Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (18)

Search Parameters:
Keywords = Pseudomonas veronii

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 7438 KiB  
Article
Bacillibactin, a Potential Bacillus-Based Antibacterial Non-Ribosomal Peptide: In Silico Studies for Targeting Common Fish Pathogens
by Evgeniya Prazdnova, Anna Zaikina, Alexey Neurov, Maria Mazanko, Anuj Ranjan and Dmitry Rudoy
Int. J. Mol. Sci. 2025, 26(12), 5811; https://doi.org/10.3390/ijms26125811 - 17 Jun 2025
Viewed by 560
Abstract
Aquaculture is one of the fastest-growing sectors in food production. The widespread use of antibiotics in fish farming has been identified as a driver for the development of antibiotic resistance. One of the promising approaches to solving this problem is the use of [...] Read more.
Aquaculture is one of the fastest-growing sectors in food production. The widespread use of antibiotics in fish farming has been identified as a driver for the development of antibiotic resistance. One of the promising approaches to solving this problem is the use of probiotics. There are many promising aquaculture probiotics in the Bacillus genus, which produces non-ribosomal peptides (NRPs). NRPs are known as antimicrobial agents, although evidence is gradually accumulating that they may have other effects, especially at lower (subinhibitory) concentrations. The mechanisms of action of many NRPs remain unexplored, and molecular docking and molecular dynamics studies are invaluable tools for studying such mechanisms. The purpose of this study was to investigate the in silico inhibition of crucial bacterial targets by NRPs. Molecular docking analyses were conducted to assess the binding affinities of the NRPs of Bacillus for protein targets. Among the complexes evaluated, bacillibactin with glutamine synthetase, dihydrofolate reductase, and proaerolysin exhibited the lowest docking scores. Consequently, these complexes were selected for further investigation through molecular dynamics simulations. As a result, three additional potential mechanisms of action for bacillibactin were identified through in silico analyses, including the inhibition of glutamine synthetase, dihydrofolate reductase, and proaerolysin, which are critical bacterial enzymes and considered as the potential antibacterial targets. These findings were further supported by in vitro antagonism assays using bacillibactin-producing Bacillus velezensis strains MT55 and MT155, which demonstrated strong inhibitory activity against Pseudomonas aeruginosa and Aeromonas veronii. Full article
(This article belongs to the Special Issue Cheminformatics in Drug Discovery and Green Synthesis)
Show Figures

Figure 1

16 pages, 3815 KiB  
Article
Metagenomic Analysis of Wild Apple (Malus sieversii) Trees from Natural Habitats of Kazakhstan
by Aruzhan Mendybayeva, Alibek Makhambetov, Kirill Yanin, Aisha Taskuzhina, Marina Khusnitdinova and Dilyara Gritsenko
Plants 2025, 14(10), 1511; https://doi.org/10.3390/plants14101511 - 18 May 2025
Viewed by 660
Abstract
Kazakhstan’s rich biodiversity includes diverse apple populations, notably the wild apple tree (Malus sieversii) prized for traits like disease resistance and adaptability, potentially aiding breeding programs. Analyzing their microbiomes offers insights into bacterial diversity and how it influences apple tree development, [...] Read more.
Kazakhstan’s rich biodiversity includes diverse apple populations, notably the wild apple tree (Malus sieversii) prized for traits like disease resistance and adaptability, potentially aiding breeding programs. Analyzing their microbiomes offers insights into bacterial diversity and how it influences apple tree development, making it a reliable method for understanding ecological interactions. In this research, 334 apple tree samples were collected from different mountain ranges in southeastern Kazakhstan. An analysis using nanopore-based 16S rRNA sequencing showed a distinct similarity in the microbiome compositions of samples from the Zhongar and Ile Alatau mountain ranges, with a predominance of Pseudomonadaceae, Enterobacteriaceae, and Microbacteriaceae. In contrast, samples from Ketmen ridge showed a higher prevalence of Enterobacteriaceae. Alongside the less represented Pseudomonadaceae family, in the Ketmen ridge region, bacteria of the Xanthomonadaceae, Alcaligenaceae, and Brucellaceae families were also present. Across all regions, beneficial plant-associated bacteria were identified, such as Pseudomonas veronii, Stenotrophomonas geniculata, and Kocuria rhizophila, potentially enhancing plant resilience. However, opportunistic phytopathogens were also detected, including Pseudomonas viridiflava and Serratia marcescens, particularly in the Ile Alatau region. These findings highlight the complex microbial interactions in M. sieversii, thus offering key insights into host—microbe relationships that can inform apple breeding and ecological preservation efforts. Full article
(This article belongs to the Special Issue Evolution and Genetics of Plant–Microbe Interactions)
Show Figures

