse voltammetry, providing an extensive linear range (1 μM to 1 mM) and a low detection limit of 0.78 μM. The dual functionality of Cu@Pt highlights its potential in enhancing ammonia-based fuel cells and monitoring ammonia pollution in aquatic environments, thereby contributing to the development of sustainable energy and environmental technologies. Full article
Show Figures

Figure 1

33 pages, 2309 KB  
Review
Recent Progress of Nanomedicine for the Synergetic Treatment of Radiotherapy (RT) and Photothermal Treatment (PTT)
by Maria-Eleni Zachou, Ellas Spyratou, Nefeli Lagopati, Kalliopi Platoni and Efstathios P. Efstathopoulos
Cancers 2025, 17(14), 2295; https://doi.org/10.3390/cancers17142295 - 10 Jul 2025
Cited by 2 | Viewed by 1092
Abstract
Nanotechnology has significantly advanced cancer therapy, particularly through the development of multifunctional nanoparticles (NPs) capable of acting as both therapeutic and diagnostic agents. This review focuses on the synergistic integration of radiotherapy (RT) and photothermal therapy (PTT) mediated by engineered NPs—a rapidly evolving [...] Read more.
Nanotechnology has significantly advanced cancer therapy, particularly through the development of multifunctional nanoparticles (NPs) capable of acting as both therapeutic and diagnostic agents. This review focuses on the synergistic integration of radiotherapy (RT) and photothermal therapy (PTT) mediated by engineered NPs—a rapidly evolving strategy that enhances tumor specificity, minimizes healthy tissue damage, and enables real-time imaging. By analyzing the recent literature, we highlight the dual role of NPs in amplifying radiation-induced DNA damage and converting near-infrared (NIR) light into localized thermal energy. The review classifies various metal-based and composite nanomaterials (e.g., Au, Pt, Bi, Cu, and Fe) and evaluates their performance in preclinical RT–PTT settings. We also discuss the physicochemical properties, targeting strategies, and theragnostic applications that contribute to treatment efficiency. Unlike conventional combinatorial therapies, NP-mediated RT–PTT enables high spatial–temporal control, immunogenic potential, and integration with multimodal imaging. We conclude with the current challenges, translational barriers, and outlooks for clinical implementation. This work provides a comprehensive, up-to-date synthesis of NP-assisted RT–PTT as a powerful approach within the emerging field of nano-oncology. Full article
(This article belongs to the Special Issue Nanomedicine’s Role in Oncology)
Show Figures

Figure 1

20 pages, 3918 KB  
Article
Engineered Cu0.5Ni0.5Al2O4/GCN Spinel Nanostructures for Dual-Functional Energy Storage and Electrocatalytic Water Splitting
by Abdus Sami, Sohail Ahmad, Ai-Dang Shan, Sijie Zhang, Liming Fu, Saima Farooq, Salam K. Al-Dawery, Hamed N. Harharah, Ramzi H. Harharah and Gasim Hayder
Processes 2025, 13(7), 2200; https://doi.org/10.3390/pr13072200 - 9 Jul 2025
Viewed by 539
Abstract
The rapid growth in population and industrialization have significantly increased global energy demand, placing immense pressure on finite and environmentally harmful conventional fossil fuel-based energy sources. In this context, the development of hybrid electrocatalysts presents a crucial solution for energy conversion and storage, [...] Read more.
The rapid growth in population and industrialization have significantly increased global energy demand, placing immense pressure on finite and environmentally harmful conventional fossil fuel-based energy sources. In this context, the development of hybrid electrocatalysts presents a crucial solution for energy conversion and storage, addressing environmental challenges while meeting rising energy needs. In this study, the fabrication of a novel bifunctional catalyst, copper nickel aluminum spinel (Cu0.5Ni0.5Al2O4) supported on graphitic carbon nitride (GCN), using a solid-state synthesis process is reported. Because of its effective interface design and spinel cubic structure, the Cu0.5Ni0.5Al2O4/GCN nanocomposite, as synthesized, performs exceptionally well in electrochemical energy conversion, such as the oxygen evolution reaction (OER), the hydrogen evolution reaction (HER), and energy storage. In particular, compared to noble metals, Pt/C- and IrO2-based water-splitting cells require higher voltages (1.70 V), while for the Cu0.5Ni0.5Al2O4/GCN nanocomposite, a voltage of 1.49 V is sufficient to generate a current density of 10 mA cm−2 in an alkaline solution. When used as supercapacitor electrode materials, Cu0.5Ni0.5Al2O4/GCN nanocomposites show a specific capacitance of 1290 F g−1 at a current density of 1 A g−1 and maintain a specific capacitance of 609 F g−1 even at a higher current density of 5 A g−1, suggesting exceptional rate performance and charge storage capacity. The electrode’s exceptional capacitive properties were further confirmed through the determination of the roughness factor (Rf), which represents surface heterogeneity and active area enhancement, with a value of 345.5. These distinctive characteristics render the Cu0.5Ni0.5Al2O4/GCN composite a compelling alternative to fossil fuels in the ongoing quest for a viable replacement. Undoubtedly, the creation of the Cu0.5Ni0.5Al2O4/GCN composite represents a significant breakthrough in addressing the energy crisis and environmental concerns. Owing to its unique composition and electrocatalytic characteristics, it is considered a feasible choice in the pursuit of ecologically sustainable alternatives to fossil fuels. Full article
Show Figures