Figure 1

19 pages, 3707 KiB  
Article
The Role of Different Rhizobacteria in Mitigating Aluminum Stress in Rice (Oriza sativa L.)
by Mercedes Susana Carranza-Patiño, Juan Antonio Torres-Rodriguez, Juan José Reyes-Pérez, Robinson J. Herrera-Feijoo, Ángel Virgilio Cedeño-Moreira, Alejandro Jair Coello Mieles, Cristhian John Macías Holguín and Cristhian Chicaiza-Ortiz
Int. J. Plant Biol. 2024, 15(4), 1418-1436; https://doi.org/10.3390/ijpb15040098 - 23 Dec 2024
Cited by 2 | Viewed by 1113
Abstract
Aluminum toxicity in acidic soils threatens rice (Oryza sativa L.) cultivation, hindering agricultural productivity. This study explores the potential of plant growth-promoting rhizobacteria (PGPR) as a novel and sustainable approach to mitigate aluminum stress in rice. Two rice varieties, INIAP-4M and SUPREMA [...] Read more.
Aluminum toxicity in acidic soils threatens rice (Oryza sativa L.) cultivation, hindering agricultural productivity. This study explores the potential of plant growth-promoting rhizobacteria (PGPR) as a novel and sustainable approach to mitigate aluminum stress in rice. Two rice varieties, INIAP-4M and SUPREMA I-1480, were selected for controlled laboratory experiments. Seedlings were exposed to varying aluminum concentrations (0, 2, 4, 8, and 16 mM) in the presence of four PGPR strains: Serratia marcescens (MO4), Enterobacter asburiae (MO5), Pseudomonas veronii (R4), and Pseudomonas protegens (CHAO). The INIAP-4M variety exhibited greater tolerance to aluminum than SUPREMA I-1480, maintaining 100% germination up to 4 mM and higher vigor index values. The study revealed that rhizobacteria exhibited different responses to aluminum concentrations. P. protegens and S. marcescens showed the highest viability at 0 mM (2.65 × 1010 and 1.71 × 1010 CFU mL−1, respectively). However, P. veronii and S. marcescens exhibited the highest viability at aluminum concentrations of 2 and 4 mM, indicating their superior tolerance and adaptability under moderate aluminum stress. At 16 mM, all strains experienced a decrease, with P. protegens and E. asburiae being the most sensitive. The application of a microbial consortium significantly enhanced plant growth, increasing plant height to 73.75 cm, root fresh weight to 2.50 g, and leaf fresh weight to 6 g compared to the control (42.75 cm, 0.88 g, and 3.63 g, respectively). These findings suggest that PGPR offer a promising and sustainable strategy to bolster rice resilience against aluminum stress and potentially improve crop productivity in heavy metal-contaminated soils. Full article
(This article belongs to the Section Plant–Microorganisms Interactions)
Show Figures

Figure 1

18 pages, 7445 KiB  
Article
Unveiling the Potential of CuO and Cu2O Nanoparticles against Novel Copper-Resistant Pseudomonas Strains: An In-Depth Comparison
by Olesia Havryliuk, Garima Rathee, Jeniffer Blair, Vira Hovorukha, Oleksandr Tashyrev, Jordi Morató, Leonardo M. Pérez and Tzanko Tzanov
Nanomaterials 2024, 14(20), 1644; https://doi.org/10.3390/nano14201644 - 13 Oct 2024
Cited by 2 | Viewed by 2997
Abstract
Four novel Pseudomonas strains with record resistance to copper (Cu2+) previously isolated from ecologically diverse samples (P. lactis UKR1, P. panacis UKR2, P. veronii UKR3, and P. veronii UKR4) were tested against sonochemically synthesised copper-oxide (I) (Cu2O) and [...] Read more.
Four novel Pseudomonas strains with record resistance to copper (Cu2+) previously isolated from ecologically diverse samples (P. lactis UKR1, P. panacis UKR2, P. veronii UKR3, and P. veronii UKR4) were tested against sonochemically synthesised copper-oxide (I) (Cu2O) and copper-oxide (II) (CuO) nanoparticles (NPs). Nanomaterials characterisation by X-ray diffractometry (XRD), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FTIR), and High-Resolution Transmission Electron Microscopy (HRTEM) confirmed the synthesis of CuO and Cu2O NPs. CuO NPs exhibited better performance in inhibiting bacterial growth due to their heightened capacity to induce oxidative stress. The greater stability and geometrical shape of CuO NPs were disclosed as important features associated with bacterial cell toxicity. SEM and TEM images confirmed that both NPs caused membrane disruption, altered cell morphology, and pronounced membrane vesiculation, a distinctive feature of bacteria dealing with stressor factors. Finally, Cu2O and CuO NPs effectively decreased the biofilm-forming ability of the Cu2+-resistant UKR strains as well as degraded pre-established biofilm, matching NPs’ antimicrobial performance. Despite the similarities in the mechanisms of action revealed by both NPs, distinctive behaviours were also detected for the different species of wild-type Pseudomonas analysed. In summary, these findings underscore the efficacy of nanotechnology-driven strategies for combating metal tolerance in bacteria. Full article
(This article belongs to the Special Issue Antimicrobial and Antioxidant Activity of Nanoparticles)
Show Figures

Figure 1

13 pages, 2524 KiB  
Article
Regulatory Effects of Maternal Intake of Microbial-Derived Antioxidants on Colonization of Microbiota in Breastmilk and That of Intestinal Microbiota in Offspring
by Dangjin Wu, Ran An, Di Wang, Luoxin Jiang, Liu Huang, Tenghui Lu, Weina Xu, Jianxiong Xu and Jing Zhang
Animals 2024, 14(17), 2582; https://doi.org/10.3390/ani14172582 - 5 Sep 2024
Cited by 1 | Viewed by 982
Abstract
In this study, sixteen Sprague Dawley (SD) female rats and eight SD male rats were co-housed to mate. Pregnant SD female rats were fed with a control diet or an MA diet. Breast milk, maternal ileum, and intestinal samples of the offspring were [...] Read more.
In this study, sixteen Sprague Dawley (SD) female rats and eight SD male rats were co-housed to mate. Pregnant SD female rats were fed with a control diet or an MA diet. Breast milk, maternal ileum, and intestinal samples of the offspring were collected at the day of birth and ten days afterwards. The results showed that the impact of MA was more obvious on the microbiota of mature milk (p = 0.066) than on that of colostrum. In addition, MA additive did not significantly affect maternal ileal microbiota, but affected offsprings’ colonic microbiota significantly ten days after birth (p = 0.035). From the day of giving birth to ten days afterwards, in addition to the increase in microbial richness and diversity, at genus level, the dominant bacteria of breastmilk changed from Pseudomonas veronii to Bacillus and Lactococcus. Different from breastmilk microbiota, ten days after giving birth, the maternal ileal microbiota and the offsprings’ intestinal microbiota were dominated by Lactobacillus. Instead of ileal microbiota, offsprings’ colonic microbiota is a key action site of maternal MA additive. Therefore, the current findings have significant implications for the development of maternal feed aimed at modulating the intestinal microbiota of offspring, ultimately leading to improved health outcomes for both mothers and their offspring. Full article
(This article belongs to the Section Animal Nutrition)
Show Figures