Graphical abstract

12 pages, 4483 KB  
Article
Screening the Oxygen Reduction Reaction Performance of Carbon-Supported Pt-M (M = Ni, Cu, Co) Binary Electrocatalysts via Tuning Metal–Support Interaction
by Amisha Beniwal, Hariom Gurjar, Khushabu Shekhawat, Ashima Bagaria and Dinesh Bhalothia
Oxygen 2025, 5(3), 10; https://doi.org/10.3390/oxygen5030010 - 27 Jun 2025
Viewed by 585
Abstract
Platinum-based catalysts remain the benchmark for the oxygen reduction reaction (ORR) in fuel cells, owing to their exceptional catalytic activity in the harsh chemical environment. However, optimizing Pt utilization and improving performance through support engineering are essential for commercial viability. In this study, [...] Read more.
Platinum-based catalysts remain the benchmark for the oxygen reduction reaction (ORR) in fuel cells, owing to their exceptional catalytic activity in the harsh chemical environment. However, optimizing Pt utilization and improving performance through support engineering are essential for commercial viability. In this study, we synthesized carbon-supported binary Pt-M (M = Ni, Cu, Co) electrocatalysts to investigate the influence of metal–support interactions on ORR activity. The Pt-M nanoparticles were fabricated on carbon supports, enabling the systematic screening of electronic and structural interactions. Among all compositions, Pt@Co exhibited the highest ORR mass activity, delivering 817 mA mgPt−1 at 0.85 V and 464 mA mgPt−1 at 0.90 V vs. RHE, surpassing both commercial Pt/C (J.M. 20 wt.%) and its Pt@Ni, Pt@Cu, and Pt@CNT counterparts. Structural and spectroscopic analyses reveal a strong electronic interaction between Pt and Co, leading to localized electron transfer from Co to Pt domains. This electronic modulation facilitates an optimal surface binding energy, enhancing oxygen adsorption–desorption kinetics and ORR activity. These findings highlight the critical role of transition metal–support synergy in the rational design of high-performance Pt-based electrocatalysts for next-generation fuel cell applications. Full article
Show Figures

Figure 1

22 pages, 5538 KB  
Article
Preparation and Biochemical and Microbial Behavior of Poly(Lactide) Composites with Polyethersulfone and Copper-Complexed Cellulose Phosphate
by Marcin H. Kudzin, Zdzisława Mrozińska, Anna Kaczmarek, Jerzy J. Chruściel, Martyna Gloc and Renata Żyłła
Materials 2025, 18(13), 2954; https://doi.org/10.3390/ma18132954 - 22 Jun 2025
Viewed by 601
Abstract
This research investigates the biochemical and microbiological characteristics of a composite comprising poly(lactide) (PLA) combined with polyethersulfone (PESf) and copper-complexed cellulose phosphate (CelP-Cu). The material was produced using the pneumothermic melt-blown method and then modified with polyethersulfone and cellulose phosphate, followed by complexation [...] Read more.
This research investigates the biochemical and microbiological characteristics of a composite comprising poly(lactide) (PLA) combined with polyethersulfone (PESf) and copper-complexed cellulose phosphate (CelP-Cu). The material was produced using the pneumothermic melt-blown method and then modified with polyethersulfone and cellulose phosphate, followed by complexation with copper ions using the dip-coating technique. Comprehensive physicochemical and biological evaluations were conducted to characterize the composite. The physicochemical assessments involved elemental analysis (C, O, Cu) and morphology examination. The biological evaluations encompassed microbiological testing and biochemical–hematological analysis, including activated partial thromboplastin time (aPTT) and prothrombin time (PT). Antimicrobial activity was assessed according to the EN ISO 20645:2006 and EN 14119:2005 standards, by placing material specimens on agar plates inoculated with representative microorganisms. The results revealed that the composites exhibited significant antimicrobial effects against model microorganisms: Staphylococcus aureus, Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, Bacillus atrophaeus, Candida albicans, Saccharomyces cerevisiae, Aspergillus niger, Chaetomium globosum. This study highlights the potential of PLA/PESf/CelP-Cu composites for novel biomedical applications, demonstrating their biocompatibility and their influence on hemostatic processes and antimicrobial properties. Full article
Show Figures

Figure 1

Back to TopTop