Figure 1

16 pages, 6741 KiB  
Article
Targeted Formation of Biofilms on the Surface of Graphite Electrodes as an Effective Approach to the Development of Biosensors for Early Warning Systems
by Anna Kharkova, Roman Perchikov, Saniyat Kurbanalieva, Kristina Osina, Nadezhda Popova, Andrey Machulin, Olga Kamanina, Evgeniya Saverina, Ivan Saltanov, Sergey Melenkov, Denis Butusov and Vyacheslav Arlyapov
Biosensors 2024, 14(5), 239; https://doi.org/10.3390/bios14050239 - 9 May 2024
Cited by 3 | Viewed by 2963
Abstract
Biofilms based on bacteria Pseudomonas veronii (Ps. veronii) and Escherichia coli (E. coli) and yeast Saccharomyces cerevisiae (S. cerevisiae) were used for novel biosensor creation for rapid biochemical oxygen demand (BOD) monitoring. Based on the electrochemical measurement [...] Read more.
Biofilms based on bacteria Pseudomonas veronii (Ps. veronii) and Escherichia coli (E. coli) and yeast Saccharomyces cerevisiae (S. cerevisiae) were used for novel biosensor creation for rapid biochemical oxygen demand (BOD) monitoring. Based on the electrochemical measurement results, it was shown that the endogenous mediator in the matrix of E. coli and Ps. veronii biofilms and ferrocene form a two-mediator system that improves electron transport in the system. Biofilms based on Ps. veronii and E. coli had a high biotechnological potential for BOD assessment; bioreceptors based on such biofilms had high sensitivity (the lower limits of detectable BOD5 concentrations were 0.61 (Ps. veronii) and 0.87 (E. coli) mg/dm3) and high efficiency of analysis (a measurement time 5–10 min). The maximum biosensor response based on bacterial biofilms has been observed in the pH range of 6.6–7.2. The greatest protective effect was found for biofilms based on E. coli, which has high long-term stability (151 days for Ps. veronii and 163 days for E. coli). The results of the BOD5 analysis of water samples obtained using the developed biosensors had a high correlation with the results of the standard 5-day method (R2 = 0.9820, number of tested samples is 10 for Ps. veronii, and R2 = 0.9862, number of tested samples is 10 for E. coli). Thus, biosensors based on Ps. veronii biofilms and E. coli biofilms could be a novel analytical system to give early warnings of pollution. Full article
(This article belongs to the Special Issue Cell-Based Biosensors for Rapid Detection and Monitoring)
Show Figures

Graphical abstract

21 pages, 1212 KiB  
Article
Proteogenomic Characterization of Pseudomonas veronii SM-20 Growing on Phenanthrene as Only Carbon and Energy Source
by Sofía G. Zavala-Meneses, Andrea Firrincieli, Petra Chalova, Petr Pajer, Alice Checcucci, Ludovit Skultety and Martina Cappelletti
Microorganisms 2024, 12(4), 753; https://doi.org/10.3390/microorganisms12040753 - 8 Apr 2024
Cited by 5 | Viewed by 2300
Abstract
In this study, we conducted an extensive investigation of the biodegradation capabilities and stress response of the newly isolated strain Pseudomonas veronii SM-20 in order, to assess its potential for bioremediation of sites contaminated with polycyclic aromatic hydrocarbons (PAHs). Initially, phenotype microarray technology [...] Read more.
In this study, we conducted an extensive investigation of the biodegradation capabilities and stress response of the newly isolated strain Pseudomonas veronii SM-20 in order, to assess its potential for bioremediation of sites contaminated with polycyclic aromatic hydrocarbons (PAHs). Initially, phenotype microarray technology demonstrated the strain’s proficiency in utilizing various carbon sources and its resistance to certain stressors. Genomic analysis has identified numerous genes involved in aromatic hydrocarbon metabolism. Biodegradation assay analyzed the depletion of phenanthrene (PHE) when it was added as a sole carbon and energy source. We found that P. veronii strain SM-20 degraded approximately 25% of PHE over a 30-day period, starting with an initial concentration of 600 µg/mL, while being utilized for growth. The degradation process involved PHE oxidation to an unstable arene oxide and 9,10-phenanthrenequinone, followed by ring-cleavage. Comparative proteomics provided a comprehensive understanding of how the entire proteome responded to PHE exposure, revealing the strain’s adaptation in terms of aromatic metabolism, surface properties, and defense mechanism. In conclusion, our findings shed light on the promising attributes of P. veronii SM-20 and offer valuable insights for the use of P. veronii species in environmental restoration efforts targeting PAH-impacted sites. Full article
(This article belongs to the Section Environmental Microbiology)
Show Figures

Figure 1

19 pages, 4251 KiB  
Article
Modulation of Growth and Antioxidative Defense Mechanism in Wheat (Triticum aestivum L.) Mediated by Plant-Beneficial Strain Pseudomonas veronii MR-15 under Drought Conditions
by Maryam Rehman, Muhammad Shahid, Saqib Mahmood, Qasim Ali and Muhammad Azeem
Appl. Sci. 2024, 14(1), 128; https://doi.org/10.3390/app14010128 - 22 Dec 2023
Cited by 1 | Viewed by 1790
Abstract
Drought stress severely influences plants in various ways and is considered an alarming threat to sustainable crop production worldwide. However, plant-growth-promoting rhizobacteria (PGPRs) have the natural ability to tolerate drought and enable plants to induce stress resistance by altering critical metabolic pathways. In [...] Read more.
Drought stress severely influences plants in various ways and is considered an alarming threat to sustainable crop production worldwide. However, plant-growth-promoting rhizobacteria (PGPRs) have the natural ability to tolerate drought and enable plants to induce stress resistance by altering critical metabolic pathways. In this study, we isolated and characterized a drought-tolerant rhizobacterium from the ground nut (Arachis hypogaea). Sequencing of the 16S rRNA gene traced its lineage to Pseudomonas veronii, named MR-15. The strain exhibited natural capabilities to solubilize phosphate, produce indole acetic acid, and grow a drought medium containing PEG (polyethylene glycol). The seeds of two wheat varieties (Triticum aestivum) inoculated with MR-15 were grown under drought and fully hydrated conditions and showed a significant increase in plant biomass, enhanced cellular antioxidant enzyme activity, and reduced reactive oxygen species. The MR-15 strain also significantly increased pigmentation and protein contents compared to plants raised from seeds grown without inoculation. These beneficial effects were consistent under drought stress conditions, indicating that MR-15 effectively alleviated wheat plants from drought-induced cellular oxidative damage. The findings suggest that MR-15 has the potential to serve as a biofertilizer, and further experiments should be conducted to explore its role in promoting plant growth and yield under drought conditions, particularly in semi-arid and arid zones. This is the first study reporting Pseudomonas veronii as a potential PGPR strain. Full article
Show Figures

Figure 1

12 pages, 2161 KiB  
Article
Sage Essential Oil as an Antimicrobial Agent against Salmonella enterica during Beef Sous Vide Storage
by Robert Gál, Natália Čmiková, Miroslava Kačániová and Pavel Mokrejš
Foods 2023, 12(22), 4172; https://doi.org/10.3390/foods12224172 - 19 Nov 2023
Cited by 5 | Viewed by 1975
Abstract
Sous-vide is a process comprising vacuum-sealing food, heating it to the desired temperature, and circulating it in a water bath in a sous vide machine. This cooking technique is increasingly common in homes and catering establishments due to its simplicity and affordability. However, [...] Read more.
Sous-vide is a process comprising vacuum-sealing food, heating it to the desired temperature, and circulating it in a water bath in a sous vide machine. This cooking technique is increasingly common in homes and catering establishments due to its simplicity and affordability. However, manufacturers and chef’s recommendations for low-temperature and long-term sous-vide cooking in media raise food safety concerns, particularly when preparing beef tenderloin. In this study, Salmonella enterica was found to be inactivated by heat and sage essential oil (EO) in beef samples from musculus psoas major that had been sous vide processed. To determine whether heat treatment was likely to increase the sous vide efficiency, S. enterica and sage EO were mixed. After being vacuum-packed and injected with S. enterica, the samples were cooked at 50–65 °C through the sous vide technique for the prescribed time. On days 1, 3, and 6, the amounts of S. enterica, total bacteria, and coliform bacteria were measured in the control and treated groups of beef processed sous vide. Mass spectrometry was used to identify bacterial isolates on different days. On each day that was measured, a higher number of all the microbiota was found in the samples exposed to 50 °C for 5 min. The most frequently isolated microorganisms from both groups of samples were Pseudomonas fragi (17%), Pseudomonas cedrina (8%), and Proteus vulgaris (8%); in the treated group, also S. enterica (21%), Pseudomonas fragi (13%), and Pseudomonas veronii (6%). After the heat treatment of samples at 65 °C for 20 min, the total count of bacteria and coliform bacteria was zero. It has been shown that adding sage essential oil (EO) in combination with sous vide processing technique leads to the stabilization and safety of beef tenderloin. Full article
(This article belongs to the Section Food Microbiology)
Show Figures

Figure 1

17 pages, 2588 KiB  
Article
Bacterial Changes in Boiled Crayfish between Different Storage Periods and Characterizations of the Specific Spoilage Bacteria
by Jiangyue Xia, Ning Jiang, Bin Zhang, Rongxue Sun, Yongzhi Zhu, Weicheng Xu, Cheng Wang, Qianyuan Liu and Yanhong Ma
Foods 2023, 12(16), 3006; https://doi.org/10.3390/foods12163006 - 9 Aug 2023
Cited by 13 | Viewed by 2178
Abstract
This study investigated changes in the microbial compositions of crayfish tails during storage at 4 °C (for 0–12 days) as measured using high-throughput sequencing (HTS). The specific spoilage organisms (SSOs) in the crayfish tails were isolated using culture-dependent cultivation methods, and they were [...] Read more.
This study investigated changes in the microbial compositions of crayfish tails during storage at 4 °C (for 0–12 days) as measured using high-throughput sequencing (HTS). The specific spoilage organisms (SSOs) in the crayfish tails were isolated using culture-dependent cultivation methods, and they were identified by 16S rRNA and characterized for their enzymatic spoilage potentials (e.g., protease, lipase, phospholipase, and amylase). The spoilage abilities of the selected strains in the crayfish tails were assessed by inoculating them into real food. Moreover, the microbial growth and the volatile basic nitrogen (TVB-N) changes were monitored during the storage period. The results from the HTS showed that the dominant genus of shrimp tails evolved from Streptococcus (D0) to Pseudomonas (D4) and, finally, to Paenisporosarcina (D12) during storage. Seven bacterial species (Acinetobacter lwoffii, Aeromonas veronii, Kurthia gibsonii, Pseudomonas sp., Exiguobacterium aurantiacum, Lelliottia amnigena, and Citrobacter freundii) were screened from the spoiled shrimp tails by the culture-dependent method, among which Aeromonas veronii had the strongest spoilage ability. Full article
(This article belongs to the Section Food Microbiology)
Show Figures

Figure 1

15 pages, 8821 KiB  
Article
Molecular Cloning and Functional Characterization of Galectin-1 in Yellow Drum (Nibea albiflora)
by Baolan Wu, Qiaoying Li, Wanbo Li, Shuai Luo, Fang Han and Zhiyong Wang
Int. J. Mol. Sci. 2023, 24(4), 3298; https://doi.org/10.3390/ijms24043298 - 7 Feb 2023
Cited by 6 | Viewed by 2355
Abstract
Galectins are proteins that are involved in the innate immune response against pathogenic microorganisms. In the present study, the gene expression pattern of galectin-1 (named as NaGal-1) and its function in mediating the defense response to bacterial attack were investigated. The tertiary [...] Read more.
Galectins are proteins that are involved in the innate immune response against pathogenic microorganisms. In the present study, the gene expression pattern of galectin-1 (named as NaGal-1) and its function in mediating the defense response to bacterial attack were investigated. The tertiary structure of NaGal-1 protein consists of homodimers and each subunit has one carbohydrate recognition domain. Quantitative RT-PCR analysis indicated that NaGal-1 was ubiquitously distributed in all the detected tissues and highly expressed in the swim-bladder of Nibea albiflora, and its expression could be upregulated by the pathogenic Vibrio harveyi attack in the brain. Expression of NaGal-1 protein in HEK 293T cells was distributed in the cytoplasm as well as in the nucleus. The recombinant NaGal-1 protein by prokaryotic expression could agglutinate red blood cells from rabbit, Larimichthys crocea, and N. albiflora. The agglutination of N. albiflora red blood cells by the recombinant NaGal-1 protein was inhibited by peptidoglycan, lactose, D-galactose, and lipopolysaccharide in certain concentrations. In addition, the recombinant NaGal-1 protein agglutinated and killed some gram-negative bacteria including Edwardsiella tarda, Escherichia coli, Photobacterium phosphoreum, Aeromonas hydrophila, Pseudomonas aeruginosa, and Aeromonas veronii. These results set the stage for further studies of NaGal-1 protein in the innate immunity of N. albiflora. Full article
(This article belongs to the Section Molecular Immunology)
Show Figures

Figure 1

15 pages, 1811 KiB  
Article
Characterization of Endophytic Bacteria Isolated from Typha latifolia and Their Effect in Plants Exposed to Either Pb or Cd
by Jesús Rubio-Santiago, Alejandro Hernández-Morales, Gisela Adelina Rolón-Cárdenas, Jackeline Lizzeta Arvizu-Gómez, Ruth Elena Soria-Guerra, Candy Carranza-Álvarez, Jocabed Eunice Rubio-Salazar, Stephanie Rosales-Loredo, Juan Ramiro Pacheco-Aguilar, José Roberto Macías-Pérez, Liseth Rubí Aldaba-Muruato and Juan Vázquez-Martínez
Plants 2023, 12(3), 498; https://doi.org/10.3390/plants12030498 - 21 Jan 2023
Cited by 8 | Viewed by 2988
Abstract
Plant-associated bacteria in heavy-metal-contaminated environments could be a biotechnological tool to improve plant growth. The present work aimed to isolate lead- and cadmium-tolerant endophytic bacteria from the roots of Typha latifolia growing in a site contaminated with these heavy metals. Endophytic bacteria were [...] Read more.
Plant-associated bacteria in heavy-metal-contaminated environments could be a biotechnological tool to improve plant growth. The present work aimed to isolate lead- and cadmium-tolerant endophytic bacteria from the roots of Typha latifolia growing in a site contaminated with these heavy metals. Endophytic bacteria were characterized according to Pb and Cd tolerance, plant-growth-promoting rhizobacteria activities, and their effect on T. latifolia seedlings exposed and non-exposed to Pb and Cd. Pb-tolerant isolates were identified as Pseudomonas azotoformans JEP3, P. fluorescens JEP8, and P. gessardii JEP33, while Cd-tolerant bacteria were identified as P. veronii JEC8, JEC9, and JEC11. They all exert biochemical activities, including indole acetic acid synthesis, siderophore production, and phosphate solubilization. Plant–bacteria interaction assays showed that P. azotoformans JEP3, P. fluorescens JEP8, P. gessardii JEP33, and P. veronii JEC8, JEC9, JEC11 promote the growth of T. latifolia seedlings by increasing the root and shoot length, while in plants exposed to either 5 mg/L of Pb or 10 mg/L of Cd, all bacterial isolates increased the shoot length and the number of roots per plant, suggesting that they are plant-growth-promoting rhizobacteria that could contribute to T. latifolia adaptation to the heavy metal polluted site. Full article
(This article belongs to the Special Issue Adaptation of Mutualistic Plant-Microbe Systems to Abiotic Stresses)
Show Figures

Figure 1

19 pages, 7780 KiB  
Article
Bioanalytical System for Determining the Phenol Index Based on Pseudomonas putida BS394(pBS216) Bacteria Immobilized in a Redox-Active Biocompatible Composite Polymer “Bovine Serum Albumin–Ferrocene–Carbon Nanotubes”
by Roman N. Perchikov, Daria V. Provotorova, Anna S. Kharkova, Vyacheslav A. Arlyapov, Anastasia S. Medvedeva, Andrey V. Machulin, Andrey E. Filonov and Anatoly N. Reshetilov
Polymers 2022, 14(24), 5366; https://doi.org/10.3390/polym14245366 - 8 Dec 2022
Cited by 9 | Viewed by 2354
Abstract
The possibility of using the microorganisms Pseudomonas sp. 7p-81, Pseudomonas putida BS394(pBS216), Rhodococcus erythropolis s67, Rhodococcus pyridinivorans 5Ap, Rhodococcus erythropolis X5, Rhodococcus pyridinivorans F5 and Pseudomonas veronii DSM 11331T as the basis of a biosensor for the phenol index to assess water [...] Read more.
The possibility of using the microorganisms Pseudomonas sp. 7p-81, Pseudomonas putida BS394(pBS216), Rhodococcus erythropolis s67, Rhodococcus pyridinivorans 5Ap, Rhodococcus erythropolis X5, Rhodococcus pyridinivorans F5 and Pseudomonas veronii DSM 11331T as the basis of a biosensor for the phenol index to assess water environments was studied. The adaptation of microorganisms to phenol during growth was carried out to increase the selectivity of the analytical system. The most promising microorganisms for biosensor formation were the bacteria P. putida BS394(pBS216). Cells were immobilized in redox-active polymers based on bovine serum albumin modified by ferrocenecarboxaldehyde and based on a composite with a carbon nanotube to increase sensitivity. The rate constants of the interaction of the redox-active polymer and the composite based on it with the biomaterial were 193.8 and 502.8 dm3/(g·s) respectively. For the biosensor created using hydrogel bovine serum albumin-ferrocene-carbon nanotubes, the lower limit of the determined phenol concentrations was 1 × 10−3 mg/dm3, the sensitivity coefficient was (5.8 ± 0.2)∙10−3 μA·dm3/mg, Michaelis constant KM = 230 mg/dm3, the maximum rate of the enzymatic reaction Rmax = 217 µA and the long-term stability of the bioanalyzer was 11 days. As a result of approbation, it was found that the urban water phenol content differed insignificantly, measured by creating a biosensor and using the standard photometric method. Full article
Show Figures

Graphical abstract

25 pages, 1770 KiB  
Article
A Novel Antimicrobial Metabolite Produced by Paenibacillus apiarius Isolated from Brackish Water of Lake Balkhash in Kazakhstan
by Alexander Meene, Christiane Herzer, Rabea Schlüter, Bolatkhan Zayadan, Ruediger Pukall, Peter Schumann, Frieder Schauer, Tim Urich and Annett Mikolasch
Microorganisms 2022, 10(8), 1519; https://doi.org/10.3390/microorganisms10081519 - 27 Jul 2022
Cited by 3 | Viewed by 2596
Abstract
Four aerobic bacteria with bacteriolytic capabilities were isolated from the brackish water site Strait Uzynaral of Lake Balkhash in Kazakhstan. The morphology and physiology of the bacterial isolates have subsequently been analyzed. Using matrix assisted laser desorption ionization-time of flight mass spectrum and [...] Read more.
Four aerobic bacteria with bacteriolytic capabilities were isolated from the brackish water site Strait Uzynaral of Lake Balkhash in Kazakhstan. The morphology and physiology of the bacterial isolates have subsequently been analyzed. Using matrix assisted laser desorption ionization-time of flight mass spectrum and partial 16S rRNA gene sequence analyses, three of the isolates have been identified as Pseudomonas veronii and one as Paenibacillus apiarius. We determined the capability of both species to lyse pre-grown cells of the Gram-negative strains Pseudomonas putida SBUG 24 and Escherichia coli SBUG 13 as well as the Gram-positive strains Micrococcus luteus SBUG 16 and Arthrobacter citreus SBUG 321 on solid media. The bacteriolysis process was analyzed by creating growth curves and electron micrographs of co-cultures with the bacteriolytic isolates and the lysis sensitive strain Arthrobacter citreus SBUG 321 in nutrient-poor liquid media. One metabolite of Paenibacillus apiarius was isolated and structurally characterized by various chemical structure determination methods. It is a novel antibiotic substance. Full article
Show Figures

Figure 1

9 pages, 1015 KiB  
Article
Evaluation of the Adhesive Potential of Bacteria Isolated from Meat-Related Sources
by Zhenzhen Ning, Bei Xue and Huhu Wang
Appl. Sci. 2021, 11(22), 10652; https://doi.org/10.3390/app112210652 - 12 Nov 2021
Cited by 10 | Viewed by 2294
Abstract
Microbial adhesion constitutes the transition of microorganisms from a planktonic mode to a static one. It promotes the formation of biofilm which is responsible for spoilage, foodborne diseases, and corrosion in the food processing industry. In this study, the adhesive potential of fourteen [...] Read more.
Microbial adhesion constitutes the transition of microorganisms from a planktonic mode to a static one. It promotes the formation of biofilm which is responsible for spoilage, foodborne diseases, and corrosion in the food processing industry. In this study, the adhesive potential of fourteen meat-borne bacterial isolates belonging to seven different genera was investigated. All strains were found able to colonize polystyrene surfaces with different levels of firmness. Significant variations were determined in assays of bacterial hydrophobicity and motility. Among the 14 strains, Pseudomonas fragi, Aeromonas salmonicida II, Serratia liquefaciens, Citrobacter braakii, Pseudomonas putida, and Aeromonas veronii had a strong hydrophobic force, while the isolates of Lactobacillus genus showed the most hydrophilic property. In terms of motility, Citrobacter braakii and Escherichia coli exhibited exceptional swarming and swimming abilities, whilst conservatively weak performances were observed in the Lactobacillus strains. Furthermore, the majority of the isolates were predominantly electron donors and weak electron acceptors. Overall, a high level of correlation was observed between biofilm-forming ability with cell surface hydrophobicity and Lewis acid–base properties, whereas the contribution of motility in bacterial adhesion could not be confirmed. Research on the adhesive performance of foodborne bacteria is potentially conducive to developing novel control strategies, such as food processing equipment with specific surfaces, not facilitating attachment. Full article
(This article belongs to the Special Issue Quality and Safety Control of Meat Products)
Show Figures

Figure 1

Back to TopTop